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Abstract

This report presents a technical description of our agent-based epidemic model

of a particular middle-sized municipality. We have developed a realistic model

with 56 thousand inhabitants and 2.7 millions of social contacts. These form a

multi-layer social network that serves as a base of our epidemic simulation. The

disease is modeled by our extended SEIR model with parameters fitted to real epi-

demics data for Czech Republic. The model is able to simulate a whole range of

non-pharmaceutical interventions on individual level, such as protective measures

and physical distancing, testing, contact tracing, isolation and quarantine. The ef-

fect of government-issued measures such as contact restrictions in different envi-

ronments (schools, restaurants, vendors, etc.) can also be simulated.

The model is implemented in Python and is available as open source at:

www.github.com/epicity-cz/model-m/releases
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1 Introduction

Simulations using a combination of social contact network and epidemiological models
are pivotal in providing solid basis for evidence-based interventions (Squazzoni et al.,
2020). Epidemiological agent-based models represent an approach that simulates the
epidemics on realistic synthetic population with graph describing its contacts (Eubank
et al., 2004), (Hunter et al., 2018).

In this paper we present an implementation of such a model where the agents rep-
resent a synthetic population of 56 thousand people connected by a realistic network of
social contacts. The network is composed of 2.8 million edges in 30 layers correspond-
ing to various types of contacts, from families and neighbourhood to work, school and
public transportation. The population and its contact network represent a detailed
model of the Hodonin county in the Czech Republic. The underlying COVID-19 model
is a SEIR-like model with several states representing asymptomatic and presymptomatic
classes, and a set of states for detected individuals.

Unlike previous studies, we do not use stylized network structures such as random
graphs (Durrett, 2010) or small-world networks (Block et al., 2020). Instead, we use
sociological and epidemiological data to construct a fidel network of a mid-sized town
with its surrounding area on which we simulate the spread of SARS-CoV-2.

The main utility of our multiplex approach is that each layer of the network repre-
sents a locus of interactions between individuals, such as schools for students, work-
places for individuals in productive age etc. This not only adds realism to our network
model, but it also enhances the granularity of the interventions that we simulate.

The nodes are state-based agents corresponding to a SEIR-based epidemiological
model undergoing simulation of epidemics spread and interventions realized by ded-
icated algorithms. The model allows for per-individual custom parameters based on
age, sex, level of protection and other characteristics. Among the simulations of non-
pharmaceutical interventions, algorithmic policies for partial closures, testing and trac-
ing are implemented.

In the following Methods section we present technical details about creating the syn-
thetic population and the network of contacts, the underlying epidemiological model,
and the implementation of intervention procedures. An illustration of the simulation
for Spring and Summer of 2020 in Czech Republic is briefly presented in the Results
section.
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S susceptible
Ss false symptomatic (with symptoms but not infected by COVID)
E, Ed exposed
Ia, Id

a infectious presymptomatic (later will exhibit symptoms)
Is, Id

s infectious symptomatic
Js, Jd

s non-infectious symptomatic
In, Id

n infectious asymptomatic (never will become symptomatic)
Jn, Jd

n non-infectious asymptomatic
R, Rd recovered
D, Dd dead

Table 1: List of possible states. Upper index d stands for detected variant of the state (a
node was detected). The typical node life cycle is S→ E→ In → Jn → R for individual
with asymptomatic progression and S → E → Ia → Is → Js → R/D for individuals
exhibiting symptoms during illness.

2 Methods

2.1 Model Framework

In order for our model to be a realistic tool for estimating the effect of various interven-
tions, we account for the following factors in the construction of the network:

1. social and geographic structure of the given town according to the latest census
data

2. structural properties typical for human social networks (Rivera et al., 2010; Sni-
jders, 2013)

3. sociological knowledge about the behavior before and during the pandemic (PaQ
(2020) and MEDIAN (2020))

4. epidemiological and virological properties of SARS-CoV-2 (compartmental SEIR
model (Kermack and McKendrick, 1927), (Trawicki, 2017))

5. probabilities of viral transmission of COVID-19 in each type of contact (our own
expert surveying)

Our model builds upon a multiplex or multilayer network (Kivelä et al., 2014), in
which individuals in a given population (such as a town) are represented as nodes, and
interactions among them are represented as different layers of edges according to the
environment, in which given interactions occur (e.g., family, workplace, schools etc.).

5not use stylized network structures such as random graphs (Durrett, 2010)
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Figure 1: State transition diagram. See Tab. 1 for explanation of state labels. Possible
transitions are depicted by arrows, where the blue arrows stand for transitions caused
by being tested, the red ones for being exposed to virus (having been infected).

2.2 Epidemiological model

The core epidemiological model is based on a standard SEIRS model (Bailey et al., 1975).
The core model itself works with a set of nodes (individuals, agents), each node being
exactly in one state at each time step. The time iterates in days (one tick per day), each
iteration the node can change its state.

The set of states used in our model is listed in Tab. 1. All possible state transitions
can be seen at Fig. 1.

There are three types of transitions. First, those depicted by black arrows, happen
on the daily bases with fixed probability (see Section 2.3 for the matrix of transition
probabilities). To set up these probabilities, we assume the occupation time in a state
to be exponential and set the day-by-day transition probabilities accordingly (so the
model approximates a continuous-time Markov chain by a discrete Markov process),
see Tab. 2 for parameters used for deriving corresponding density distributions.

For example, the occupation time of E is assumed to be exponential with mean mE =

5.08. Upon the end of the E period, the individual becomes asymptomatic (In, with
probability pn = 0.179) or presymptomatic (Ia, with the complementary probability). In
the former case, the individual remains infectious asymptomatic for the exponentially
distributed time with mean 8, in the latter case he is presymptomatic for the exponential
time with mean 4, etc.

Second, blue arrows, represent transitions forced by testing. Each day, a node may
be tested with probability θ. For the simplicity, we keep θ non-zero only for nodes
exhibiting symptoms.

If node is tested, it changes its state to its detected counterpart. To better control the
portion of nodes being tested, we also keep the test rate parameter τ. As soon as a node

4
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starts to exhibit symptoms, it sets its θ to non-zero number with probability equal to τ.
A node can be forced to move to detected state also via quarantine and contact tracing
policy module (described in Section 2.6).

Last, the red arrows represent state transitions induced by being exposed to the virus
(with the consequent illness). The calculation of probability that this transition happens
is based on a multi-graph G that is a set of edges between the nodes of the model. Each
edge represents possible contact in the region represented by a graph. Between every
two nodes, there can be zero, one or more edges. An edge e is identified by its layer
type, sub-layer type, probability pe of contact and intensity ιe.

Every iteration (day), for every edge e, an imbalanced coin is flipped with probabil-
ity wl pe, where wl is a weight of the e’s layer l. Then, according to the result of the toss,
ce is set to 1 (there is a contact on the edge), otherwise ce = 0.

The (conditional) probability of transition from S or SS to E for a node n (that is in
one of S-states) is then given by

pS→E(n) = 1− ∏
v∈n←

(1− Ivcvβviv),

where {v; v ∈ n←} is a set of edges adjacent to the node n and Iv is one if node x, where
v = (n, x), is infectious (i.e. in one of states In, Ia, Is), zero otherwise; βv is a model
parameter of infectiousness (and may depend on the layer type and whether the infec-
tious node is symptomatic or not). See Appendix 2.4 for the details on how the graph
is constructed and Appendix 2.5 for the way weights of the layers were determined.
Further, see Section 2.3 for the transition probabilities between the states except for the
transitions to E, which has been described above.

