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Abstract: 

The outbreak of the pandemic disease, COVID-19, has shown that the approaches by different 

countries has resulted in a range of infection rates through their societies.  This has arisen from the 

varying personal behaviour and tactical use of lockdown strategies within each country. We report 

the use of microsimulation of a simulated community in Australia, using a discrete infection model 

within a community of residences, places of work and recreation to demonstrate the applicability of 

this method to both the current pandemic and to infection more generally. Simulations without any 

societal intervention on infection spread provided base simulations that could be compared with 

social and societal controls in the future and which were compared with the initial doubling times of 

country outbreaks across the world. Different population sizes were represented in some 

simulations and in other simulations the effects of either social distancing or the use of facial masks 

as personal behaviours was investigated within the community. Good agreement is found between 

the initial doubling times for several countries and the simulations that suggests that modelling 

infection as a collection of individual infections provides an alternative to current epidemiological 

models. The variation of the basic reproductive number, R0, with time and population size, suggests 

that one of the fundamentals assumptions in SIR type models is wrong, but varies according to the 

properties of the population being modelled. Investigation of the infection spread shows that the 

number of super-spreaders varies with the size of the population and occurs through contacts in 

clubs, supermarkets, schools and theatres where the source of infection is an employee and where 

there are high numbers of contacts. The simulations of individual control show that the benefits of 

social distancing or wearing masks is only fully realised where there is considerable compliance 

within society to these measures. 
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1 Introduction: 

The coronavirus disease, COVID-19, is caused by the transmission of the RNA virus Severe Acute 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) which was first notified to the WHO on 31 

December 2019 by Chinese authorities. At this time, a pneumonia of unknown cause had been 

detected in Wuhan.  A report in the South China Morning Post [1] suggested that a 55-year-old man 

could have contracted the disease on 17 November and that by the time the WHO was notified of 

the new disease there were some 266 confirmed cases. No matter what the exact origins were, it 

has since been transmitted to most countries around the world. 

2 Infection Model: 

The infection model used in this study is a seven-state model for each individual. The individual 

times spent in each compartment were based on the WHO report [2] which detailed preliminary 

infection parameters and recovery information from China. The infection model is shown 

diagrammatically in Figure 1. In the simulation all individuals start susceptible to the disease, Covid-

19.  The simulation is started by one infected person who is injected into the community.   

A second infection, to provide a mechanism for generating negative testing results, was not tested in 

the simulations presented in this paper. In NSW, the government asked that only those presenting 

with symptoms were to be tested.  Only those that came back positive become confirmed cases.  

The simulation emulates this. All individuals present for testing on becoming symptomatic although 

this is delayed if the individual has a significant hero phase where the person knows they are 

symptomatic but continues their normal routine. Individuals who test negative for the SARS-CoV-2 

virus continue their normal daily schedules. Individuals who test positive for covid-19 are home or 

hospital isolated until recovery and are counted as confirmed cases.   

The susceptible population are delayed from becoming latent to either disease by an infection 

chance in the presence of an infectious individual in a location (cell). The equation for infection in a 

cell for each timestep is given by: 

𝐼𝑒 = 1 − (1 − 𝐼𝑖)
 ∆𝜏 ∑ 𝑠𝑐𝑛𝑐

𝜏  

Where Ie is the chance of infection of the individual within a cell, Ii is the individual’s infection 

chance, nc, is the number of infectids in the cell, ∆τ is the simulation timestep and τ is the average 

infectious time. Sc is the infection strength associated with infected nc. This parameter takes account 

of the variation in viral load coming from each infected individual but was set to 1 in all simulations 

presented here.   

The latent and asymptomatic phases define the incubation period for the individual. In about 20% of 

cases the asymptomatic period is resolved directly to the immune state without going through a 

noticeable symptomatic phase and hence they do not get tested. The others progress to a hero 

symptomatic period which represents the onset of noticeable symptoms, but the individual ignores 

or conceals them and does not present for testing. At some point the individual enters the 

symptomatic phase 1 period where the individual presents for a covid-19 test. They are either sent 

home to isolate or are isolated in hospital if comorbid until their results come through. The delays in 

testing are built into the testing model. If Infected they continue home isolation or ward isolation. 

Those that go on to develop phase 2 symptoms are queued for a hospital ward, then ICU and then 

ventilator depending on their susceptibility to more severe outcomes. This part of the model has not 

been assessed in this paper. The individuals will then recover or die. Those that die are moved to a 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.16.21257298doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.16.21257298
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

morgue to free up resources for other individuals. Those that recover are deemed to be immune and 

resume their daily schedules.  

