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Abstract. Brain tumors are characterised by infiltration along the white
matter tracts, posing significant challenges to precise treatment. Mount-
ing evidence shows that an infiltrative tumor can interfere with the brain
network diffusely. Therefore, quantifying structural connectivity has po-
tential to identify tumor invasion and stratify patients more accurately.
The tract-based statistics (TBSS) is widely used to measure the white
matter integrity. This voxel-wise method, however, cannot directly quan-
tify the connectivity of brain regions. Tractography is a fiber tracking
approach, which has been widely used to quantify brain connectivity.
However, the performance of tractography on the brain with tumors is
biased by the tumor mass effect. A robust method of quantifying the
structural connectivity in brain tumor patients is still lacking.
Here we propose a method which could provide robust estimation of
tract strength for brain tumor patients. Specifically, we firstly construct
an unbiased tract template in healthy subjects using tractography. The
voxel projection procedure of TBSS is employed to quantify the tract
connectivity in patients, based on the location of each tract fiber from
the template. To further improve the standard TBSS, we propose an
approach of iterative projection of tract voxels, under the guidance of
tract orientation measured by voxel-wise eigenvectors. Compared to the
conventional tractography methods, our approach is more sensitive in re-
flecting functional relevance. Further, the different extent of network dis-
ruption revealed by our approach correspond to the clinical prior knowl-
edge of tumor histology. The proposed method could provide a robust
estimation of the structural connectivity for brain tumor patients.

Keywords: brain networks · structural connectivity · brain tumor ·
tractography · diffusion MRI.

1 Introduction

1.1 Brain tumors and white matter tracts

A brain tumor refers to a mass lesion identified within the brain or related struc-
tures. Among them, gliomas and meningiomas are the most common primary
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tumor types in adults. Impacts of tumors are characterized by diffuse infiltration
and interference with the white matter tracts [24, 26], the neuronal fiber bundles
forming a complex network connecting cortical regions. As a result, the tumor
infiltration along white matter tracts may lead to structural disturbance of the
brain[13].

Brain tumor patients frequently demonstrate neurological deficits that are
not directly explained by the focal lesion [8]. Therefore, it is increasingly accepted
that brain tumors may cause broader impacts to the global brain beyond the
focal site through the white matter tracts [1]. Therefore, accurately measuring
structural connectivity strength offers a promising imaging surrogate to detect
the tumor-related brain alterations. Further, the pre-treatment mapping of the
structural connectivity provides significance for the planning of both surgery and
radiotherapy[18]

1.2 Connectivity strength measurement

Recent development of neuroimaging techniques have facilitated characterization
of brain connectivity at the whole-brain level, based on diffusion MRI (dMRI).
The derived fractional anisotropy (FA) map is commonly used to measure the
tract strength. The tract-based spatial statistics (TBSS) is a method to estimate
the strength of specific tracts using a FA skeleton derived by mapping the local
maxima FA voxels to the template [19]. As a voxel-based method, however,
TBSS fails to consider the spatial continuity of the fiber pathway, which has
difficulties in multiple testing and tracking the fibers that tumor infiltrates along
[4]. Further, as the projection procedure in TBSS is purely based on the FA
values, the traditional TBSS does not consider the orientation of the tract fibers
that are frequently affected in brain tumor patients.

Tractography is a widely-used fiber tracking method to measure the tract
connectivity. This method has the advantage of detecting the fiber pathway with
spatial consistency. Performing tractography on brain tumor patients, however,
has the below challenges: 1) The tract pathways in vicinity to the tumor are often
anatomically deviated, which may cause errors in fiber tracking. 2) Many brain
tumors are remarkably heterogeneous [28, 11, 10, 27]. Particularly, the edema re-
gion surrounding the tumor may cause artefacts in fiber tracking, as the FA
value is commonly affected in these regions [17].

1.3 Related work

The conventional tractography methods include Fiber Assignment by Continu-
ous Tracking (FACT) and Unscented Kalman Filter (UKF) tractography.

FACT tractography FACT [14] is a deterministic method that tracks fiber
streamlines from a seed region by following the primary eigenvector from one
voxel to the next. FACT is highly sensitive to the changes of FA and tensor values
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in the white matter. As a result, the tracking frequently fails when encounter-
ing peritumoral edema, leading to overestimated disruption of the structural
networks. In some other cases, it may produce spurious tract rings around the
tumor, which may underestimate the connectivity reduction.[6]

UKF tractography UKF is shown to be able to track inside the peritumoral
edema using two tensor models [12]. However, in order to achieve this, the model
weakly controls the false positive fibers compared to healthy subjects [6]. The
trade-off between false positive and false negative rates is challenging to be opti-
mized among patients, which could particularly cause bias in the group analysis
when individual tumors have heterogeneous extent of peritumoral edema.