The described computation core is encapsulated in a framework performing sim-
ulation of state policies. These are quarantine and isolation, contact tracing, testing,
limiting contacts and restricting access to public places, such as closing schools. Site
closures are implemented by changing weights of corresponding layers. Quarantine
and isolation are realised by adjusting edges’ parameters for individual nodes isolated
nodes.

In addition, the model follows a calendar of parameters and accordingly changes
layer weights (according active site closures) or various model parameters (such as re-
ducing β if masks are used, adjusting test rate and θ according testing capabilities).
This calendar for the Czech Republic is provided by (PaQ, 2020) and (MEDIAN, 2020)
and follows the real situation in CR. See Section 2.6.1 for the way of computation the
contacts reductions.

Afther each iteration (on daily basis) the core model activates the policy module
that controls the mentined parameter changes and simulates quarantine, isolation and

5
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Par. description value error Source
mE expected occupation

of E (incubation pe-
riod)

5.08 95%CI 4.77-5.39,
SD 0.18

He et al. (2020)

mi expected duration of
infectiousness

8 Wölfel et al. (2020)

ma expected duration
of presymptomatic
period

4 IQR2-7 Nie et al. (2020)

ms expected duration of
RNA positivity for
symptomatic

25.2 SD 4.9 Noh et al. (2020)

mn expected duration of
RNA positivity for
asymptomatic

22.6 SD 4.0 Noh et al. (2020)

pn probability of com-
pletely asymptotic
progression

17.9 95%CI 15.5-20.2 Mizumoto et al. (2020)

c case fatality rate 0.018 95%CI 0.0118-
0.0243, SD 0.0032

He et al. (2020)

f false symptoms rate 0.0003 NIPH (2020)
m f false symptoms dura-

tion
5.5 NIPH (2020)

Table 2: Epidemiological parameters

contact tracing policies by modifying the graph.
The more details on policy modules, quarantine and contact tracing simulations can

be found in Section 2.6.

2.3 Epidemiological Parameters and Transition Matrix

In the present Section, we list parameters of our Epidemiological model. In Table 2
some parameters of the COVID illness, surveyed from the literature can be found.

Next we give the matrix of transitions between individual states. For space reasons
and clarity, we split the matrix into that between “undetected” states (Table 3) and
that between “detected” ones (Table 4). Note that the matrix includes only “natural”
transitions, not those caused by detection, quarantine etc. On the diagonal of the matrix,
there is always a number such that the row of the matrix sums to one.

2.4 Construction of the Contact Graph

We consider a region consisting of a middle-sized town Hodonı́n (about 24 thousands
of inhabitants) together with a selected surrounding municipalities (additional 32 thou-
sands). We had three basic data sources describing the region at our disposal. First, it
is the list of inhabitants of the region according to the 2011 census, each record in-
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S Ss E In Jn Ia Is Js R D Id
s

S . . . (1− πt,i)φ πi,t
Ss (1− πt,i)γ f . . . πi,t
E . . . pnσ (1− pn)σ
In . . . δn
Jn . . . γn
Ia . . . ρ
Is . . . δs θ
Js . . . γs µs

φ = 1− e f , γ f = 1− e
− 1

m f , σ = 1− e
− 1

mE δn = 1− e
− 1

mi+ma , γn = 1− e
− 1

mn−mi−ma

ρ = 1− e−
1

ma , δs = 1− e
− 1

mi , γs = (1− c)(1− e
− 1

ms−mi−ma ), µs = c(1− e
− 1

ms−mi−ma ),

Table 3: Transitions between “undetected” states

Ed Id
n Jd

n Id
a Id

s Jd
s Rd Dd

Ed . . . pnσ (1− pn)σ

Id
n . . . δn

Jd
n . . . γn

Id
a . . . ρ

Id
s . . . δs

Jd
s . . . γs µs

Table 4: Transitions between “undetected” states

cluding the age, gender and the municipality they live in, the records being grouped
into so called economic households (those having common housekeeping). Second we
have the list of houses including their type (family or apartment building), their loca-
tion and the number of apartments included. Third, we have the municipality level
data coming from the 2011 census about the economic activity class (students, workers,
housepersons), industry sector if working, and the information whether and how long
the person is commuting. The additional data sources, used for the graph construction,
include public surveys PaQ (2020), (MEDIAN, 2020), (MEDIAN, 2019), a study CDV
(2020), Points of Interest list by the Eoconlab company, and expert estimates of shop
cappacities by Zdeněk Skála.

2.4.1 Population reconstruction

As the mentioned three data sources – the census person level data, the house data and
the additional municipality-level aggregate census data – are not mutually connected,
we randomly assigned the individuals their economic activity and commuting status
(both with respect to their gender and age), and randomly assigned their households
into the apartments.

In particular, when “inhabiting” the apartments, we first randomly “occupied” all
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Figure 2: Schematic map of the region with transport connections. Numbers denote
travel time in minutes. Red lines – train, black lines – bus.

the apartments (with the exception of two small villages where there were less house-
holds than apartments, so we left some apartments free), and, consequently, we ran-
domly assigned the remaining households into the available family houses. While there
were little of these excess households in the town, there were 1.5 to 2 times more house-
holds than apartments in the smaller municipalities, so two households were assigned
to a majority of the apartments there. To replicate the fact that distinct generations often
live in family houses, we refused with probability 0.9 assigning an additional house-
hold into an apartment whenever the difference of the average age of the households
was less then 20.

Next, we randomly assigned the economic activity to the individuals as follows:
for each individual, we performed a Bernoulli trial with the parameter equal to the
probability that a person of a given age and gender is working, computed from the
aggregate census data. When the result was “working”, we randomly assigned the
person an industry sectors he/she is working at according to the distribution given by
the aggregate data; these sectors are listed in Table 5. If the result of the trial was “not
working” and the individual was in school age 6–18 (both included), then we made
him/her a student; if his/her age was 19–24, then we tossed a coin with probability 0.6
for woman, 0.7 for man, whose heads made the person a student. In all the other cases,
we classified him/her as house-person, if she was under 65, or retired otherwise. The
age constants and the probabilities were chosen in order the resulting distribution to
replicate the municipality data.

Next, according to the distribution of the aggregate data, which is available sep-
arately for woman, men and students, we randomly assigned each person one of the
commuting levels: not commuting (i.e. not leaving the municipality for work or study),
commuting less than 15, less than 30, 45, 60, 90 or more minutes.

8
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As a result, we roughly replicated all gender, age, economic activity and daily mo-
bility of the region’s population, as well as its geographical structure.

2.4.2 Social contacts

In a usual matter, we modelled the social network of the population by an undirected
graph, with the individuals as nodes and the potential contacts as edges. In line with
(Mossong et al., 2008), as a contact we regard either a two-way conversation with three
or more words or a skin-by-skin contact (e.g. handshake). We assumed that, during a
single day, any potential contact happens with a certain probability p, and, given that
the contact happens, the contagion takes place with another probability ι.

