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Summary
1. Simulating the dynamics of realistically complex models of infectious disease is conceptually challenging

and computationally expensive. This results in a heavy reliance on customized software and, correspond-
ingly, lower reproducibility across disease modeling studies.

2. SPARSEMOD stands for SPAtial Resolution-SEnsitive Models of Outbreak Dynamics. The goal of our
project, encapsulated by the SPARSEMODr package for R package, is to offer a framework for rapidly
simulating the dynamics of stochastic and spatially-explicit models of infectious disease for use in peda-
gogical and applied contexts.

3. We outline the universal functions of our package that allow for user-customization while demonstrating
the common work flow.

4. SPARSEMODr offers an extendable framework that should allow the open-source community of disease
modelers to add new model types and functionalities in future releases.
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1 Introduction
The recent emergence of SARS-CoV-2 has reinforced the strong role that mathematical models of disease
spread play in understanding pathogen transmission and in designing effective public health interventions
(Ferguson et al., 2020; Tian et al., 2020; Saad-Roy et al., 2020). Models of infectious disease transmission
vary widely in their structural form and complexity (Keeling & Rohani, 2008). Classical models take the5

form of ordinary differential equations describing “compartments” of the population (e.g., susceptible versus
infectious), but even these models can become quite complex, containing numerous equations that might,
for instance, account for heterogeneities in the host population or for the progression of pathogen-induced
disease through various stages. Some of the most complex - and perhaps realistic - disease models explicitly
account for spatial dynamics, referred to as meta-population models.10

In meta-population models of disease, distinct host populations are delineated and are explicitly situ-
ated geographically, such that movement of host individuals between the populations affects transmission
(Rohani et al., 1999; Lachiany & Stone, 2012; Ferrari et al., 2010; Pei et al., 2020). These spatial models
are therefore used to understand how host or pathogen movement influences within-population transmis-
sion dynamics and the regional patterns of epidemics that emerge by aggregating the distinct populations.15

For example, spatial models can help us understand how quickly a pathogen is expected to travel across a
landscape once it emerges; they can be used to understand the synchrony of outbreaks in the face of spatial
heterogeneity; and they can be used to simulate spatial intervention strategies (e.g., targeted vaccination).
In this way, spatial models are often necessary to explain large-scale patterns of disease transmission that
cannot be captured by simpler, non-spatial models (Eggo et al., 2021). Yet the use of spatial disease models20

in practice can be hindered by their level of complexity (Riley et al., 2015; Willem et al., 2017), meaning
that spatial models may be underutilized in educational settings and in applied situations.

Spatial disease models may become computationally burdensome due to the necessity of tracking the
values of multiple state variables (i.e., host compartments) within each distinct population over time, while
also simulating explicit movement dynamics between host populations over time (Riley, 2007; Riley et al.,25

2015). We believe that this leads to two problems. First, spatial models must be custom-coded, which
may reduce the reproducibility of results between studies, especially if model code is not open-source.
We are unaware of any open-source frameworks that allow users to simulate spatial disease models in a
flexible way without having to code their own model. One could argue that spatial disease models are
complex enough that they should only be constructed and analyzed by highly qualified experts; however,30

this seems philosophical and debatable. There are distinct advantages of imagining a software environment
in which many spatial models of various structural form could be simulated with some universal, but user-
controlled constraints. In such a scenario, researchers could cite the universal parameters, which would
increase reproducibility and facilitate peer-review.

A second problem is that because spatial models require customized software and the availability of35

computational resources, this may limit the opportunity for hands-on learning in the classroom. From expe-
rience, having students code their own spatial model or attempt to read and understand example code from
a spatial model can be extremely time-intensive. This may lead some instructors to rely on lecture-style
learning to convey the importance of spatial disease dynamics, depriving students of critical experiences
in deriving their own understanding through manipulating the models. Therefore, it would be very useful40

to have a software environment that allows students to simulate spatial models “out-of-the-box” while still
deriving an understanding of fundamental concepts in epidemiology.

