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VALIDATING THE MECHANICS AND PERFORMANCE OF EPIFILTER

Having constructed EpiFilter (see Methods) we now investigate its mechanics and performance. First we show how

the choice of grid resolution m affects the accuracy and computational complexity of our smoothed instantaneous

reproduction number estimates, R̂s. Our recursive implementation is also known as a grid smoother, since its

estimates are optimal (in a MSE sense) but conditioned on the grid R [1], [2]. In the left panels of Fig. A1 we

reconsider the empirical H1N1 and COVID-19 examples, from the main text, at various m. We find that EpiFilter

has linear complexity in m but that R̂s (averaged over 50 replicate runs) converges quickly, both in mean and

variance (latter not shown). Execution times, which include both Rs estimation and incidence (Is) prediction, are

only a few minutes, generally. While the Rs smoother is always fast, the Is prediction block may be slower for

very large epidemics (e.g., 1000s of cases per day), resulting in ∼ 10 minute run times.

As a rule-of-thumb setting m ≥ 103 safely guarantees convergence, and still executes in a few minutes. Note

that estimates at small m are still valid. They represent coarser assumptions on reproduction numbers and provide

minimised MSE estimates under those assumptions. We illustrate a coarse estimate and how it converges for a

simulated example in the right panels of Fig. A1. There, we also test the behaviour under different choices of the

process or state noise parameter η. This parameter is vaguely similar to the window size parameter, k, in EpiEstim

approaches, but is easier to select. It controls the autocorrelation among successive Rs and allows some modelling

of heterogeneity (hence the term state noise). Fig. A1, shows how too small η might lead to underfitting, while

overly large η (where we would not consider η ≥ 1 given Eq. (4b) of the main text) could promote overfitting.

However, while the optimal window size in EpiEstim varies with the form of the true Rs (e.g., large k is

needed for stable Rs time-series and small k for strongly fluctuating ones [3]), we find that a fixed η = 0.1

works well across diverse epidemic scenarios and enables automatic detection of transmission change-points. This

is an advantage over approaches requiring explicit change-point modelling [4]. We examine this further in Fig. A2.

There we compare Rs estimates from APEestim (with optimal window k) [3] to EpiFilter (η = 0.1, m = 2000) for

simulated epidemic scenarios. We generate epidemics via the renewal model (Eq. (1) of the main text) using the

Ebola virus serial interval distribution from [5] and ensure the prior distributions of both methods have the same

support. The epidemics simulated span the range of possibilities (e.g., they may have large or small incidence).
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Fig. A1: EpiFilter mechanics. We examine the computational complexity and accuracy of EpiFilter. Left panels
indicate how increasing grid resolution, m, leads to a linear increase in execution time (blue with 95% credible
intervals) for the empirical case studies of the main text. These times are averaged over 50 replicate runs (using the
R implementation) and include the latency in computing both reproduction number, Rs, estimates and incidence, Is,
predictions. The mean estimate of Rs, averaged over time and the replicates, is in grey, and converges quickly. The
variance of these estimates, while not shown, converges equally fast. Right panels provide an illustrative example
of how estimates R̂s (red with 95% credible intervals) change with m and choices of process noise parameter, η.
Even at coarse grid sizes (small m) the estimates are sensible. Reducing η sharpens confidence intervals but can
potentially underfit. Increasing η adds state noise. We find that η = 0.1 serves as a good general heuristic. All
simulations are at Rmin = 0.01 and Rmax = 10 and the true Rs (a seasonal epidemic) is in black.

We find EpiFilter outperforms APEestim, despite our using a single η value, with improvements especially stark

for the simulations with subcritical transmission (as detailed in main text). This single η contrasts the discordant

optimal k values and allows EpiFilter to recover the salient dynamics for epidemics with stable trajectories, seasonal

variations and rapidly or gradually fluctuating transmission. In none of these scenarios does the true Rs have either

the state model of Eq. (4b) of the main text or the sliding-window relationship in EpiEstim. Hence, these simulations

also indicate robustness of the different inherent state assumptions in both approaches to moderate model mismatch.

We use single runs to showcase how a practical epidemic would be processed in real-time. Neither method depends

on random algorithms (e.g., MCMC) so their estimates will remain constant under the same parameters.

Last, we complete our batch analysis of EpiFilter performance by examining coverage statistics. In Fig. 3 and

Fig. 5 of the main text a range of waning and resurging epidemic examples were explored. There we found

that EpiFilter considerably improves the MSE when inferring instantaneous reproduction numbers, Rs, relative to

EpiEstim and APEestim. APEestim, expectedly, had the best PMSE when predicting incidence, Is, but EpiFilter

was only marginally worse. In Fig. A3 and Fig. A4 we plot the coverage (over the 200 runs of each scenario

from Fig. 3 and Fig. 5) against time i.e., the probability that the Rs estimate or Is prediction equal tailed credible

intervals of a given method contain the true Rs and Is values from the simulations. We find that EpiFilter generally
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Fig. A2: Validation against APEestim. We compare estimates from EpiFilter (right panels) with optimised ones
from APEestim (left panels [3]) over various general epidemic scenarios (which may have large or small incidence).
These are simulated using Eq. (1) of the main text and not restricted to epidemics that may face elimination or
resurgence as in Fig. 2 and Fig. 4 of the main text. We use m = 2000, Rmin = 0.01 and Rmax = 10 for EpiFilter.
To be fair we use a Gam(1, 2) prior distribution with APEestim, which sums to 1 by Rmax. Here k is the optimal
window choice in APEestim (under predictive error) and η = 0.1 is fixed for EpiFilter inferences. True Rs is in
black and conditional mean estimates with 95% confidence intervals are in red. EpiFilter is more stable, smoother
and minimises estimate uncertainty in all scenarios. While the optimal k changes considerably among epidemics,
η = 0.1 is able to automatically detect salient changes in transmission for all examples considered.

has the most consistent coverage across all scenarios for both Rs and Is, confirming its performance.
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Fig. A3: Coverage statistics of waning epidemics We provide the probability that the true values of instantaneous
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Fig. A4: Coverage statistics of resurging epidemics. We provide the probability that the true values of instantaneous
reproduction numbers, Rs, and incidence, Is, from each scenario in Fig. 5 of the main text (over 200 runs) are
contained within the equal tailed 95% estimate and prediction credible intervals generated by EpiFilter (η = 0.1),
APEestim (k = k∗) and EpiEstim (weekly, k = 7 windows). EpiFilter provides the most consistent coverage.
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