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Abstract 

This paper demonstrates how a short-term prediction of the effective reproduction number 
(Rt) of COVID-19 in regions of Greece is achieved based on online mobility data. Various 
machine learning methods are applied to predict Rt and attribute importance analysis is 
performed to reveal the most important variables that affect the accurate prediction of Rt. Our 
results are based on an ensemble of diverse Rt methodologies to provide non-precautious and 
non-indulgent predictions. The model demonstrates robust results and the methodology 
overall represents a promising approach towards COVID-19 outbreak prediction. This paper 
can help health related authorities when deciding non-nosocomial interventions to prevent the 
spread of COVID-19.  
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1 Introduction 
 

A case of unknown aetiology pneumonia was recorded in Wuhan, China, in December 2019 
which escalated into an epidemic reaching a pandemic state. This novel coronavirus SARS-
CoV-2 disease is named “COVID-19” by the World Health Organization (WHO). On January 
30, 2020, COVID-19 outbreak was declared to constitute a Public Health Emergency of 
International Concern (Anastassopoulou, Russo et al. 2020). Only COVID-19 outbreak 
among the class of coronaviruses is declared a global pandemic in less than three months of 
its emergence (Salisu and Akanni 2020). The first infection in Greece was reported on the 26th 
of February 2020, and after three days, the state applied policies to control the disease. This 
rapid response led Greece to be considered as a successful case of COVID-19 management 
compared to European and global cases (Demertzis, Tsiotas et al. 2020). For the time or 
writing, Greece has 281,520 confirmed cases, 8,532 deaths and 237,025 recovered cases1. 
COVID-19 infections are increasing in Greece, with 3,070 new infections reported on average 
each day2.  For the time of our analysis the geographic distribution of the confirmed infected 
cases in Greece (145,281 confirmed cases) are shown in the map of Figure 1 where is 
observed that the majority of infections are concentrated in the decentralized administration of 
Macedonia and Thrace.  

                                                 
1 https://www.worldometers.info/coronavirus/country/greece/ 
2 https://graphics.reuters.com/world-coronavirus-tracker-and-maps/countries-and-territories/greece/ 
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Figure 1. Confirmed cases in Greece across the seven decentralized administration for the 
period of our analysis: 18/06/2020 – 29/01/2021. 
 

People travel and commute every day within and across countries, regions and cities. For the 
above reason, human mobility represents a key driver fostering the rapid spread of any disease 
(Wilson 1995, Tatem, Rogers et al. 2006) and has been associated with the epidemic changes 
of COVID-19 (Yuan, Hu et al. 2020). Consequentl, local and national governments have 
implemented various non-pharmaceutical interventions (NPIs) as a strategy to prevent 
transmission (Basellini, Alburez-Gutierrez et al. 2020, Brauner, Mindermann et al. 2020, 
Seale, Dyer et al. 2020).  

A prominent metric that is deployed to quantify the progress of a disease is the reproduction 
number R (expected number of secondary cases caused by a primary case). The beginning of 
the epidemics is characterised by the basic reproduction number, R0 that shows the average 
number of secondary cases produced by a primary case when population is fully susceptible. 
Susceptible refers to individuals who can get infected if exposed and become hosts (Binti 
Hamzah FA, Lau C et al. 2020). Whereas, the effective reproduction number, Rt describes its 
progression in time. The Rt varies over time due to the depletion of susceptible individuals as 
well as changes in other factors, including mobility patterns, social mixing, control measures, 
contact rates, immunity of the population and climatic conditions (Arroyo-Marioli, Bullano et 
al. 2021). Rt exhibits complexity, but it is broadly accepted that values > 1.0 indicate a rapid 
expansion of infections (Karnakov, Arampatzis et al. 2020). 

Different approaches have been proposed to model the spread of infectious diseases, such as 
established epidemiological models e.g., Susceptible, Infectious, Recovered (SIR) model and 
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its extensions: Susceptible, Infectious, Recovered, Deceased (SIDR) and Susceptible, 
Exposed, Infectious, Recovered (SEIR) models (Ahmad, Garhwal et al. 2020). The above 
tools are generally based on differential equations and are still used as the baseline for 
comparing other approaches to epidemic modelling (Georgiou 2020). A more recent approach 
is based on Machine Learning (ML) tools. Diverse algorithms have been exploited such as 
Random Forest (RF), k-Nearest Neighbours (kNN), Support Vector Machine (SVM), Neural 
Networks (NN), Decision Trees (DTs), Auto-Regressive Integrated Moving Average 
(ARIMA) etc., Those tools have been applied to predict various COVID-19 related outcomes, 
for instance the number of confirmed positive cases (Saba, Abunadi et al. 2021), diagnosis 
and prognosis, patient outcome prediction, tracking and predicting the outbreak, drug 
development, vaccine discovery, false news prediction, etc (Ahmad, Garhwal et al. 2020). In 
addition, agent-based modelling approaches have been suggested to analyse measures and 
policies that are most appropriate for COVID-19 disease management for large populations 
(Tuomisto, Yrjölä et al. 2020) 