It is needless to say that estimating human contacts is an extremely complex task
dependent on a vast number of unknowns. One way of approaching this problem could
be to assume the contact model simple enough so that it could be calibrated by available
scientific evidence, the other way could be to do it arbitrarily, according to “common
sense”. Yet the first option seems safe, precluding “self-fulfilling prophecies” (i.e. “what
we assume that we get”), we did not go purely this way because, if we did so, the added
value of modelling the network person-by-person would be lost.

We give an example: As there is no study on detailed structure of work contacts
to our best knowledge, it would be “scientifically fair” to assume that these contacts
form a random graph with degrees, corresponding to the (known) age structure of the
contacts. However, in reality, workers usually meet in small groups (e.g. offices), which
fact cannot be reproduced by a random graph. On the other hand, a construction of a
graph involving these groups naturally brings questions about its parameters, the sizes
of these groups in the first place; not having any scientific evidence in this respect, we
are forced to set these numbers arbitrarily. As our desire is to give quality scientific pre-
dictions, but simultaneously we realize that the added value of random graph models
in comparison to the compartment ones is not high, we try to keep reasonable balance
between the “scientific” and the “arbitrary” approach when constructing our contact
network.

Another challenge in this respect is the construction of a model of random encoun-
ters in public places such as pubs, shops or school classes. It is clear that the expected
number of contacts of an individual will grow with the number n of the other people
present; however, hardly it can grow linearly. To simplify things, in each of these situa-
tions, we assume that the number N of the contacts an individual is intended to realize
is Poisson distributed with mean λ, which we call contact rate, while the number of ac-
tual contacts is min(N, n), i.e. a random variable with a censored Poisson distribution.
As we do not prefer any contact before another, necessarily the probability of contacting

9
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a pre-chosen individual comes out as λn
n where λn = E min(N, n).∗

For instance, when going alone to a crowded pub, we can guess that a person makes
λ = 3 contacts (say that the tables are four-seat). However, if there is only one extra
guest present, then the maximum number of contacts is clearly one; thus, according to
our assumptions, the mean number of contacts in that case is 1 × P[N ≥ 1] = (1−
e−3) = 0.95.

A clear advantage of this simple approach is that only a single parameter - the con-
tact rate - has to be set for each of these situations. However, in some cases like large su-
permarkets, our model has to be refined – yet it is reasonable to think that I experience,
say, 3 close contacts in a crowded supermarket (two in a line and one perhaps when
asking where frozen chicken are), it is unlikely, that two people meet when they are the
only ones present in the supermarket; thus, in these situations, the censoring term has
to be scaled by some α < 1 so that the actual number of contacts would be min(N, αn).
Finally, if the other individuals attend the place only with probabilities p1, . . . , pn, then
we, mildly violating the probability calculus, assume the actual number of the contacts
to be min(N, ∑n

i=1 pn), min(N, α [∑n
i=1 pn]), respectively.†

If more is known about the situation when people meet, then we proceed more
explicitly. In restaurants, for instance, it is clear that the guest will have a word con-
tact with a service, perhaps less intense than sitting at the same table, and similarly in
shops. In both these cases, we assume that there is a single contact of each client with a
randomly chosen member of the staff.

Another topic little supported by the available data is the geographical preference,
namely the question what role a geographical distance has in choosing shops, restau-
rants, friends, etc. In these situations, we assume a simple random choice model in
which the probability of choosing particular object is proportional to wρ(d) = (1− ρ)d

where ρ is the spatial preference parameter and d is the distance from the decision
maker to the object in kilometres.

For the construction of the friendship contacts network, we wanted to respect the
known properties of human friendship networks. These properties are average degree,
degree distribution, assortativity (on age and gender), and clustering. The average de-
gree (i.e., the average amount of friend contacts) is N, and its distribution is positively
skewed, which means that there are some highly sociable individuals in this layer. This
is generally in line with previous research (AddHealth, Rivera et al., 2010; Snijders,
2013). For friendship networks, it is also typical that these networks display assortativ-

∗To see it, note that the mean number of contact is computed as the mean of the sum of indicators of
the individual contacts.
†When the number of potential attendees is large, namely larger than 25, we, instead linking all of

them, created a limited number k of contacts for each individual, scaling the probabilities accordingly.
Different constants k are chosen in different situations.
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ity on gender and age - nodes are much more likely to have ties to those of the same
gender or of similar age (Rivera et al., 2010; Snijders, 2013). Lastly, a common feature
of human social networks that we wanted to reproduce in this layer is clustering. Clus-
tering refers to the tendency of connected individuals to share common friends, repre-
sented by triangles in the network (Newman, 2003, Rivera et al., 2010). To meet these
requirements, we generate this layer of the network by a modified Barabasi-Albert pro-
cedure; the modified version of the procedure is used in order its results to replicate
the required assortativity and clustering, and to avoid nodes having unreasonably high
degrees (comparable with the population size).

In particular, for each i ∈N, having constructed a (temporary) graph for i− 1 nodes,
we assign the i-the a random out-degree Di ∼ Po(6). Consequently, we generate 2Di

potential connections to {1, . . . , i − 1} by the Barabasi-Albert scheme (i.e. with proba-
bilities of choice proportional to their in-degree plus one). Then, we randomly choose
Di edges out of the 2Di potential ones with the probability of choice of the j-th one
proportional to

(ω f + (1−ω f )1(genderi = genderj))× σ
|agei−agej |

10
f × wρ f (di,j),

where di,j is a distance (of the apartments) of i and j in kilometres and ω f = 0.2, σf = 0.3
and ρ f = 0.65 are parameters, manually chosen so as to produce the required assora-
tivity. Finally, we add connections to the selected nodes and, to enforce clustering, we
randomly generate one connection between the nodes we newly connected with i. To
avoid nodes with their degree measured in thousands, which are usually generated
by the plain Barabasi-Albert procedure, we tossed a coin with 0.99 probability before
adding each edge into the final graph; once tails fell, we stopped adding edges to the
target node (with the B-A. scheme working as if this “censoring” did not take place).

To reflect the fact that the number of actual contacts clearly depends on the number
of potential ones sub-linearly (although I can have one hundred friends, I can hardly
see them all during one day), we made an assumption that the probability of a potential
contact (i, j) happening is

πi,j = min(
τ(Ii,j)

Ii,j
), (1)

where τ(x) = κ(1− exp{−κx}) for some κ and Ii,j = max(δi, δj), where δi is the degree
of i (i.e. the number of its potential contacts). Again, there is only a single parameter
κ here, which we set to κ = 4 in order to have the expected number of leisure contacts
equal to dL

.
= 2; this number was chosen because, by (Mossong et al., 2008), Figure 2,

leisure contacts form about 15% of total contacts, which are 13.52 contacts by overall
contact matrix. However, it should be noted here that, besides dL, the epidemiological
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predictions based on the model may be sensitive to the choice of function τ determin-
ing the dependence of the actual contact numbers on the potential ones, consequently
affecting the infectiousness of the nodes with very large numbers connections (super-
spreaders).