Here we introduce the SPARSEMODr package, which allows users to rapidly simulate complex models
of infectious disease in a spatially-explicit and stochastic environment. The first release of this package
contains two model structures, each based on coupled systems of ordinary differential equations. First,45

we supply a classic Susceptible-Exposed-Infectious-Removed (SEIR) model with host demography (births
and deaths), which can be used in the classroom to understand the cycling of disease outbreaks and the
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spatial synchrony of these cycles in a spatially-explicit context. This model is not fully described herein;
however, our package vignettes provide a detailed model description and coded examples. Second, and
described in detail below, we supply a more complex and specific model of SARS-CoV-2 transmission and50

disease progression through the hospital system (Gel et al., 2020). Our group has been using this model
in an applied context to make projections of hospitalization on a county-specific basis in Arizona, but the
model could also be used in a pedagogical context. Importantly, the SPARSEMODr package has a set of
conventions (i.e., universal constraints) that dictate how hosts move between populations, that allow for
multiple sources of stochasticity, that define the effects of host density on transmission (i.e., frequency-55

versus density-dependent transmission), and that allow users to specify time-varying parameters (e.g., time-
varying transmission rates). In this way the package is extendable: in future releases, more model structures
can be added that follow the same core conventions. We hope that the package will increase reproducibility
in the field of spatially-explicit disease modeling, while also providing a straightforward way for students
and instructors to learn about these perhaps otherwise inaccessible model types.60

2 Universal features of SPARSEMODr disease models
All of our models are coded in C++ and use the Rcpp package to conveniently wrap the functions into
the R computing environment (Eddelbuettel, 2013). We therefore take advantage of the speed offered by
C++ and the user-friendliness offered by the higher-level language, R. The output of each model is a data
frame that includes the value of each state variable per time step per population, as well as the number65

of new “events” per time step per population (e.g., new exposure events or recovery events). We supply
detailed vignettes that describe different use-cases of the SPARSEMODr package on our website: https:

//sparsemod.nau.edu/rpkg/. Here we describe the key universal features of these spatially-explicit and
stochastic disease models.

2.1 Stochastic dynamics70

Demographic stochasticity All of our models implement a form of demographic stochasticity, which rep-
resents the effects of probabilistic events that befall individuals in a population and that can affect epidemic
trajectories. These random processes are especially important early in outbreaks and in small host popu-
lations (Keeling & Rohani, 2008). To implement demographic stochasticity, we simulate the differential
equations forward one day at a time using a Gillespie-style algorithm known as the tau-leaping algorithm75

(Gillespie, 2001). In addition to accounting for important random processes, this approach has several
practical advantages. First, this simulation approach is more computationally efficient compared to some
numerical integration techniques (Ganyani et al., 2021). Second, this approach allows us provide integer
outputs that represent the number of new “events” that occurs on each day of the simulation. Whereas the
number of new events would have to be estimated in numerical integration of continuous-time differential80

equations, because the output values would be real numbers. One downside to the tau-leaping approach is
that it forces the user to work with integers, and simulating the equations can be more unstable when the
integers are very small. However, this is simply an issue of scaling; the state variables and model parameter
values can easily be re-scaled to improve the stability of the simulations.

Stochastic transmission process We implement daily stochastic variation in the transmission rate that85

scales with the number of infectious individuals in the focal population. In other words, as the number of
infectious individuals increases, the variation in transmission rate decreases, emphasizing that stochastic-
ity has larger effects in smaller populations (i.e., larger effects when there are few infectious individuals)
(Keeling & Rohani, 2008). This type of stochasticity can account for super-spreader events, which have dis-
proportionate effects early in the epidemic. To implement this stochasticity, we draw a random variate from90

a normal distribution with a mean of zero and a standard deviation of stoch sd, and we call this random
variate noise. We calculate the total number of infectious individuals as infect sum. The functional form

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.13.21256216doi: medRxiv preprint 

https://sparsemod.nau.edu/rpkg/
https://sparsemod.nau.edu/rpkg/
https://sparsemod.nau.edu/rpkg/
https://doi.org/10.1101/2021.05.13.21256216
http://creativecommons.org/licenses/by-nc-nd/4.0/


of stochasticity is then:

βrealized =

∣∣∣∣βt ∗
(

1+
noise√

infect sum

)∣∣∣∣ . (1)

2.2 Spatial dynamics
Our models allow migration between populations in the meta-population to affect local and regional trans-95

mission dynamics. In general, susceptible individuals in a focal population can become exposed to the
pathogen by infectious “visitors” from other populations or by infectious visitors from outside of the meta-
population (“immigrants”). Similarly, susceptible individuals can visit a different population within the
meta-community and these susceptible travelers may become exposed by infectious individuals in those
other populations.100

The user can control the per-capita movement rate m of susceptible and infectious hosts. The probabil-
ity of moving to any specific population is controlled by a simple, distance-based dispersal kernel:

pi, j =
1

exp(di, j/dist param)
. (2)

Here pi, j is the probability of moving from population j to population i, and di, j is the euclidean distance
between the two populations. Larger values of the dist param constant make it more likely for hosts to
travel farther distances. In future releases we could include the option of using more complicated kernels,105

like gravity kernels, which assume movement probability is also dependent on the local size of population i.
To determine which individuals will move to which outside population, we draw from a multinomial

probability distribution using the pi, j values. Once individuals are assigned to their new, temporary pop-
ulations, transmission can occur dependent upon the local composition of infectious individuals. Thus,
transmission occurs within a population and then additional transmission can occur after hosts commute.110

The model also allows immigrants, who do not usually reside in the meta-population, to commute to
the meta-population each day. As an analogy, imagine modeling the meta-population within a state, but
wanting to model the effects of out-of-state persons that visit the State of interest. In this case, the user
can define the parameter imm frac, which is the proportion of the focal population that may constitute vis-
itors on any given day. For example if for a given focal population, the population size is 1000 hosts, and115

imm frac = 0.05, an average of 50 temporary immigrants may arrive on a given day. The exact number
of these immigrants arriving on a given day is determined by drawing from a Poisson distribution. Then,
the number of infectious visitors from this pool of immigrants is assumed to be proportional to the number
of infectious residents in the focal population. In other words, we assume that the pathogen is present in
“non-resident” populations at similar prevalence as the focal population. The exact number of infectious120

immigrants is again determined by a Poisson draw. After immigrants arrive at the focal population, trans-
mission between susceptible residents and infectious immigrants is determined, and the immigrants then
leave the population. In other words, immigrants are commuters and only visit for one day at a time.

2.3 Time-varying parameters
The SPARSEMODr models allow users to change transmission dynamics over time by specifying time-varying125

parameters. Time-varying parameters can take on unique values per day, and we provide two ways for users
to specify these changes. First, users can specify “time windows” over which the parameter values change
linearly from a starting value to an ending value. Second, users can supply a vector of values for a given
parameter such that it takes on a user-specified value per day in the simulation (see sec 3.1 for more details
on time windows).130

All models allow the transmission rate to vary over time; however, because the value of the transmis-
sion rate can be hard to interpret or estimate over time, we instead allow the user to input a time-varying
reproductive number. Note that this not the same as the instantaneous reproductive number, so we call this
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value the time-varying R0. In each model we use the value of R0 at each time point to back-calculate a time-
specific value of the transmission rate (β(t)), but we do not adjust for the current proportions of susceptible or135

recovered hosts. Hence, it is different from the instantaneous reproductive number, Rt (Gostic et al., 2020).
In this way, we are assuming that time-varying R0 is effectively changing only due to changes in the β(t)
term, which encapsulates the effective contact rate among individuals and the probability of transmission,
given contact between a susceptible and infectious individual. For simple models, the calculation of β(t)
from a time-varying R0 value is straightforward algebra; e.g., for a classic SIR model with host demogra-140

phy: β(t) = R0(t)(γ +µ), where γ is the recovery rate and µ is the natural mortality rate. For more complex
models with many state variables, this becomes more complicated. Therefore, to back-calculate the β(t)
parameter from the time-varying R0 value, we derive the equation for time-varying R0 for each SPARSEMODr

model. We implement a root-finding algorithm with the Brent-Dekker method using the GNU Scientific
Library to calculate β(t) in our underlying C++ code, which is fast, robust, and does not require an initial145

guess (Brent, 2013). Thus, the user inputs the time-varying R0 value, and we calculate the value of β(t) on
the back-end.