Various computational models and approaches have been used for the case of Greece solely. 
Georgiou (2020) developed data analytics procedures, spectral decomposition and curve-
fitting formulations. The standard epidemic modelling provided hints for the outbreak 
progression. Politis and Hadjileontiadis (2020) used a combination of Monte Carlo 
simulations, wavelet analysis and least squares optimization to a basis of SEIR compartmental 
models. The authors resulted in the development of stochastic epidemiological models 
calibrated with the epidemiological data., capable of estimating parameters of importance 
such as the reproduction number and the magnitude of infection. Rachaniotis, Dasaklis et al. 
(2021) proposed a two-phase stochastic dynamic network compartmental model (a pre-
vaccination and a post-vaccination SVEIR) to assess scenarios of different phases of 
lockdown coupled with different vaccination rates.  

Ensemble of methodologies have also been showed. Demertzis, Tsiotas et al. (2020) proposed 
a hybrid method based on a conceptualization of detecting connective communities in Greece 
in a time-series and a spline regression model where the knot vector is determined by the 
community detection in the complex network. Katris (2021) generated a time-series based 
statistical data-driven procedure to track an outbreak in Greece. The time series models 
include Exponential Smoothing and ARIMA approaches as classical models, also Feed-
Forward Artificial Neural Networks and Multivariate Adaptive Regression Splines as ML 
approaches.  

The Rt has been used in modelling approaches since it has been showed that during the 
evolution of the COVID-19 outbreak (in Italy), when various interventions were in place, Rt 
had a clear relation with the explosive timescale characterizing the dynamics of the outbreak 
(Patsatzis 2021). Linka, Peirlinck et al. (2020) using the Rt of COVID-19 across Europe, 
explored the effectiveness of political interventions proposing a dynamic SEIR epidemiology 
model with a time-varying Rt identified by ML. Kaloudis, Kevrekidis et al. (2020) provide 
estimations of Rt for Athens during the first wave of the pandemic using data from the 
national database of SARSCoV2 infections in Greece, by implementing commonly used 
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methods for the estimation of Rt, that by (Cori, Ferguson et al. 2013) and (Wallinga and 
Teunis 2004). 

To estimate Rt of an infectious disease, several alternative approaches have been suggested in 
the literature. An extended method that of (Cori, Ferguson et al. 2013), to estimate Rt and its 
application to routine surveillance data from Greece is demonstrated by (Lytras, Sypsa et al. 
2020). The resulting Rt estimates were examined in relation to control measures, in order to 
assess their effectiveness and were associated as a measure of transmissibility to population 
mobility as recorded in Google data and to ambient temperature. The authors conclude that 
mobility patterns significantly affect Rt. Arroyo-Marioli, Bullano et al. (2021) exploited a 
structural mapping between Rt and the growth rate of the number of infected individuals 
derived from a SIR model while also using mobility data from Google. To compute Rt, a 
method proposed by (Salas 2021) starts with a form of the renewal equation of the birth 
process especially suitable to compute Rt. After showing that one can express it as a linear 
system, they proceed to solve it, along with appropriate constraints, using convex 
optimization. 

In this study we conduct an exhaustive application of methods to estimate the Rt for Greece. 
The Rt is derived from confirmed positive cases extracted from verified sources. After the 
estimation of Rt, we couple the data with publicly available geo-located smartphone data 
provided by Google COVID-19 Mobility Reports (GCMR). This data can be used to compare 
pre-pandemic (baseline) to activity throughout the pandemic to better understand mobility 
patterns by inferring the location visited by individuals. Google community mobility data 
have been previously used in many other studies (Bryant and Elofsson 2020, Huynh 2020, 
Ilin, Annan-Phan et al. 2020, Sulyok and Walker 2020, Tamagusko and Ferreira 2020) and 
highlighted as one of the best data sources to analyse mobility patterns (Drake, Docherty et al. 
2020). The data are used to train diverse algorithms to predict Rt. Prediction of Rt is essential 
for public policy decisions during a pandemic. Such estimates can be used to study the 
effectiveness of non-pharmaceutical interventions (NPIs) or assess what fraction of the 
population needs to be vaccinated to reach herd immunity. Some social scientists have argued 
that Rt  < 1 should be viewed as a fundamental constraint on public policy during the current 
COVID-19 pandemic (Arroyo-Marioli, Bullano et al. 2021).  

2 Materials and methods 
In this section, we describe the workflow for the model implementation (Figure 2). The first 
step is the data collection/extraction (section 2.1) from the Greek Ministry of Health, 
regarding the number of positive cases, and Google COVID-19 data site for the mobility 
change data. Once the number of cases is extracted for the geographical and temporal 
resolution needed, the effective reproduction rate, Rt, is estimated according to various 
methods (section 2.2). Data pre-processing including data gap filling by regression, data 
transformation, normalization and dataset random splitting to prepare the input data for the 
regression models (section 2.3). Finally, diverse ML algorithms are explored, validated and 
compared. Attribute importance analysis is performed to reveal the most important factors in 
predicting Rt for the best performing model (section 2.4).  
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Figure 2. Workflow for model implementation.  
 