In our contact network, we consider several layers of contacts, labelled family, school,
work, pubs, visits, outdoor, shopping, services and other. These categories further divide
into layers listed in Table 9. For each layer, we construct a separate (undirected) graph,
with nodes corresponding to individuals and edges corresponding to contacts, each
edge being “weighted” by a its probability pi,j,k where i, j are connected nodes and k is
the layer index. While edges cannot be duplicated within the layers, two nodes may
be connected in different layers (e.g. work together and then go for a drink). Next we
discuss the individual categories.

2.4.3 Family

Having detailed (anonymized) data about the structure of the households at our dis-
posal, we might model family contacts explicitly. In particular, we assume that each
member of a household potentially meets all the remaining members; to replicate the
prevalence of same-age contacts and the larger intensity of home contacts by seniors
implied by the “home” contact matrix from (Prem et al., 2017), we assume that the
probability of each such meeting is one if either the age difference is less or equal to ten,
or one of the persons to contact is 60 years old or more; otherwise, the contact prob-
ability is set to ph = 0.745. Further, we assume that, once two households live in the
same apartment, any member of the first one and any member of the second one have a
contact with with probability py = 0.397. Finally, we assume that each person aged 50
or more has contacts with households of their children, number of which we draw from
a discretized censored normal distribution with mean 1.92 and standard deviation 0.7.
i.e. the values from European Social Survey round 9 (NSD Norwegian Centre for Re-
search Data, 2018). If two (or more) persons over 50 live in the household, we assume
them to have contacts with the same “young” households. The childrens’ household
we drew randomly from those, in which at least one member is aged less than the av-
erage age of the (grand)parents age minus twenty.‡ We assume that each member of
an “old” household visits a given “young” one with probability po = 0.297 divided by
the number of his children, and each member of a “young” household visits the “old”
one with probability py = 0.373. During each visit, contacts of the visitor with each
member of the visited household were assumed. The values of ph, pa, po, and py were

‡If there is (are) another household(s) in the apartment of the parents, we assume it (them) be the
children’s one(s) and we sought for accordingly less number of external households.
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determined by a grid search so as to minimize the weighted square distance§ of the re-
sulting contact matrix and the home matrix from (Prem et al., 2017), assuming that, in
addition to the family contacts, friends visits result in home contacts (see 2.4.6).

2.4.4 School

As we had the list of schools, including their location and capacity, at our disposal,
we could model the school network explicitly. We proceeded as follows: according to
their age, we divided the children-aged individuals into those attending kindergartens
(those with age 3 to 5), lower elementary schools (6 to 10), higher elementary ones (11
to 14) and highschools (15 to 18). As there is no university in the small town we deal
with, we assumed all the older students travel outside for study. Next we randomly re-
ordered all the students’ lists and, for all but the highschool list, we gradually assigned
each student to the nearest school which has not yet reached its capacity. As in reality,
not all kindergarten candidates could be placed due to capacity reasons while all the el-
ementary candidates did. For the highschool candidates, the distance did not play role;
instead, the students were assigned their schools randomly. Similarly to the elemen-
tary schools, all highschool candidates could be placed not overrunning the declared
capacities of the schools.

Further, in each school, we distributed the students into classes. Assuming that stu-
dents of the same age form the same grade, we uniformly split each grade into classes
no greater than 20 students. Next, for each class, we found a class teacher among the in-
dividuals working in education sector the following way: First we (randomly) searched
among those living in the same municipality and, after we eventually run out of them,
we chose a random one from those who commute less than 30 minutes, which is the
time the majority of travels within the region can be made in. Having found the class
teachers, we “hired” twice as much additional teachers for the school the same way.

The contacts of students within classes, outside the classes and the mutual contacts
of teachers were modelled as it was described at the start of the present Section, assum-
ing contact rates λs = 4.72, λo = 1.88 and λt = 0.777, respectively. The contact rate of a
class teacher and his class was set to λcs = 1.44 meaning that the actual number of the
contacts of that kind will be min(N, n), N ∼ Po(λcs) where n is the number of students
in the class. The contact rate of any teacher and any student of the school was set to
λts = 0.444. All the five contact rates were determined so as to match the school contact
matrix by (Prem et al., 2017) similarly as with home contacts.

§The distance was computed as a sum of square differences of the the matrix elements, weighted by
population fractions corresponding to the column and the row. After finding optimal p’s, these values
were scaled in order the expected contact numbers implied by both matrices to match.
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Agriculture 871 1.23 3.08 1.23 0.62
Industry 8241 0.62 1.23 1.23 0.62 0.62

Construction 2059 0.62 4.92 1.85 1.23
Trade and moto 3076 1.23 0.35 1.65 1.23 1.23 0.62
Transportation 1381 0.62 3.67 1.83 2.74 1.23

Eating and housing 876 4.92 0.61 2.16 0.62
IT 359 0.62 0.62 0.62 0.62

Banks 491 1.85 0.45 1.23 0.62 0.62
Administration 1474 3.69 0.15 0.20 1.23 1.23

Public sector 1496 3.08 0.20 1.21 1.23 0.62 0.62
Education 1366 4.31 0.67 1.23

Health 1499 4.31 0.61 1.23

Table 5: Work contact intensities

2.4.5 Work

As it was described in Subsections 2.4.4, and will be described in Subsections 2.4.6 and
2.4.7), work contacts of teachers, restaurant staff, salepersons, respectively, were con-
structed explicitly. However, these contacts form only about 4 per cent of work contacts,
given by the “work” contact matrix from (Prem et al., 2017). In the present Subsection,
we describe the way we construct the remaining majority of contacts.

Lacking any relevant study identifying a distribution of work contacts into those
takes place in the workplace between workers, those between sectors and those with
customers/clients, we estimated the frequency and structure of these contacts based on
the survey data provided by PAQ (PaQ, 2020), see Table 5; the matrix is normalized so
that the average number of working contacts equals 6.04, which is the average number
of work contacts given by the “work” contact matrix from (Prem et al., 2017). Note that
the matrix is asymmetric, reflecting different numbers of workers in different sectors.

In creating the working contact network, we proceeded as follows. First, we ran-
domly assigned the workers commuting within the region (i.e. those commuting up to
30 mins) to individual municipalities with the choice probabilities proportional to the
municipalities’ population. Further, having all workers assigned to municipalities, we,
slightly abusing reality in which workers travel during their working hours, created a
separate working network for each municipality.

Each network was created the following way: First, for each sector, we randomly
determined the number and the sizes of workplaces, drawing each from the Poisson
distribution with mean equal to twice the expected number of contact rate within the
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sector (see the diagonal of Table 5). For each sector, we created as much workspaces as
it was needed to cover the number of the workers in the sector (the size of the last one
was possibly truncated). After randomly assigning the workers into the workplaces,
we created the network of mutual one-probability contacts within each workplace with
the contact rate equal to the minimum of the corresponding diagonal value and the
workspace size.

Next, for each worker and each sector except for her own, we created R random
one-probability contacts where R is Poisson with mean equal to the half of the ex-
pected inter-sector contact rate (the off-diagonal values in Table 5) multiplied by an
age-dependent weight proportional to the expected contact rate of the corresponding
age category from the “work” contact matrix from (Prem et al., 2017). In choosing coun-
terparts of these contacts, the choice probabilities were age-weighted, too.