The infection parameters used in Table 1 have been derived from the WHO report [2]. 

 

 

Figure 1 Schematic of the infection model used for both Covid-19 and an influenza like virus. 

 

 

Figure 2 Two examples of scheduling; Top) A full-time day schedule for an individual employed full-

time, Bottom) A schedule for a primary student during term. 
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Infection Parameter Type µ, σ or 
value 

Comment 

Incubation Interval Lognormal distribution 4.81, 0.042  

Symptomatic Interval Normal distribution 0.2, 0.01 Individuals who become 
symptomatic. 

Asymptomatic interval Normal distribution  5.47, 0.08 Individuals who remain 
asymptomatic. 

Asymptomatic cohort Fraction 0.2 Population who remain 
asymptomatic. 

Infection chance Lognormal distribution - Varied in study. 

Infection strengths:    

    Adult Normal distribution 0.9, 0.02 Initial data suggested that children 
were not as prone to infection     Child Normal distribution 0.13, 0.1 

    Health worker Normal distribution 0.25, 0.1 Wearing effective PPE. 

Hero Interval Uniform distribution 1 to 3  

Hero Cohort Fraction 0.11  

Symptomatic intervals:    

    Mild to recovery Normal distribution 5.47, 0.11  

    Mild to severe Normal distribution 4.45, 0.11  

    Severe to recovery Normal distribution 6.57, 0.21  

    Severe to death Normal distribution 6.53, 0.24  

Symptomatic severity:    

    Mildly infected child Fraction 0.973  

    Severely infected child Fraction 0.025  

    Critical infected child Fraction 0.002  

    Ventilated infected child  Fraction 0.0015  

    Mildly infected adult Fraction 0.8  

    Severely infected adult Fraction 0.139  

    Critical infected adult Fraction 0.061  

    Ventilated infected adult Fraction 0.046  

    Recovery Cohort Fraction 1  

Table 1 Global Infection parameters. Individual infection parameters are sampled from the 

distribution or via a random number comparing with a fraction between 0 and 1. 

3 Community Structure: 

The community locations consist of two parts; residential locations based on the demographics from 

the 2016 census for the Nepean Health District, community locations for work, shopping, recreation 

and religion.[3] Table 2 contains the number of workplaces and different locations in the simulation 

[3]. 

The community consists of six cohorts of people: infants (0-4-year-olds), primary (5-14- year-olds), 

secondary (15-24- year-olds), full-time employed, part-time employed, and unemployed [4]. The 

fraction of infants that go to preschool or equivalent outside the parent’s home are given schedules 

for the days on which they attend. The remainder are assumed to remain at home irrespective of 

where the parents are located. The primary cohort either go to primary school or secondary school. 

It is assumed that this cohort does not work. The secondary cohort go to secondary school, TAFE 

college or university. A sizable fraction is no longer in full time education and are added to full-time 

or part-time work of the adult population over the age of 24. A fraction of those who are still in full- 
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or part-time education have part-time jobs. These attract specific schedules rather than those in the 

adult population. 

The remaining three cohorts work or are unemployed [4]. Persons who have retired are added to 

the unemployed group. Table 3 is the breakdown of the different population cohorts used in the 

simulations. 

 

 

Type Location Number Comment 

Residential: Residences 121465 Does not include empty properties. 

Recreation: Park fraction 0.000014 Recreational locations were 
calculated from the fraction of the 
population in the simulation. 

 Stadia fraction 0.000013 

 Sports fraction 0.00053 

 Swimming fraction 0.000065 

 Religion fraction 0.000506 

Workplaces:   Other places are defined from 
the number in the district 
population 

    Education Tertiary 9 

High schools 51 

Primary schools 116 

Kindergartens 163 

    Health COVID-19 hospitals 1 

Hospitals 9 

F-practices 102 

G-Practices 193 

Diagnostic collection 193 

Labs 5 

    Entertainment Theatres 9 

Cinemas 14 

Concert halls 23 

Clubs 130 

    Eateries Restaurants 391 

Hotels 65 

Cafes 391 

Takeaways 391 

    Food and Grocery Superstores 12 

Supermarkets 30 

Groceries 135 

General stores 666 

    Retail Megastores 12 

Large shops 30 

Medium shops 135 

Small shops 666 

    General Work-1 121 

Work-2 302 

Work-3 1358 

Work-4 6670 

Work-5 13651 

Table 2 Locations used within the community. These have been assembled from references [3,4] 
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Cohort  Number Comment 

District Population 358637 Total Population (Nepean Health District). 
Infants 28914 Children 0-4 years of age. 