2.1 Data Collection 

 

2.1.1 Google Mobility  

Google released a time-limited sharing of mobility data from across the world as represented 
by summary statistics to combat COVID-19. The freely-available Google COVID-19 
Community Mobility Reports (GCMR) were extracted which offers an approximation to the 
changes in mobility due to different social distancing measures. The GCMR accounts for the 
percentage changes in mobility of Google Maps users compared to a baseline period before 
the pandemic (from January 3 to February 6, 2020) in various categories. The movement 
change trend include six categories: grocery and pharmacy, parks, retail and recreation, 
transit stations, workplaces and residential.  Each high-level category contains many types of 
places, for example parks category include information derived from public gardens, 
campgrounds, castles, national forests etc., or transit stations include seaports, subway 
stations, taxi stands etc. 

By calculating a set of seven baseline weekdays using the median value for each individual 
weekday during the 5-week baseline period, the data accounts for weekly movement 
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seasonality. For any given data date, daily relative change is valued as the percentage change 
with respect to the corresponding baseline weekday. GCMR for Greece provide county and 
decentralized administration level information. Greece is divided into seven decentralized 
administrations: of Attica, or Macedonia and Thrace, of Epirus and Western Macedonia, of 
Thessaly and Central Greece, of Peloponnese, Western Greece and the Ionian, of the Aegean 
and of Crete (Figure 1). These Google reports are created with aggregated, anonymized sets 
of data from users who have turned on the Location History setting, which is off by default. 

Google data curator advice to not compare mobility data from different geographical regions 
limited this analysis to one country only. The size, economic, administrative and cultural 
homogeneity of Greece suggests using the mobility data for all its administrative units in a 
merged dataset.   

 

2.1.2 COVID-19 cases  

COVID-19 data on the daily number of new reported confirmed cases were extracted from 
iMEdD lab GitHub3 as part of the development of iMEdD Lab's web application that tracks 
the spread of COVID-19 in Greece and around the world. The data are sourced from verified 
sources such as Hellenic National Public Health Organization (EODY) and the Ministry of 
Health. All cases are laboratory-confirmed with RT-PCR testing, and were considered 
imported if they had arrived in Greece in the last 3 days before a swab was obtained (Lytras, 
Sypsa et al. 2020). The data included in GitHub have been originally released through press 
briefings announcements and transcripts published by EODY and the Ministry of Health, 
relevant reports published by EODY and the daily press announcements about the 
geographical distribution of the cases reported daily, since mid-June, 2020.  

Due to the low number of COVID-19 tests, the insufficient nationwide coverage of case 
monitoring, the uncertainty of initial tests and irregularities in case reporting in the beginning 
of the pandemic, we used data from mid-June 2020 to the end of January 20214.    

2.2 Estimation of Rt 

The basic reproduction number R0 is the number of secondary cases which one case produces 
in a completely susceptible population. It depends on the duration of the infectious period, the 
probability of infecting a susceptible individual during one contact, and the number of new 
susceptible individuals contacted per unit of time (Dietz 1993). It is of practical importance to 
evaluate time-dependent variations in the transmission potential of infectious diseases. The 
time course of an epidemic can be depicted by estimating the effective reproduction number, 
Rt, defined as the apparent average number of secondary cases per primary case at calendar 
time t (for t >0). Rt varies in time as susceptible individuals number decreases (intrinsic 

                                                 

3 https://github.com/iMEdD-Lab/open-data/tree/master/COVID-19 
4 https://ourworldindata.org/coronavirus-testing 
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factors) and control measures are implanted (extrinsic factors). If Rt <1, the epidemic is in 
decline and may be regarded as being under control (Nishiura and Chowell 2009). 

There are a number of methods for estimating Rt from registered positive cases. Under the EC 
JRC collaboration with ECDC to continuously maintain a map18 of the level of COVID-19 
transmission at sub-national level (EU 2020, EU 2020a), the Science Hub gathered and 
compared the most imperative methodologies of  Rt estimation. We base our Rt calculations 
on that methods and software compilation (JRC 2020). The six methods used in the JRC 
Technical Note are:  

- Method 1: The Systrom Method. Kevin Systrom based his method on the works of 
(Bettencourt and Ribeiro 2008). The original method is an extension of standard 
epidemiological models for emerging infectious diseases, that describes the probabilistic 
progression of case numbers due to both human transmission and multiple introductions 
from a reservoir. Systrom modified the method using Bayes statistics to adjust expectation 
of Rt from the new information of each day’s case count while limiting accounting of 
previous data to the last seven days. 