Finally, for each worker, we drew the number of his contacts to the customers from
Poisson distribution with intensity 10× the corresponding value from the second col-
umn of Table 5, and assigned each contact 0.1 probability of happening. The counter-
parts of the contacts were chosen randomly from all the population of the region. For
simplicity, we assumed that these contacts always happen in the same municipality as
the workplace lies.

2.4.6 Leisure

In our construction, we assume three types of leisure contacts: visits at home, going to
restaurant and an outdoor activity.

In particular, for each two nodes i, j connected in the friend network such that both
i or j are at least 18 years old, we draw from a Bernoulli variable with an age– and
gender-dependent probability of going to a restaurant in the evening, computed from
(MEDIAN, 2019). Given the positive result of the trial, we randomly found a restaurant
near to the apartment of j; in particular, the restaurant was chosen from the distribution
with probabilities proportional to wρr(d) where ρr = 0.5 is the spatial preference and d
is the distance of the restaurant from the apartment of j.

In the case the “restaurant” coin fell tails or any of the parties in the contact was
younger than 18, we tossed another coin with pv = 0.5, heads saying that i visits j in
the j-ths home; tails meaning that i and j are going to carry out some outdoor activity.
Not having any relevant data in this respect, we determined pv by guess.

In all the three cases (restaurant, visit or outdoor), a contact of i and j with prob-
ability πi,j was added to the corresponding layer (see (1)). In the case of home visit,
the contacts of i with all the members of the j-th household were added (with the same
probability). Finally, having constructed all the restaurant contacts, mutual contacts
of each restaurants guests with contact rate λu = 2 and contacts of guests and two-
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type λc t o c s λ f

small shops 1 10′ 10h 1 2 1
self service 1.5 13′22”? 10h 2 4 1

super/hypermarket 1.5 19”52′? 16h 4 10 1

Table 6: Shop parameters. Starred values denote external expert estimates, the rest
being our guesses.

member staff with rate λpg = 1 were added. Both λu and λpg were determined by
guess, the first reflecting the fact that four-seat tables are common in restaurants, sec-
ond one stressing the payment as the only longer contact of a guest with a waiter.

2.4.7 Shopping

Having estimates of shopping behaviour from (MEDIAN, 2019), the list of the shops in
the region and expert estimation of the turnout for the largest shops, we could model
shopping explicitly to some extent.

We proceeded as follows: First, as the list of shops we use as input does not dis-
tinguish their size, we classified the shops visually (using Street-view of Google maps)
into three categories: small shops, self-service shops and super/hyper-markets. Then,
for each person aged 18+, we tossed three coins with the age-category, gender, and eco-
nomic activity dependent probability of visiting each category of shops given by (ME-
DIAN, 2019). Given each heads, a shop of the corresponding category was randomly
chosen with spatial preference 0.6, 0.4, 0.2 respectively. For the five biggest super–
/hypermarkets, for which we had expert turnout estimates at our disposal, their choice
probabilities were manually adjusted to reach comparable turnouts in the simulation.

For each shop, we assumed contact rates of its customers to be λc and scale α = t
oc

where t is the average shopping time, o is the opening time and c is the number of
cashiers. We assumed staff number of each shop to be s and a staff–customer contact
rate to be λ f . The values for individual types are listed in the Table 6.

2.4.8 Other contacts

Finally, we generate contacts purpose of which is unknown to us. For each individual
from the population, we generated three potential contacts of this kind, each with prob-
ability of happening po = 0.27. Following the uncertainty principle, we generated these
contacts randomly over all the network; however, to replicate the obvious diagonal of
the “other” contacts matrix from (Beaumont, 2010)prem2017projecting, we weighted

the choice probabilities of an a-aged node by vj = exp{−
|a−agej|

8 }. Whenever the par-
ties of a contact were found to live in different municipalities, we tossed a fair coin to
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Matrix home work school other
Expected contacts 3.39 6.03 6.02 4.42
(Prem et al., 2017) 3.36 6.07 6.02 4.45

Table 7: Fit of the contact matrices to (Prem et al., 2017)

determine, which party will travel to the other one (see Subsection 2.4.9). The value of
po was set manually so that the average number of “other” contacts matches with that
determined by the “other” matrix from (Prem et al., 2017).

2.4.9 Transport

As it is clear from the previous text, in our model, individuals travel for various reasons:
commuting (i.e. regularly going to school and work), family visits, friend contacts,
shopping travels, customers’/clients’ travels for services, and travels associated with
contacts from the category other.

The travelling is modelled as follows. Whenever an individual is commuting inside
the region for work or school, a two-way trip from his home to his workplace is gen-
erated. Further, a two way trip is generated whenever a family– or friend visit takes
place with the visitor living in a different municipality than the visited one. Similarly, a
two-way trip is generated on occasion of shopping or use of services outside the home
municipality. Finally, a two-way trip is generated for each contact from the other cate-
gory outside a municipality.

In determining the public transport contacts, we proceeded as follows. For each
generated (two way) trip we tossed an asymmetric coin¶ determining whether the trip
will be done by means of public transport. Next, for each pair of destinations, we de-
termined the list of sections which will travellers go through by the shortest-path algo-
rithm. Thus, we could determine which individuals will potentially travel through each
section. Finally, we generated contacts (possibly) happening in each section, assuming
contact rate λu = 0.5 and scaling αu = 0.25. The values of λu was determined so as
to roughly replicate the ratio of transportation contacts seen in (Mossong et al., 2008),
Figure 2. The scaling factor was roughly given by an average number of connections
per day in the involved lines.

¶The probability of the coin, obtained from the team running (CDV, 2020), was 0.65/0.18/0.19 for a
school/work/other trip.
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Code description example survey d (m) τ (h) γ

closelongtermcontact Long-term contacts,
short distance

All day stay in class-
room

0.27 5 5 0.256

physicallongterm Long-term potentially
physical contacts

Long-term medical
treatment

0.246 1 1 0.21

physicalshorttermcontact Short-term potentially
physical contact

Medical examination or
hairdresser visit

0.134 1 1 0.21

dininingcontact Contact while eating to-
gether

Dinner together 0.112 2 2 0.157

distantlongtermcontact Long-term contacts,
longer distance

Contacts in office 0.096 4 4 0.109

closerandomcontact Random, potentially
close contact

Contact in a line in su-
permarket or in a train
compartment

0.065 0.25 0.25 0.032

serviceclientcontact Staff-customer contact In shop, restaurant or in
an office

0.046 0.17 0.167 0.017

closeopenair Short distance open-air
contact

Common trip or sport 0.03 1 1 0.01

Table 8: Contact types regarding infectiousness

2.4.10 Validation

As it was already mentioned, our model has very many “degrees of freedom”, so it
is very difficult to construct it purely scientifically, using only “objective data”. In the
present Subsection, we discuss how “objectively funded” the individual parts of our
model are.

In construction of our model, our main “objective anchors” are the contact matrices
from (Prem et al., 2017). The fit of our contact matrices with them is reported in Table 7
and graphically illustrated in Figure 3.

As we could directly compare age-specific contacts from family, work, and school cat-
egory with corresponding reference matrices, we could be “quite sure” with these cate-
gories. Unfortunately, this is not true for the remaining categories because their are all
aggregated in the “other” reference matrix. so we can validate their parameters only
indirectly.