Primary 28981 Children 5-14 years of age. 

Secondary 32785 Students who attend secondary education only. 

Full-time workers 126905 Includes a cohort of 20-24 year-olds who work full-time 
as well as attending tertiary education. 

Part-time workers 55937 Includes students 15-19 and 20-24 who work part-time 
as well as attending secondary or tertiary education. 

Unemployed/retired 85115 Unemployed, retirees and those identifying as at home. 

Health worker cohort 0.125 Fraction of population who work in health care. 

Table 3 Population for the Nepean Health District based on the 2016 census data. [5,6] 

4 Daily Schedules: 

All individuals are assigned a schedule for each day, with different schedules being chosen from a 

weighted random list for the cohort to which they belong. The weighting represents the chance that 

a particular schedule is followed. For example, a person working full-time might have a five-day 

week with two rest days. Consequently, they have a two in seven chance of not working. The 

process is more complicated than this as a full-time employee might be on shift work with a rotating 

roster of shifts and different starting times. Therefore, the ratios are different from just a 9-5 worker 

and two days off. Table 4 shows the options for schedules. 

Each schedule assumes that a person moves to several different locations during the day. The 

individuals are ‘teleported’ between venues where the times at which consecutive movements occur 

being chosen at random within a given period. An example of these schedules is shown in Figure 2. A 

list of schedules is given in Table 4. The daily routine used for a given individual is randomly selected 

from weighted lists that represent the prevalence of different types of schedules in the community 

for the cohort type. For example, in the part-time cohort people may work but have schedules 

combining full-time, part-time and non-work (effectively unemployed) days.  Consequently, the daily 

schedule is selected from a weighted list of PT-normal, FT-normal and UN-normal that represents 

proportions consistent with census data.  

Daily Schedule Comment 

FT-normal Full time work for an 8hr day between 7:30am and 6:30pm 
FT-morning Full time morning shift for an 8hr or 12hr day starting between 6am and 8am 

FT-afternoon Full time afternoon 8hr shift starting between 2pm and 4pm 

FT-night Full-time night shift for 8hr or 12hr shift starting between 10pm and 11pm or 6pm to 
8pm respectively 

FT-travel Full time drivers of goods and services in the community 

UN-normal Unemployed daily schedule 

PT-normal Part time work during the day 

SS-normal Secondary School student schedule 

PS-normal Primary school student schedule 

IN-normal Infant schedule 

SP-normal Weekend sports schedule 

SH-normal Weekend shopping schedule 

HM-normal Weekend home schedule 

CH-normal Religious service schedule 

Table 4 Daily schedules for the population.  
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5 Simulations: 

The Nepean Health District has a population of about 353000 persons. A fraction of this population 

was used in different simulations with the number of residences and community locations scaled 

accordingly. Simulation populations ranged from 700 to 212000 individuals to assess the effect of 

population size on how quickly infection will spread through a community; assuming there is no 

societal intervention. These can be compared with the spread in different countries, particularly 

where infection has spread through different size populations such as the initial outbreak in 

Northern Italy. 

In all simulations, one index case is introduced into the community on 13 January, similar to the first 

case that occurred in NSW. The person has come from overseas and goes to stay with a relative in 

the community. A testing regime where people go to a doctor or hospital to be tested for Covid-19 is 

used to discriminate between the confirmed cases and those in the population who have covid-19 

but have not been diagnosed giving estimates of the total infection spread in the community. Once 

tested, individuals go home or hospital where they wait for confirmation. Those that test positive 

isolate at home, move to a Covid-19 ward, ICU or ventilator depending on the severity of the case. 

Those that test negative return to a normal routine. In these simulations the resourcing for hospital 

facilities is not investigated and will be the subject of future investigations. 

 

Figure 3 Variation with infection chance for a population of 7200. The legend represents 

Ln(infection-chance) used in the simulations.  

5.1 Comparison with other countries: 

Several simulation sets were undertaken in which the basic infection chance was varied. A single 

infected person was introduced into the community in each simulation.  
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18 simulations were undertaken for each infection chance. Those that showed propagation of the 

infection to others were averaged.  Due to variation in time with the start of the outbreak, the 

growth was aligned from the day when five confirmed cases were observed in the individual runs. 

These averages are shown in Figure 3 for a population of 7200 and compares the variation with the 

change in the natural logarithm of the infection chance.  