- Method 2: The Cislaghi method. The Cislaghi method uses a simple estimation of Rt 
based on new and previous case numbers applying moving averages instead of actual 
values (Giraudo, Falcone et al. 2020). The aim of averaging is to account for the lag 
between infection time and positive diagnosis time since the data available refer to the 
latter. We calculate Rt using moving averages center to 3, 4, 5 and 6 days; values between 
the 4 and 5-day estimates correspond to a 4.5 day incubation period5. 

- Method 3: The JRC method. The JRC estimation is based on the basic reproduction 
number definition equations and the differences of the logarithms of the positive cases 
numbers in the formulas (JRC 2020). The method assumes a generation time of 7-days 
and susceptibility for the whole population. 

- Method 4: Robert Koch Institute (RKI) method. The RKI method assumes a constant 
generation time of four days. The Rt is calculated as the sum of new reported cases during 
four consecutive days divided by the sum of new reported cases during four consecutive 
days prior to the last four days, using a total of eight days for determining Rt6 

- Method 5: Exponential growth / Wallinga & Lipsitch method. The Wallinga & Lipsitch 
method estimates Rt using the exponential epidemic growth rate and the generation 
interval distribution. The method assumes that the growth rate follows a random 
distribution (Wallinga and Lipsitch 2007). Alternatively, a simpler variation of 
exponential growth was used with a constant rate and a time interval of one week. 

- Method 6: Wallinga & Teunis method: In the Wallinga & Teunnis method the relative 
likelihood of a case being infected by another case is estimated assuming a probability 
distribution of the generation interval (Wallinga and Teunis 2004). All likelihoods 

                                                 
5 https://www.scienzainrete.it/articolo/cruscotto-monitorare-levoluzione-dellepidemia/cesare-cislaghi/2020-04-09 

6 https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2020/Ausgaben/17_20.html 
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summed up provide Rt. This method failed to produce results in our case since it was 
impossible to fit a probability distribution to the subnational data due to discontinuities in 
case reporting in the less populated regions. 

 
In total eleven estimates of Rt are generated using the JRC, RKI, Exponential growth-constant 
methods, the Systrom method with its upper and lower estimates, the Walling & Lipsitch 
method and the Cislaghi method for 3, 4, 5 and 6-day incubation period. In order to use one 
value for the prediction model we used the median of the eleven estimates.  

The estimation of Rt was based on the programs developed by the JRC7 in R, modified 
accordingly to account for subnational resolution, i.e., the administrative units, and to extract 
the relevant data. The same parameterisations were used for implementing the models as in 
the JRC report, e.g., generation time when constant was set to 7 days and where a random 
distribution could be used, gamma distribution with a mean of 6.6 days and a variance of 1.5 
was used. 

 

2.3 Data pre-processing and Analysis 

2.3.1 Integration & harmonization 

For this research, an integration of GCMR and COVID-19 confirmed cases is performed to 
acquire daily region specific information. The GCMR Residential category shows a change in 
duration (time users spent at home, using the home addresses provided to or estimated by 
Google Maps) —the other categories measure a change in total visitors (Lapatinas 2020). As 
people spend most of the day at places of residence, the ability for variation is not significant8. 
The residential data were excluded from the GCMR as expressing a different metric and due 
to its strong dependence on other variables used in the Google dataset. The resulting five 
movement change categories are grocery and pharmacy, parks, retail and recreation, transit 
stations and workplaces.  

2.3.2 Missing values 

The original dataset was consisted of 1557 rows from which 133 had at least one missing 
value to one of the mobility categories. A multivariable linear regression between selected 
features was performed, based on existing correlation, to impute missing values.  

The correlation between the mobility features in the dataset are shown in Figure 3. It is 
evident that Park manifest the highest correlation with Retail & Recreation and Transit 
features (coefficient of determination 0.94 and 0.87, respectively) and vice versa. Based on 

                                                 

7 https://github.com/ec-jrc/COVID-19/tree/master/programs/ReprNumber 

8 https://www.latinamerica.undp.org/content/rblac/en/home/presscenter/director-s-graph-for-thought/home-alone---sustaining-compliance-

with-prolonged-covid-19-stay-.html  
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this finding, Transit and Retail & Recreation were selected for the estimation of Park and 
Work missing values. 

 

Figure 3. Correlation Heatmap of Mobility Features.  
 

The estimation was performed regardless of region. Features for which the correlation was not 
high enough to underpin an estimation remained as such and the missing values rows were 
excluded from the dataset. After filling in missing values with fitted results, 62 rows remained 
with at least one NA value. 