First of all, we cannot be sure of the proportion of contact categories within the
friend network. Yet we have probabilities of visiting a restaurant, we do not know how
many takes place there. Similarly, we cannot know the proportion of household visits
and outdoor (and perhaps other) activities, not even thinking about the clear seasonal
change of this proportion. As the leisure contact categories: pubs, visits, and outdoor,
form a significant portion of the contacts (see Figure 4), we should be slightly cautious
when e.g. evaluating the impact of restaurants visits to the virus spread.

The situation is similar with shopping: yet we can estimate the number of shop
visits thank to the shop visit probabilities from (MEDIAN, 2019), we can only speculate
how many significant contacts people have while shopping; however, as these contacts
are usually short, the significance of possible misspecification here would hot be severe
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Figure 3: Fit to (Prem et al., 2017). Right column: blue: our value, red: reference value,
hatched: population (weight)
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Figure 4: Ratio of expected contacts and infectiousness by category

as in the case of leisure contacts.
Finally, there is a great uncertainty regarding the nature of contacts grouped in the

other category, further introducing the uncertainty into the the relevance of this cate-
gory with respect to infectiousness (see Subsection 2.5 as well as the right column of
Figure 3).

Moreover, there are parameters of our model, which are not reflected in the con-
tact matrices. The most important of them are geographical preferences. Fortunately,
these parameters can be verified at least indirectly via the public transportation. Yet it
plays little role in our simulation (see Figure 4), which is mainly due to the size of the
town and small duration of contacts in transport, we can check whether our numbers
of travellers correspond to the capacity of the public transport network. The results of
this check can be found in Table 10 in which the expected numbers of travellers stem-
ming from our simulation are compared with the public transport capacity in individ-
ual travel sections.‖ Apart from two less populated sections, the results seems realistic.
Yet one can bear in mind that travelling outside the region is not included here, co
the actual numbers would be higher, it can be concluded that our spatial preferences
assumptions are not completely unrealistic.

The summary results of our simulation may be seen in Figure 4 and Table 9.

‖The capacities were computed by means of online timetables and a fan server vagon.cz.
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Category layer infectiousness potental actual edges
contacts contacts

family family inside closelongtermcontact 1.863 0.477 63130
family in house distantlongtermcontact 0.711 0.077 52999
family visitors to
visited

closelongtermcontact 0.498 0.128 115210

school nursery children
inclass

closelongtermcontact 0.134 0.034 12148

nursery teachers to
children

closelongtermcontact 0.01 0.002 3842

lower elementary
children inclass

closelongtermcontact 0.198 0.051 17277

lower elemen-
tary teachers to
children

distantlongtermcontact 0.008 0.001 2347

higher elementary
children inclass

closelongtermcontact 0.161 0.041 14202

higher elemen-
tary teachers to
children

distantlongtermcontact 0.019 0.002 8357

highschool chil-
dren inclass

closelongtermcontact 0.158 0.04 16790

highschool teach-
ers to children

distantlongtermcontact 0.006 0.001 2338

nursery children
coridors

closerandomcontact 0.05 0.002 14869

elementary chil-
dren coridors

closerandomcontact 0.141 0.004 41785

highschool chil-
dren coridors

closerandomcontact 0.063 0.002 18624

work nursery teachers distantlongtermcontact 0.004 0 2322
elementary teach-
ers

distantlongtermcontact 0.01 0.001 7252

highschool teach-
ers

distantlongtermcontact 0.002 0 1241

other work con-
tacts

distantlongtermcontact 1.457 0.163 56488

outdoor leasure outdoor closeopenair 0.27 0.003 38291
visits leasure visit dininingcontact 0.839 0.132 117346
pubs leasure pub dininingcontact 0.355 0.056 54155

pubs customers closerandomcontact 0.676 0.022 989688
pubs workers to
clients

serviceclientcontact 0.678 0.012 97324

services work workers to
clients distant

serviceclientcontact 0.326 0.006 91397

work workers to
clients physical
short

physicalshorttermcontact 0 0 99

work workers to
clients physical
long

physicallongterm 0.09 0.019 25350

transport public transport closerandomcontact 0.195 0.006 289549
shopping shops customers closerandomcontact 0.05 0.002 326380

shops workers to
clients

serviceclientcontact 0.425 0.007 32947

other other closerandomcontact 1.26 0.04 168269

Table 9: Layers
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Section expected busses trains capacity use
Ho-Du 2225 49 3430 64.9%
Ho-Lu 4874 66 18 8238 59.2%
Ho-Mu 2119 30 7 2534 83.6%
Ho-Ra 1310 34 2380 55.1%
Ho-Ro 1988 27 29 7429 26.8%
Ce-Mu 1101 29 2030 54.2%
Ce-NP 404 22 1540 26.3%
DB-Jo 241 10 700 34.5%
DB-Lu 2019 31 2170 93.1%
DB-SP 878 22 1540 57.0%
Du-Mu 639 12 840 76.1%
Du-Ra 746 8 560 133.3%
Jo-Lu 1240 19 1330 93.3%
Jo-Pr 1244 20 1400 88.9%

Lu-Mi 1066 23 1610 66.2%
NP-SP 469 22 1540 30.4%
Ra-Ro 484 4 280 172.7%
Ro-Su 680 25 16 3910 17.4%

Table 10: Utilization of public transport.

2.5 Contagion Probabilities

For a contact of i and j on layer k, we assume that the probability of j infecting i at time
t through this contact provided that the former is infectious (see below) is

ιi,j,k,t = βt
γk
C

, C =
1
N

N

∑
i=1

∑
k

∑
j is connected to i on layer k

γk pi,j,k (2)

where βt is a constant, dependent only on time, pi,j,k is the probability of contact of i
and j on layer k and γk is a layer-specific constant. The normalization by C is done in
order βt to be comparable with its analogy in compartmental models, in which, hypo-
thetically, a single contact happens each period. Due to the normalization, clearly, it
suffices for γ• to be determined only up to a common multiplicative constant (i.e. only
ratios of γ• matter).

We consider eight possible levels of the contacts infectiousness (hence eight possible
values of γk), see Table 8. Due to the lack of knowledge about the infectiousness of the
COVID virus, we chose a non-standard way of determining the value of γ’s: we asked
eight Czech experts on infectious diseases to rank those types from the most conta-
gious to the least contagious one. Consequently, we evaluated their responses by Saaty
method; the results may be seen in the fourth column of Table 8. The individual pair-
wise comparison matrices were derived from the rankings - the strengths of preference
were given by differences in ranks increased by one (resulting in values from 2 to 8),
and the inverted values were used to describe the strengths of non-preference to keep
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the reciprocity. In line with (Dong et al., 2010) and (Forman and Peniwati, 1998), the ge-
ometric mean was used to aggregate all the individual judgements into the group one.
All the individual matrices were (almost) absolutely consistent (the used rankings can-
not violate neither the axiom of transitivity, nor the axiom of multiplicative consistency,
see (Alonso and Lamata, 2006)), but it was necessary to check if the final group evalua-
tion was consistent enough with the original individual judgements. In line with (Dong
et al., 2010), we used the geometrical cardinal consistency index (GCCI) to do this with
the results showing that the aggregated group evaluation is sufficiently consistent with
the evaluations of all the experts (the authors of (Aguarón and Moreno-Jiménez, 2003)
proposed the threshold 0.37 for GCCI when k > 4, and the values of |GCCI| for our
experts vary from 0.01 to 0.23).