The rates of growth from Figure 3, when expressed as the days to double the number of cases, is 

shown in Figure 4, together with the doubling times for several countries which did not act quickly 

on changing societal behaviour. Also shown is the doubling time for the NSW outbreak as a 

comparison. All doubling times were calculated from the rates of growth from 64 confirmed cases to 

1024 confirmed cases.  

The growth rate was calculated from: 

𝑁 = 𝑎𝑒𝑟𝑡 

𝑇𝑑 =
ln (2)

𝑟
 

where N is the number of confirmed cases, a is a constant, r is the growth rate, Td is the doubling 

time. 

 

 

Figure 4 Comparison of Doubling Time with different country outbreaks. The doubling time was 

calculated from the growth rate between 64 and 1024 confirmed cases. 
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Discussion: 

The country data was assembled from data available on the web [5] for the outbreaks in China, USA, 

Italy, France, UK, and Germany. The 64-1024 cases were used in the analysis because they would 

have occurred early in the pandemic, over a 7-to-15-day period, before most countries started to 

introduce government restrictions on movement.  

All countries achieved 1024 confirmed cases within 55 days of their index case, and most occurred 

before day 42. The early data from Wuhan, China[2] suggested an R0 of 2.5 to 3 with an incubation 

period between 4.5 and 5.8 days with a mean of 5.1 days and the symptomatic phase for mild 

symptoms lasting 7 days on average. The delay between testing and results was at least 4 days at the 

start of the pandemic, no matter which country people were in, as the techniques had to be refined 

to bring the turn-around time down. As a result, confirmed cases would occur on average some 15 

days after infection, assuming a delay of three days before being tested. 60 days therefore 

represents four generations of infection. Some governments may have started intervention earlier 

than this assumption but even if this was as early as 45 days then the infections statistics would not 

have altered significantly for the calculation of doubling time. 

The data suggests that the infection chance for uncontrolled infection chance spread lies in the 

range 0.0022 to 0.009 per hour of contact with an infected person. 

5.2 Variation with Population size: 

 

Figure 5 Variation in confirmed case numbers as a function of simulation population. The legend 

indicates the number of persons in the simulation. 
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Figure 6 Histogram of transmission. The legend on the main diagram shows the total number of 

infections in each population simulation group. The legend in the inset indicates the numbers 

infected from super-spreaders in the community. 

Several simulations investigated the effect of population size on the spread of infection, assuming no 

control over the movement of the population. The population size, along with the number of 

workplaces and residences, were calculated as a linear function of Nepean Health District 

population. A lower limit of 1 was set for hospitals, larger workplaces, clubs, cinemas and theatres, 

where the ratio was less than 1. 

The average number of confirmed cases is shown in Figure 5. The results scale as expected with 

population.  The graphs are self-similar with 85% of the population ending up being infected. 

Figure 6 shows a histogram of the fraction of the population infected from a person infecting more 

than one person. The majority of infected people cause no infection spread to other members of the 

population (60-66%). The histogram shows the presence of super-spreaders, that is where one 

individual infects many others. The inset shows the fraction of infections caused by super-spreaders 

in decade quanta for each population of total infections. The data suggests that, as the population 

increases, the fraction of super spreaders increases, although more simulations are required as the 

quantity will depend on the mixing model for the population and this has not been investigated in 

this work. The super-spreaders in the majority of cases are associated with workers in locations 

where people congregate such as clubs, theatres and schools or are schoolchildren. 

The Reproduction number, R0, is defined as the average number of infections caused by an infected 

person.  Figure 7 shows the variation in R0 as a function of time and as a function of population. 

Higher maxima R0 values occur with higher populations. 
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Figure 7 Reproductive number, R0, variance with time for different sizes of populations. 

Discussion: 

The results demonstrate that epidemiological models based on a constant reproductive number will 

overpredict the length of an infection wave as the reproductive number only tends towards a 

constant value later in the infection wave and well after the peak value occurs. The peak values 

seem to occur when 15% to 30% of the population have been infected.  

The high reproductive numbers occur because of the presence of super-spreaders. It was notable 

that some of these were in primary and secondary schools being caused by children, despite their 

having a lower infection chance in the infection model than adults. The other people causing super-

spreading work at clubs, theatres and supermarkets. As examples, there was only one super-

spreader above 20 in a population of 771 people, where 26 people were infected at a club by one 

worker. In a population of 212171 people, there were examples of 1 schoolteacher infecting 130 

high school students in one simulation, and people at home, in a stadium and at the theatre in 

another simulation.  