 

2.3.3 Data transformation  

2.3.3.1 Input days  

We chose the Rt of a day as the desired prediction outcome from the mobility data of the days 
of prior week. We extracted the preceding values for each day of the week for each activity 
and therefore, 35 features (inputs) were created to be implemented to the models. i.e. 5 
features for each one of the preceding 7 days of the week: ., each input row includes 
preceding Monday values (Park, Grocery, …, Workplaces), preceding Tuesday values, etc, up 
to preceding Sunday values. Since the mobility data are defined as change based on reference 
values per day, a certain percentage change on a Monday can only be compared to another 
Monday percentage. For instance, the high percentage change in Grocery-Sundays reflects 
that more grocery shops were open on Sundays during the pandemic, but those peak values 
should not be combined with Saturday mild changes in one model attribute, since they reflect 
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different social behaviours. For this reason, instead of grouping the mobility data to input 
attributes according to whether they refer to one day, two days, etc, before current day, we 
grouped them in preceding Monday, preceding Tuesday, etc. Current day measurements of 
mobility were excluded from the input attributes to be able to investigate if Rt can be 
prognosed (forested), not just estimated (nowcasted).  

2.3.4 Normalization 

Data values were normalized to help the training process using a min-max scaler where the 
highest value corresponds to 1 and the lowest value to 0.  

2.3.5 Data Split 

The dataset was split into train and test sub-sets, at 80% and 20% for training and external 
validation, respectively. To make one-day predictions, 1288 rows were used which were 
randomly split to 1030 and 258 rows for train and test, respectively. In Artificial Neural 
Network (ANN) model, the train set was further split randomly to train and validation set with 
a proportion of 80 to 20; (not including here the intrinsic cross-validation splitting).  

 

2.4 Modelling approach 

2.4.1 Machine learning tools 

Three different machine learning (ML) algorithms were trained to predict Rt for each day, 
Random Forest (RF), Artificial Neural Network (ANN) and Support Vector Machine (SVM). 
Models are built in Python version 3.7.6, Scikit-learn version 0.24.1 and TensorFlow 2.1.0 
(for ANN). 

Numerous studies have used RF for either classification or regression across various domains 
(Mutanga, Adam et al. 2012, Smith, Ganesh et al. 2013, Sarica, Cerasa et al. 2017). The 
algorithm has been successfully applied in modelling studies concerning COVID-19 
spreading (Singh, Kumar et al. 2020). RF is an ensemble-based meta-classifier employing 
decision trees, used here for regression purposes (Breiman 2001). RF randomly chooses 
features and applies resampling throughout the time stamped records with replacement 
(bootstrapping). On this basis, a regression tree is trained for each subset and the average of 
their predictions is the output of the model. The main advantage of RF is the measurements of 
importance for each � predictor which although similar to multivariate linear regression it 
outperforms the latter in almost all non-linear applications (Grömping 2009). A total of 
10,000 trees was used in this study. The maximum pruning depth was left without control in 
order to keep individual error low, according to (Segal 2004). The forest was built using 
bootstrap aggregation which is primarily used for unknown distributions and constitutes a 
standard basis to reduce variance and bias on a sample (Efron 1979). The cost function was 
chosen as Mean Squared Error (MSE) because, after trial, it showed significantly better 
results during the training process. 
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ANN is an universal function approximator that has been widely used in various 
epidemiological and environmental studies (Philemon, Ismail et al. 2019). In this study, ANN 
was built using 3 layers without initial bias. The first layer was consisted of 250 nodes, the 
second of 125 nodes and the third of 60 nodes. All three layers used rectified linear function, 
whereas on the first and third layer we applied a 10% dropout of training samples to avoid 
overfitting (Srivastava, Hinton et al. 2014). The 3-layer architecture was chosen to reduce the 
bias of the model caused by collinearity within the features. The number of nodes for each 
layer was estimated by multiple trials with a principle of narrowing down the nodes after each 
layer; this choice of less nodes at each layer enabled the model to evaluate higher level 
features and reduce bias, achieving better predictions of Rt. MSE was chosen as the loss 
function. The learning rate was set to 0.001 and Adam optimizer was implemented, as it is 
widely used on noisy data (Kingma and Ba 2017) and outperforms stochastic gradient descent 
during training. 

SVMs are based on the principle of data separation via a hyperplane that optimises data 
division, and has been suggested for COVID-19 modelling purposes (Gupta, Singh et al. 
2021). The regression tasks is made by estimating data points close to the hyperplane (support 
vectors) and minimizing the distance between those datapoints to a selected threshold epsilon 
(��, corresponding to error of tolerance. With regard to hyperparameters, regularization factor 
(C) was set to 100 in order to reduce margin boundaries and achieve better accuracy rate in 
terms MSE (Chang, Hsieh et al. 2010). The best kernel was found to be the Radial Basic 
Function (RBF) kernel, compared to the polynomial and linear kernel (data not shown). � was 
set to 0.2 corresponding to the lowest amount of MSE of tolerance. 

 

 

2.4.2 Validation 

A 10-fold cross-validation was used during the internal training (10 times random 90%-10% 
splitting for training and testing); the external evaluation of the model was performed with a 
test set (random 20% of the whole dataset consisting of data points not implemented in the 
training). Various metrics were calculated such as the MSE, Mean Absolute Error (MAE), R 
squared (R2), Pearson’s and Spearman’s correlation (Kuo and Fu 2021). 