As the results of our survey can reflect only ordering of the alternatives, not their
magnitude, we alternatively evaluate the contagiousness by a simple physical model

γ ∼ c exp{d} ln(τ + 1)

where d is a distance of the contact in meters, τ is its duration in hours and c is a constant
which, however, does not matter due to normalization (see above). The values of d and
t were our guesses, reflecting the situations in which we considered the contacts. After
minor adjustments of our guesses made for the ordering to agree with the survey, we
got final values of γ, seen in Table 8.

Which layers were assigned which contagion types can be seen in Table 9.

2.6 Simulating interventions

It is no doubt that any working epidemiological model has to take the adaptation of
people to the epidemics. Our model enables simulating various interventions via mod-
ifications of graph or model parameters. In general, the interventions are of three types
– global contact restrictions (site closures, etc.), beta reductions (protective meassures
such as masks, proper hand washing) and quarantine/isolation of individuals (includ-
ing contact tracing).

2.6.1 Contact Restrictions

The data on which we base our contact model, such as the contact matrices from (Prem
et al., 2017) or the survey (MEDIAN, 2019), come from the times before the COVID
pandemics, when the values of interest clearly differed from the epidemic a probably
also post-epidemic times. Moreover, these data changed according to the situation dur-
ing the epidemic. To incorporate these changes, we used surveys (MEDIAN, 2020)
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Layer (MEDIAN, 2020) Proxy by (PaQ, 2020)
family inside Home contacts Total contacts
family in house Home contacts Total contacts
family visitsors to visited Home contacts Friend or family visits
nursery children inclass School contacts Total contacts
nursery teachers to children School contacts Total contacts
lower elementary children inclass School contacts Total contacts
lower elementary teachers to children School contacts Total contacts
higher elementary children inclass School contacts Total contacts
higher elementary teachers to children School contacts Total contacts
highschool children inclass School contacts Total contacts
highschool teachers to children School contacts Total contacts
nursery children coridors School contacts Total contacts
elementary children coridors School contacts Total contacts
highschool children coridors School contacts Total contacts
nursery teachers School contacts Total contacts
elementary teachers School contacts Total contacts
highschool teachers School contacts Total contacts
leasure outdoor Leisure contacts Trips or holidays
leasure visit Leisure contacts Friend or family visits
leasure pub Restaurant contacts Restaurant visits
work contacts Work contacts Total contacts
work workers to clients distant Work contacts Total contacts
work workers to clients physical short Work contacts Total contacts
work workers to clients physical long Work contacts Medical institution visits
public transport Public transport rides Public transport rides
shops customers Supermarket contacts Visits of crowded shop
shops workers to clients Supermarket contacts Visits of crowded shop
pubs customers Restaurant contacts Restaurant visits
pubs workers to clients Restaurant contacts Restaurant visits
other Home contacts Total contacts

Table 11: Assigning questions from surveys to layers.

and (PaQ, 2020). The survey (MEDIAN, 2020) compares numbers of contacts of differ-
ent types between January and the first week of April 2020. The survey (PaQ, 2020),
on the other hand, is longitudinal, asking the same set of questions each week of the
pandemics. While (MEDIAN, 2020) responds directly to the question what number of
contacts of different types people had before the pandemics and during it, it is only
one-time survey, speaking only about one time instant in the beginning of April, the
study (PaQ, 2020) gives data for each week; however, it surveys only the total num-
ber of contacts without discerning their types. Yet additional results of the survey give
some information connected to the particular types of contacts, they do not directly
provide the numbers of contacts; instead, they give proxy information such as number
of pub visits.
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Figure 5: Contact restrictions during the pandemics, contact volumes adjusted for in-
fectiousness.

To quantify the changes for the purpose of the contact model, we proceeded as fol-
lows. To each layer, we assigned an item (answer to a question of a survey) from (ME-
DIAN, 2020) and a proxy from (PaQ, 2020), see Table 11. Thus, for each particular layer,
we had the restriction m at the fourth week, estimated by (MEDIAN, 2020), and the
series of restrictions n1, n2, . . . at the individual weeks, estimated by (PaQ, 2020). The
contact restriction of the layer at week τ has been computed as

rτ = wτmτ + (1− wτ)nτ

where

mτ = nτ

τ

∏
i=1

qτ, qτ =

 4
√

m
n4

, τ ≤ 4

1
;

this choice guarantees that, m4 = m and, simultaneously, the information from (PaQ,
2020) is incorporated. Here, wτ is the weight, such that w1 = w2 = w3 = w4 = 1 (max-
imal usage of information from (MEDIAN, 2020)) and w5 = 0.9, w6 = 0.8, . . . , w14 =

0, w15 = 0, . . . .
The resulting dynamics of restrictions by category are displayed in Figure 5.

2.6.2 Beta restrictions

The protective meassures (such as wearing masks, keeping proper distances, frequent
hand washing, etc.) adopted by the majority of people during the epidemic reduce the
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infectiousness represented in model by the parameter β. Therefore during simulating
the past epidemy flow the parameter β is not kept constant but changes in time.

The model uses a calendar of protection levels ω (real number between 〈0, 1〉 rep-
resenting how much the hygienic protective measures were active). This calendar is
crated based on data provided by (PaQ, 2020).

The parameter β is modified using the following formula

βv = (1− 0.9ω)β?, (3)

where β? is a value of a parameter beta while no restrictions are active. This is valid
for all edges except edges on layer 1 (families in one household), where the strength of
reduction is 20%:

βv = 1− 0.2(0.9ω)β?, (4)

where v is an edge on layer 1.

2.6.3 Quarantine and contact tracing

The last type of interventions works on individual nodes. It enables the simulation
of isolation or quarantine of individuals and contact tracing. Again, the simulation is
based on graph modification, in this case local (the edges of given node that should be
isolated are weakened for required period of time).

The policy module responsible for qurantine (called Quarntine Policy (QP)) moni-
tors indiviual node’s states and puts some of nodes to isolation.

Two main types of QP were implemented: self-isolation policy (SIP) and quarantine
policy with contact tracing (CTP).

SIP is a simple policy, it simulates the situation when people after developing symp-
toms stay home (since they are responsible or feel too badly to continue their normal
lifestyle). Once a node develops symptoms, it is isolated with a certain probability. It
means, that the node is stored in a deposit object for a given number of days (typically
7). For this period, nodes adjacent edges are reduced, i.e. their probabilities are set to
zero or weakened (except family edges on layer 1 – family). After the duration time in
deposit object passes and the node leaves the state Is, the original probabilities of edges
are recovered (unless they are reduced by other quarantine at the same time).

Another situation is that a node is detected and is forced to stay in isolation. This
is covered by CTP that tracks detected nodes, puts them to isolation, and simulates a
contact tracing.