5.3 Social distancing and mask wearing individual behaviours: 

Several test simulations were undertaken to gauge the effect of individual behaviour on infection 

rate. The social distancing and mask wearing behaviour are two inherent controls that individuals 

can undertake. Social distancing is reflexive (if I am distanced from you, then you are distanced from 

me) where mask wearing is not (my mask protects you to a different degree from the protection it 

affords me). The simple approach taken studies the effects of one or other of this type of control as 

the equation used is similar. This study does not examine both measures taken together, and this 

would require further investigation. 
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Two parameters were used to model behaviour; the fraction of the population who complied with 

social distancing or mask wearing, and the effectiveness of the individual control. Each individual 

either complied with the control being investigated or did not. The effectiveness of the control 

measure in the compliant population was modelled according to the following equation. 

𝐼𝑅 = 𝑎𝐼𝑒; 𝑅𝑎𝑛𝑑{0,1} ≤ 𝐹𝑆𝐷 

Where IR is the reduced infection chance, a is the reduction in infectiousness of the control and FSD is 

the fraction of the population who are compliant in the community. 

Three series were used to investigate the variation of compliance in the population to either social 

distancing or mask wearing, with the efficacy of the action varied as a global parameter. Assuming 

that the population is 100% compliant in social distancing in venues or is mask wearing, Figure 8 

indicates that as the efficiency increases to reduce the global infection chance, the rate of increase 

in infection spread decreases. All simulations were undertaken with populations of 771 people 

including the index case. 

Figures 9 and 10 show the effect of relaxing the compliance to social distancing for efficiencies of 

social distancing of 85% and 30% respectively. It demonstrates that the as the efficiency in overall 

control decreases, compliance in the community is compressed into narrower bandwidths. 

 

  

Figure 8 Effect of social distancing or mask wearing efficiency on a fully compliant population. The 

legend represents the inefficiency of the personal control. 1 therefore represents the zero efficiency 

as a control and 0 represents full efficiency as a control. 
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Figure 9 Effect of relaxing population compliance. The legend represents different degrees of 

compliance with an 85% efficiency of the control. 

 

Figure 10 Effect of relaxing population compliance. The legend represents different degrees of 

compliance with an 30% efficiency of the control. 

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 10 20 30 40 50 60 70

N
o

. o
f 

C
as

es

Days Since 5 Confirmed Cases

Confirmed Cases

1-1

0.3-0.7

1-0.75

0.5-0.7

0.15-0.7

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 10 20 30 40 50 60 70

N
o

. o
f 

C
as

es

Days Since 5 Confirmed Cases

Confirmed Cases

1-1

0.7-0.15

0.9-0.15

1-0.15

0.15-0.15

0.5-0.15

0.3-0.15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.16.21257298doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.16.21257298
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

Discussion: 

As individual behaviour becomes more compliant, either to social distancing or to mask wearing, the 

rate of disease spread decreases and the number of non-transmissions from the index case increases 

demonstrating ground truth in the techniques used. 

6 Significance: 

Differential compartment models are commonly used in epidemiological studies [6-8] as an 

analytical tool for studying disease spread in society. They vary in complexity from the simple 

models to more complex models for the force of infection. Fundamental problems lie in the 

assumptions concerning the average number of contacts per person per time and the population 

that is considered as being susceptible to infection. In many cases this is assumed to be the total 

population and thus overpredicts the expected number of cases. 

Because social mixing is so important to the prediction of infection in society, stochastic models of 

the population have been developed with smaller groups that better mimic the behaviours in 

society. The set of differential equations, however, are related back to SIR type relationships [9,10] 

and infection is still solved based on group dynamics rather than the individual. 

In other cases, the compartments that are set up to mimic subgroup exposures assume different R0 

values for each compartment in order to get agreement with historical cases. [11]   

In this study a full societal model of mixing and infection is presented. The paper demonstrates that 

it is viable to observe the patterns of infection spread with a simple model based on individual 

behaviour. Its potential value lies in the ability to assess the effectiveness of behavioural controls in 

society, whether based on individual preference or government edicts.  A further benefit may come 

from relating viral loads of individuals to the ability to spread infection spread in the community. 

Further work is envisioned. While this model has not been fully calibrated, further work will be 

undertaken to calibrate this model against outbreaks in other countries and Australian Data. Further 

work will assess the impact of closing different types of business and social compliance, as well as 

the impact of resource constraints on the public health system and how the increase in death in 

society could be mitigated with alternative strategies.  

7 Funding:  

This work has been self-funded. 
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