2.4.3 Important Attribute Analysis 

Attribute importance was derived through random forest optimization (built-in function) to 
reveal the most significant variables that relatively affect the prediction of the outcome. The 
analysis is based on the Gini importance, an all-nodes accumulating quantity that indicates 
how often a particular attribute was selected for a split, and how large its overall 
discriminative effect was in the regression (Menze, Kelm et al. 2009). 

3 Results 
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3.1 Estimation of Rt 

Figure 4 demonstrates an example of the Rt estimations of the various methods employed in 
this study and the estimated median, for the administration unit of Macedonia and Thrace. 

Cislaghi (light blue), Systrom (orange) and JRC methods (grey) are close to their estimations 
affecting the most the median line (red) that shows similar variance and concurrent peaks. 
JRC is generally a little bit below the other methods, while Cislaghi is always a bit higher. 
Systrom is the smoothest and with lower average estimates.  

Wallinga & Lipsitch (dark blue) and Exp growth constant (dotted green) Rt are almost 
identical representing same trends and reaching the highest, unrealistic peaks (>10). Contrary 
to the others, those two methods give Rt above 2 for the Fall pandemic wave. They 
demonstrate the greatest divergence of values although Wallinga & Lipsitch cuts off 
maximum values compared to the constant growth rate exponential method.  

Systrom (orange) is smoother with lower average estimates. On the other hand, RKI (yellow 
line) shows peaks shifted in time compared to other methods, which are sharp and closer to 
the exponential methods but with lower variance. 

Due to the time shifts on the peaks the median line (red) smooths down the estimates and 
provides a more realistic and continuous evolution.   

 

Figure 4. Rt estimations of the Macedonia and Thrace region using various methods. The 
zoomed picture facilitates the visual inner-comparison. 
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3.2 Modelling approach and validation. 

The results of RF, ANN and SVM model performance metrics for the test subset are shown in 
Figure 5. RF demonstrates the lowest MSE and MAE in comparison to SVM and ANN. It 
also achieves the highest R2, Pearson’s and Spearman’s correlation values, outperforming in 
all metrics the other models. RF has been demonstrated to outperform other basic classifiers, 
even with missing values present in the dataset (Furxhi, Murphy et al. 2019, Furxhi and 
Murphy 2020). 

SVM and ANN have similar performance with R2 below 0.5 and comparable Pearson’s and 
Spearman’s around 0.7. RF achieves MAE below 0.2 and MSE below 0.1, maintaining 
Spearman’s and Pearson’s close to 0.9.  

 

Figure 5. Validation metrics of the RF(blue line), ANN and SVM (green line) and ANN 
(yellow line) models. 

 
R2 measures the variance of the model. RF is able to generalize the predictions regardless of 
the peak values and can isolate outliers more efficiently mainly due to the inherent 
ensembling nature of the algorithm. On the other hand, ANN and SVR achieve decent 
Pearson’s and Spearman’s coefficients (i.e., above 0.6), but are affected more by outliers, 
peak values and high variance in the features. Spearman’s correlation is slightly higher than 
Pearson’s for every model showing that each model is able to capture the trendline of Rt 
scoring only marginally lower in terms of variance.  

The predicted Rt values are plotted in Figure 6. It is evident that RF predictions are less 
scattered compared to the observed9 data. In case of low Rt values (<1.0), RF is precautious 
                                                 

9 In the context of model validation “observed” refers to the Rt values calculated by the five standard methods described in 

2.2 and 3.1 based on numbers of confirmed cases. 
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and predicts slightly higher values. The opposite trend is noticed when the observed values 
are higher than 1.0. SVM and ANN show a similar pattern. SVM underestimates above 1.3 
and ANN above 0.8. However, both models show more scattered predictions.  

Figure 7-Figure 13 show ordered by time and geographic location how model results 
compare to observed Rt for the test dataset (which has been selected by random sampling 
according to chapter 2.4.2 and therefore containing non sequential dates). 

 

 

Figure 6. RF, SVM and ANN external predictivity. 

 

Figure 7. Predicted vs Observed Rt for the Aegean region. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.14.21257209doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.14.21257209
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

  

 

Figure 8. Predicted vs Observed Rt for the Attica region.  

 

Figure 9. Predicted vs Observed Rt for the Crete region. 
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Figure 10. Predicted vs Observed Rt for the Epirus and Western Macedonia region.  

 

Figure 11. Predicted vs Observed Rt for the Macedonia and Thrace region. 
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Figure 12. Predicted vs Observed Rt for the Thessaly and Central Greece region. 