CTP is described in Alg. 1 and its basic workflow sketched at Fig. 6. The main
purpose of this algorithm is to track detected nodes and their contacts and keep them
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Notation Layer
p1 family (layers 1-3)
p2 school and work (layers 4-17 + 21-24)
p3 leisure (layers 18-20)
p4 other (layers 25-30)

Table 12: Four groups of contacts with different recall rates based on tracing policies.

in isolation or quarantine for a given number of days (in CR during spring 14, later
changed to 10). As was valid during spring in the Czech Republic, two negative tests
are needed to end up the isolation/quarantine. Isolation and quarantine are again mod-
eled by reducing probabilities of edges adjacent to quarantined or isolated nodes.

Once a node is detected, it is put in isolation and is contacted and asked for contacts
(there is a delay when the node waits for the phone call). These contacts are put to
quarantine and have to undergo an enter test (usually in 3 to 5 days). If the enter test
is negative, it has to pass another negative one at the end of its quarantine period. If
the result is positive, the node is put in isolation and is also contacted and asked for
contacts.

The contact is a node adjacent to an interviewed node on the condition that the
connecting edge was active (see Sec. 2.2) in a given number (typically 5) of days and
with the probability equal to the riskiness of the corresponding edge’s layer type.

To simplify and formalize this concept, the CTP is defined by a tuple (p1, p2, p3, p4).
The pi corresponds to layer type (see Table 12) and defines the probability that a contact
on given layer will be collected (i.e. successfully traced). For example, if contact tracing
(1, 0, 0, 0) is used, all contacts connected by family edges are collected (recalled), others
are ignored. For riskiness (1, 0.5, 0, 0) all family contacts are collected, school and work
contacts are recalled with probability 0.5 and the rest of contacts is ignored.

3 Results

The software implementation of the previously described model M is realized in Python,
and it is publicly available at https://github.com/epicity-cz/model-m/releases. Fig-
ure 7 presents a scheme of software modules of the model.

As an illustration of the model usage we present an example where the parameters
of the model were fitted to the situation in Czech Republic in Spring and Summer of
2020. Typical output of the simulation contain the numbers of active and detected cases
per day, together with further context dependent outputs, such as numbers of tests,
etc. Figure 8 illustrates a result of such an experiment. Figure 9 presents a geographic
visualization of one simulation run.
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Algorithm 1 Main Routine – Contact Tracing Policy (CTP). See also Alg. 2 for the de-
scription of auxiliary routines.
Require: riskiness, daysBack, enterTestRange, testResultDelay, minDuration,

quarantineCoefs

Require: Keeps deposit objects: depo, waitingForPhoneCall,
waitingForEnterTest, waitingForResultTest,
waitingForSecondTest

1: detectedNodes← all nodes that moved to detected state today and are not in depo

2: newContacts← contactTracing(detectedNodes, daysBack, riskiness)
3: waitingForPhoneCall.insert(newContacts, phoneCallDelay)
4: contactsReadyToQuarantine← waitingForPhoneCall.getReady()

5: waitingForEnterTest.insert(contactsReadyToQuarantine,
randomChoice(enterTestRange))

6: nodesToBeTested← waitingForEnterTest.getReady()
7: healthy, ill← testing(nodesToBeTested)
8: waitingForResultEnterTest.insert(ill, testResultDelay)
9: contactsPositivelyTested← waitingForResultTest.getReady()

10: for all node in contactsPositivelyTested do
11: changeStateToDetected(node)
12: end for

13: otherContacts← contactTracing(contactsPositivelyTested, daysBack, riskiness)
14: waitingForPhoneCall.insert(otherContacts, phoneCallDelay)

15: depo.insert(detectedNodes, contactsReadyToQuarantine, minDuration)
16: graphReduceEdges(detectedNodes, contactsReadyToQuarantine, quarantineCoefs)

17: released = depo.getReady()

18: secondTestCandidates, stillIll = testing(released)
19: depo.insert(stillIll, 2)
20: waitingForSecondTest.insert(secondTestCandidates, 2)
21: reallyReleased← waitingForSecondTest.getReady()
22: graphRecoverEdges(reallyReleased)
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Algorithm 2 Auxiliary Routines – objects and functions used in Alg. 1
Deposit object: an object with insert and getReady methods. By insert method, a set of nodes

with a given duration (in days) is inserted to the deposit. If a node is already in a deposit, the
insert is ignored. Every iteration (day) all duration counters are decreased by one. Function
getReady returns all nodes that achieved zero duration today.

Function contactTracing(N,daysBack,riskiness) :
Require: a set of nodes N, daysBack parameter, riskiness dictionary parameter

creates a set E = (s, e) of oriented edges being active in last daysBack days and containing
nodes from N as node e (edge e = (s, e)).
for all edge e ∈ E do

with probability 1 - riskiness[typeOfEdge(e)], the edge e is deleted from E
end for
return all s-nodes in edges E

Function testing(N) :
Require: set of nodes N

return two sets (nodes with negative test, nodes with positive test)

Function graphReductEdges(N) :
Require: set of nodes N

all edges containing nodes from N that are not already reduced (e.probability !=

e.originalProbability) are modified so as e.probability = e.originalProbability *

quarantineCoefs[e.layerType]

Function graphRecoverEdges(N) :
Require: set of nodes N

all adjacent edges (except those that have the second node still in quarantine), are modified
by e.probability = e.originalProbability

.
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Figure 6: Quarantine and contact tracing workflow.

Figure 7: Scheme of a software implementation of model M.

4 Discussion

We have presented a technical description of an agent-based model of the Hodonı́n
municipality of the Czech Republic. The model is unique in its detail in which the
synthetic population corresponds to the real population of the area.
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Figure 8: The fit of our model to the situation in the Czech Republic. Left: detected
active cases (sum of numbers of nodes in detected states, i.e. Ed, Idn, Ida, Ids, Jdn, Jds).
Center: all active cases (sum of all E, Ia, Is, In, Jn, Js plus their detected counterparts).
Right top: Average times between the first symptoms and the test result. Right middle:
Number of all tests (should be always underestimated in a model, we do not realise
all tests, since we do not care about negative ones except those in quarantine)). Right
bottom: Ratio of all active cases and detected active cases. Number 1.0 stands for all
detected, > 1.0 undetected ill nodes.

Figure 9: Geographic visualization of one simulation run.

The second important feature is a detailed graph of social network of contacts. The
contacts are divided into 30 layers corresponding to families, households, workplaces,
schools, shops, restaurants, and public transportation. They are modeled as closely as
possible using various data resources in order to obtain a faithful contact network.

Moreover, we have a detailed calendar of changes of the behavior of Czech Repub-
lic inhabitants from an ongoing sociological survey. This allows to dynamically change
the contact rates depending on real situation and to model the effect of various inter-
ventions.

The interventions in our model include non-pharmaceutical individual measures,
such as personal protection and distancing, testing, isolation and quarantine proce-
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dures with limited resources, and tracing policies with varying efficiency in different
contact types.

The software implementation is rather general, given the right graph, it can be easily
used for different regions, but also to environments such as schools or workplaces, in
order to compare the efficiency of specific epidemics measures.

Many software packages for epidemiological simulations have emerged in previous
year, such as the extensive suite Covasim (Kerr et al., 2021) that allows to run simula-
tions on random networks as well as synthetic populations. Our solution is similar in
the modeling approach and the range of implemented interventions. What makes our
Model M unique is the level of detail in the population and contact network structure.
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