1.4 Our contributions

We propose a method of estimating structural connectivity for network construc-
tion in brain tumor patients, without directly fiber tracking on patients (Fig. 1).
Inspired by a method for traumatic brain injury [20], we firstly performed tratog-
raphy on healthy controls and generated an unbiased tract template, with the
location of each tract fiber derived. The TBSS approach was then employed to
derive the skeletonized FA maps from patients, for estimating the connectivity
strength of each specific tract in patients. To mitigate the bias in TBSS voxel
projection caused by tumor mass effect, we further proposed an improved TBSS
tailored to brain tumors, using an iterative projection of FA voxels guided by
the tract orientation based on the voxel-wise eigenvector.

We compared the connectivity strength estimated by the proposed approach
and the conventional tractography methods in multiple datasets of brain tu-
mor patients. The results show that our approach is reflecting more functional
relevance. Further, the different extent of network disruption revealed by our
approach correspond to the clinical prior knowledge of tumor histology.

2 Methods

2.1 Datasets

Three datasets of glioma or meningioma patients were included, with both dif-
fusion MRI (dMRI) and resting-state functional MRI (rs-fMRI) available: 1)
4 low-grade gliomas (LGGs), 5 high-grade gliomas (HGGs) and 2 meningiomas
(dMRI: 60 directions, b = 1000 s/mm2; rs-fMRI : TR = 2.5 s) were obtained from
[16]; 2) OpenNeuro database: 7 LGGs, 4 HGGs, and 14 meningiomas (dMRI:
101 directions, b = 0, 700, 1200, 2800 s/mm2; rs-fMRI : TR = 2.4 s) [2]. 3) an
in-house dataset: 12 HGGs (dMRI: 12 directions for each b values, b = 0, 350,
650, 1000, 1300, 1600 s/mm2; rs-fMRI : TR = 2.43 s). In total, 11 LGGs, 21
HGGs and 16 meningiomas were included.
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2.2 Template-based brain networks

The proposed method includes three main steps:

– Producing an unbiased tractography template (Fig. 1A),
– Generating individualized FA skeleton (Fig. 1B),
– Combining tractography template with FA skeleton to estimate the connec-

tivity strength between each pair of brain regions in patients

Fig. 1. Flowchart of network construction. A. An unbiased tractography template is
generated using probabilistic tractography in ten healthy subjects to indicate the loca-
tion of the tracts between brain regions parcellated using the brain atlas. B. By using an
iterative projection approach that considers the direction of voxles (V1), a skeletonized
FA map with maximum tract continuity can be produced. The red arrows indicate the
discontinuity in the FA skeleton from the traditonal TBSS that is corrected with our
proposed method

Tractography template An unbiased tract template was generated in four
steps using ten age-matched elderly healthy controls obtained from the Alzheimer’s
disease Neuroimaging Initiative (ADNI, http://adni.loni.usc.edu/).

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 19, 2021. ; https://doi.org/10.1101/2021.03.19.21253837doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.19.21253837
http://creativecommons.org/licenses/by-nc/4.0/


Quantifying structural connectivity in brain tumor patients 5

1) A diffusion model was fitted at each voxel of dMRI using Bedpostx of FM-
RIB software library (FSL, https://fsl.fmrib.ox.ac.uk/fsl/). Pairwise probabilis-
tic tractography was performed between 90 regions of Automated Anatomical
Labelling atlas (AAL) atlas [22] using Probtrackx2 to generate a path distribu-
tion map in healthy controls [5].

2) The path distribution map was nonlinearly tranformed to standard MNI-
152 space [7] using the Advanced Normalization Tools (ANTs)[3] and finally
averaged, to produce a group distribution map for each tract. The maps were
thresholded and binarized to preserve the top 5% strongest connections and
generate a conservative tract atlas in the standard space.

Individual FA skeleton from iterative projection An FA skeleton of each
patient was generated at the individualized native space using an improved TBSS
approach.

1) FA maps of all patients were first non-linearly co-registered to the standard
space using ANTs. In addition, the corresponding principal eigenvector V1 maps
were also transformed to the standard space. Instead of using the patient group
thinned FA skeleton, we used the standard FA skeleton of FSL as the target for
projection to reduce bias introduced by tumor.

2) We further improved TBSS that only projects the voxels with local max-
imum value at the tract center on the FA skeleton. Specifically, we compared
the principal eigenvector (V1) of the projected voxel to the the standard V1 and
calculated the orientation difference using vector product. The voxels with the
orientation difference over 90 degrees were discarded, where neighbor voxels were
selected instead. The projection iteration continued until all voxels on the skele-
ton converged to minimum direction difference with the standard FA skeleton.
Using this procedure, the continuity of the voxel directions on each tract could
be improved. An individualized FA skeleton was generated in each patient.

Structural connectivity strength estimation The segments of the individu-
alized FA skeleton within each tract of the template was extracted and averaged,
representing the connectivity strengths of the major tracts.