 

Figure 13. Predicted vs Observed Rt for the Peloponnese Western Greece and the Ionian 
region. 
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3.3 Important Attribute Analysis 

The results of attribute importance analysis concerning Rt modelling, for the mobility 
categories are presented in Figure 14. The scores are relative, summing up to one. Work and 
Park categories are identified as the most important mobility features when compared to the 
other attributes, with values of 0.25 and 0.24, respectively. This means that when training the 
model, Work was the defining attribute in branching the RF regression trees at ~25% of the 
times. According to the model built, changes in Work and Park values affect the most the 
predicted values of Rt.  

 

Figure 14.Important Attribute analysis based on RF 
 

4 Discussion 
 

There is no universally accepted method for estimating Rt based on incidence data while it is 
much more difficult to capture its continuous temporal variation during periods of control 
interventions like social distancing, vaccination, changes in hygiene habits and wearing 
protective masks (Felizola Diniz-Filho, Jardim et al. 2020). We decided to inject the whole 
period data to our models without differentiating periods according to control measures 
implemented at the time, as we assumed that the impact of these measures compared to 
mobility prohibitions are minor. 

We used five of the six methods for estimating Rt described in the EU report supporting the 
ECDC initiatives for COVID-19. These methods are widely used and have been implemented 
in a harmonized way. (Gostic, McGough et al. 2020) argue that for near real-time estimation 
of Rt, the approach of Cori et al. (2013) is more suitable compared to e.g. the one of Wallinga 
and Teunis (2004) and also advise against using methods when their structural assumptions 
are not met, e.g., for Bettencourt and Ribeiro (2008). Selecting or ranking Rt methods was not 
in the scope of this study. In order to produce an estimate without having to analyse the 
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method bias, we calculated Rt with several methods and used the ensemble (median value) of 
the results.   

In order to model and subsequently forecast Rt, we employed ML algorithms, namely RF, 
ANN and SVR, while we used the feature importance identification procedure based on Gini 
criterion, as implemented via the RF algorithm. Each one of the ML approaches that we used 
has its pros and cons when it comes to the modelling of datasets as the ones used in our study: 
RF splits each node based on the best set of predictors for each node (Breiman 2001) while 
bootstrap aggregation reduces the overfitting into the model. On the other hand, ANNs are 
highly dependent on sample size (Bataineh and Marler 2017) and small sample sizes can lead 
to inability for the ANN to generalize the data. Our sample size (rows) regarding the features 
had a proportion of 35 to 1, limiting the model ability to generalize high values of Rt even 
though still being able to approach the trend on average. Similar findings were reported in 
previous studies where RF showed higher robustness to regression applications compared to 
SVR and ANNs (Li, Yang et al. 2016, Wang, Zhou et al. 2016) due to the ability to minimize 
bias in multidimensional datasets (Cammarota and Pinto 2020). This outcome confirms the 
influence of collinearity of predictors (one predictor can predict another predictor) for SVR in 
a multivariate regression problem (Dormann, Elith et al. 2013) which led to higher � values 
for the margin selections. Having said that, RF was the optimal model from methodological 
and perspective into solving this temporal-dependent and collinear problem. 

Validation metrics were chosen as MSE, MAE, R2, Pearson’s and Spearman’s correlation 
coefficient, which are the most common metrics in regression problems (Spüler, Sarasola-
Sanz et al. 2015). MSE and MAE can be used to evaluate the prediction rate on average for 
each data point. MAE identifies the deviation from an average prediction while MSE 
expresses the variance of this deviation (Willmott and Matsuura 2005). Pearson’s correlation 
coefficient is a useful tool to evaluate the linearity between predicted values and ground truth 
while Spearman’s coefficient reveals the strength of monotony or the signal of it. Positive 
high values of Pearson’s indicate that ground truth and predicted values come into alignment. 
High positive values of Spearman’s CC shows that even though the model deviates from 
ground truth, the trendline of predictions is close (agreement in terms of the monotonic 
behaviour of both observations as well as model results) (Weaver, Morales et al. 2017). 

Pearson’s is close to Spearman’s for all models showing that they all follow on average the 
temporal variation direction of Rt while capturing the range at a constant error. RF 
outperforms the other models: both Pearson and Spearman values being above 0.8, while 
MSE and MAE are below 0.2. ANN and SVR demonstrate a similar behaviour with the 
exception of a slightly higher SVM MAE and a slightly higher ANN MSE. The error metrics 
summarise what can be seen in Figure 6; RF results have the lower scatter around observed 
data (with a slight overestimation for lower values and a slight overestimation for higher 
values), while the higher SVM MAE results from the greater scatter of values around the 
Observed data line compared to ANN; the higher ANN MSE results from the few points with 
large errors (above the Observed line) even though ANN follows the Observed line more 
compactly.  
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R2 is moderate for SVN and ANN, a little below 0.5, but it is high, close to 0.75, for RF. This 
means that approximately 75% of the Rt observed data variance can be predicted by the RF 
model, suggesting that previous week changes in mobility data can explain 75% of the 
reproduction number daily variations. Considering other control measures independent to 
mobility, like social distancing, wearing masks, testing and quarantining, the mobility 
contribution is proven to be rather high. The result indicates that centrally imposed and 
monitored confinement measures are more effective than measures based on individual 
responsibility and involvement, at least for a population with the specific sociocultural 
features. 