2.3 Baseline methods

FACT was performed using diffusion toolkits [25], while UKF was performed
using the UKFTratography packages in 3D Slicer(https://www.slicer.org/) via
the SlicerDMRI project (http://dmri.slicer.org) [30, 15]. For both methods, the
mean FA value of the tracts connecting two ROIs of AAL atlas was calculated
using MRTrix3 by sampling and averaging the FA values along the streamlines
generated by the tractography [21].

2.4 Functional brain networks

We constructed functional networks from rs-fMRI using GRETNA[23]. Firstly,
the rs-fMRI signals were regressed, bandpass-filtered, smoothed with a kernel
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with a full width at half maximum of 6mm and co-registered to the standard
space. Secondly, the brain regions of each patient were parcellated using the
AAL atlas. Finally, pairwise Pearson correlation was performed between the
mean rs-fMRI signals in 90 brain regions.

2.5 Functional relevance of the structural networks

Whole-brain structural and functional connectivity coupling To mea-
sure the individualized functional relevance of a structural network, we calculated
the whole brain structural connectivity-functional connectivity (SC-FC) cou-
pling. Spearman rank correlation was performed between the non-zero elements
of the structural connections with their corresponding functional connections to
produce correlation coefficient for each patient. To compare the group difference,
the correlation coefficients were transformed using Fisher Z-Transformation.

Group-wise structural-functional connection correlation The strength of
functional connections varies due to the distinct extent of disruptions in corre-
sponding structural connections. By testing the correlation of each functional
and structural connection, the functional connections sensitive to structural
damage can be identified. To weakly control the family-wise error in multiple
comparisons, we used the network-based statistics (NBS)[29], providing higher
sensitivity in controlling false discovery rate.

2.6 Clinical validation

The clinical prior knowledge establishes that meningiomas normally cause less
disturbance to the brain than gliomas. A robust network construction method
should be sensitive to the difference between meningioma and glioma. We used
the global efficiency, calculated according to graph theory, to characterize the
brain networks, which were compared in meningioma and glioma patients [9].

3 Results

3.1 Iterative TBSS projection

The proposed approach showed smaller orientation differences between patient
FA skeleton and standard FA, compared to the baseline methods (Table 1). One
example is illustrated on Fig. 2. Tracts that are displaced by the tumor have
voxels from the wrong directions projected onto the FA skeleton. In comparison,
our approach could ensure the maximum orientation continuity of the tracts.

3.2 Whole brain structural and functional connectivity coupling

The proposed method achieved higher SC-FC coupling over the baseline methods
(Table 2), suggesting the robustness of the brain network constructed using the
proposed method.
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Table 1. Mean orientation differences between patient FA skeleton and standard FA

Traditional TBSS projection
(radians)

Iterative TBSS projection
(radians)

P -value

0.424 ± 0.057 0.388 ± 0.035 3.8e-4

Table 2. SC-FC Coupling coefficient (z-transformed)

Methods Mean ± SD P -value (vs FACT) P -value (vs UKF)

Proposed 0.25±0.07 3.3e-26 3.5e-8
UKF 0.16±0.08 3.8e-10 -
FACT 0.07±0.05 - -

Fig. 2. Example of voxel projection in coronal (left), axial (middle) and sagittal (right)
views. A. T1 contrast MRI indicating tumor location. B. Traditional TBSS voxel pro-
jection: the tracts surrounding the tumor display different direction (green) from the
contralesional tract (blue). C. The proposed method improves the direction continuity
of the tract.

3.3 Group-wise structural-functional connection correlation

Only the proposed method identified significantly correlated functional and struc-
tural sub-networks across the patient group, suggesting its high sensitivity to
functional related structural disruptions.(Fig.3)

3.4 Global efficiency of different tumor types

The meningioma group in general has significantly higher global efficiency than
the glioma group (P = 2.9e-4), while the baseline methods did not capture
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Fig. 3. A. Sub-network is identified by the proposed method, with clusters of signif-
icantly correlated structural and functional connections (P = 0.0014). B. Fewer cor-
related structural and functional connections are identified by the UKF (P > 0.05).
Family wise errors of both methods are corrected by NBS with 5000 permuations.

Fig. 4. Global efficiency of the structural networks constructed using the proposed
method, FACT, and UKF. Compared to glioma, meningioma patients display signifi-
cantly higher global efficiency in the network constructed using the proposed approach.
∗ : P < 0.05
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significant difference in Fig. 4. Further, in a subgroup of menigioma and high-
grade glioma with comparable size, menigioma patients still have significant
higher global efficiency comparing to high-grade glioma group (P = 9.3e-5),
while baseline methods did not show significant difference.

4 Conclusion

This study proposes an approach to construct structural network and estimate
the connectivity, which employs an improved TBSS approach and the tractogra-
phy template from healthy controls. This method is shown to be robust compared
to the conventional tractography, with higher functional and clinical relevance.
The proposed method shows promise to aid treatment planning and patient risk
assessment.
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