Figure 7-Figure 13 show clearly how RF outperforms SVM and ANN. For Macedonia and 
Thrace, for instance, Figure 11, it is the only model that follows the late-July and early-
October peaks. All models capture the late October increase and subsequent slow decrease, 
but SVM misses the Christmas holidays trend. Similar results are shown for Attica, Figure 8, 
Thessaly, Figure 12 and Peloponnese, Figure 13, where RF closely approaches the Rt 
timeline, achieving the early August and after Christmas holiday peaks and even smaller 
peaks and plateaus. All models underperform in the cases of Crete, Figure 9, Aegean, Figure 
7 and Epirus and Western Macedonia, Figure 10, which are the most remote areas of the 
country, most probably due to a combination of low number of tests performed and delayed 
and aggregated reporting.  

Coming to feature importance, Work and Park were the most impactful features for Rt 
prediction and Retail feature ranked as the least important one. Limitations imposed to 
mobility are varying in each country so direct comparisons are not reliable. For the shake of 
reference we note that in a similar study analysing google mobility data from 11 different 
countries, (Bryant and Elofsson 2020) found that grocery and pharmacy sector displayed the 
most significant correlations and had the highest influence in the prediction of R0. Other, 
similar studies (Wang and Yamamoto 2020, Kuo and Fu 2021) come in line with our work; 
predicting infection level using mobility data with or without evaluating countermeasures, 
such as face covering and social distancing, they demonstrated high mobility variances in 
Park ranking it as second parameter in prediction importance. It should be noted, that the least 
contributing mobility sector to Rt, Retail, has been often the focus of control measures, 
sometimes limiting the number of visitors inside shops, often closing them completely. Those 
measures resulted in shrinking the economic activity of retail subsectors that could not 
compensate customer visits with online shopping, like clothing shops, for instance, that in Q4-
2020 suffered losses greater than 50% in their economic activity compared to 201910. Our 
results do not justify Retail to be the focus of mobility control measures to reduce Rt, 
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probably because face covering and social distancing had been respected inside stores more 
than in workplaces and parks11.  

Training the predictive models using data from mid-June 2020 to January 2021 assumes that 
the dependence of the effective reproduction number to mobility does not change during this 
time. Besides control measures non relevant to mobility that we assumed to be minor, but we 
presume to account for a significant part of the 25% of the variance RF cannot capture, there 
are two other factors that can alter the Rt-mobility function: herd immunity and new virus 
variants. Herd immunity is achieved approximately when 60-80% of population is either 
infected or vaccinated (Kwok et al., 2020) and it would probably compromise the model 
capability to predict Rt to the same extent. In the beginning of February 2021 only 2.79% of 
Greek population was vaccinated against COVID-1912. Although vaccination proceeds in a 
constant rate, a significant proportion of individuals in the general population in Greece 
(57.7% in a sample of 1004 respondents) are unwilling to receive a COVID-19 vaccine 
(Kourlaba, Kourkouni et al. 2021). According to the data used in our study around 157000 
confirmed cases were reported in Greece by the end of January 2021 corresponding to ~1.4% 
of the whole population. Adding vaccinated and infected numbers results in population 
portion insignificant to be affecting the Rt diagnostic and prognostic models implemented. 
Regarding new variants, out of the 157000 cases in late January, less than 400 were infected 
by the new, fast spreading UK COVID-19 variant that shows different basic reproduction 
numbers (40% higher), a humble 2‰ of the cases in our data that does not affect the 
assumption of time invariant model implementation. 

  

5 Conclusions 
We employed a number of Rt estimation methods based on COVID-19 test data for a period 
of approx. seven months (mid-June 2020 to the end of January 2021). Subsequently, we 
employed a ML approach for Rt modelling in order to predict the Rt value of the next day, on 
the basis of google mobility data of the prior week. Our results demonstrated a high ability of 
Rt prediction that can be used for supporting relevant short-term policy and decision making 
as well as scientific research related to the spread and management of the COVID-19 
pandemic. To the best of our knowledge, this is the first study to predict the effective 
reproduction number during the COVID19 epidemic waves solely based on mobility 
information and for subnational regions of Greece. The results differentiate between activities 
and places guiding authorities to be precise and effective on their future public health 
interventions, both at the national and regional level. The predictive model assumes low herd 

                                                 

11 https://www.capital.gr/oikonomia/3527629/elstat-meiothike-8-6-o-kuklos-ergasion-sto-lianiko-

emporio-to-2020. 

12 https://ourworldindata.org/covid-vaccinations 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.14.21257209doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.14.21257209
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

  

immunity and a constant dominant variant; variations from these assumptions would probably 
compromise the model capability to predict Rt to the same extent, unless such information is 
made available for the same spatial and temporal resolution used in our study.  
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