In the model of SARS-CoV-2 transmission, we also allow a number of other relevant parameters to
fluctuate through time, which we describe below. Therefore, each model that is developed in SPARSEMODr

could include any number of time-varying parameters following the universal conventions.150

2.4 Frequency- and density-dependent transmission
In SPARSEMODr models, the transmission process can be described as frequency-dependent, where contact
rates are invariable to population density, or density-dependent, where contact rates depend on population
density (Hopkins et al., 2020).

To model frequency-dependent transmission, we scale the time-specific transmission rate by the lo-155

cal population size βscaled = β(t)/Ni, where Ni is the size of a given focal population. The day-specific
transmission rate β(t) is back-calculated from the user-provided value of time-varying R0 (above).

We also allow the user to specify a relationship between the realized transmission rate in a population
and the population’s density. For instance, for some pathogens, we may expect the effective contact rate
to increase with increasing population density (i.e., density-dependent transmission). We therefore allow160

the user to specify a non-linear Monod equation (Monod, 1949) to describe the relationship between host
population density and the transmission rate β(t). The Monod equation is:

βrealized = β(t)
D

K +D
, (3)

where β(t) becomes the maximum possible transmission rate for that day. D is the density of the focal
host population (Ni/census area), and K is a constant that controls the effect of density, which is the user-
specified value of dd trans monod k. We again scale the realized value of the transmission rate by the165

population size: βscaled = βrealized/Ni.
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3 Work flow
Here we demonstrate the work flow of the SPARSEMODr package using our version of the COVID-19 model
with frequency-dependent transmission, described by the following equations (see also Gel et al. (2020)):

dS
dt

=−βtλtS

dE
dt

= βtλtS−δ1E

dIa

dt
= δ1ρ1E− γaIa

dIp

dt
= δ1 (1−ρ1)E−δ2Ip

dIs

dt
= δ2Ip−δ3Is

dIb

dt
= δ3 (1−ρ2−ρ3) Is− γbIb

dIh

dt
= δ3ρ2Is−δ4Ih

dIc1

dt
= δ3ρ3Is +δ4ρ4Ih−δ5Ic1

dIc2

dt
= δ5 (1−ρ5) Ic1− γcIc2

dD
dt

= δ5ρ5Ic1

dR
dt

= γaIa + γbIb + γcIc2 +δ4 (1−ρ4) Ih

(4)

170

Figure 1: COVID-19 model schematic.
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Here, λt represents a component of the force of infection, given by:

λt =
ω1Ia + Ip + Is + Ib +ω2(Ih + Ic1 + Ic2)

N−D
. (5)

Definitions of state variables and model parameters are displayed in the tables below, which also show
the corresponding model inputs to the SPARSEMODr package. We provide default parameter values as a guide
in the package documentation, but all of them can be user-specified. The package also conducts parameter
validation steps via warnings and errors to ensure specified parameters are within feasible limits. Note that175

we also allow individuals in the S, Ia, Ip, and Is compartments to move between populations, controlled the
per-capita movement rate m. However, these dynamics are not explicitly represented in the model equations.

Table 1: COVID-19 model state variables

State Variable Description Corresponding model input
S Number of susceptible individuals input S pops

E Number of exposed individuals input E pops

Ia Number of asymptomatic individuals input I asym pops

Ip Number of pre-symptomatic individuals input I presym pops

Is Number of mildly symptomatic individuals input I sym pops

Ib Number of mildly symptomatic individuals on bed rest at home input I home pops

Ih Number of hospitalized individuals input I hosp pops

Ic1 Number of individuals in the ICU input I icu1 pops

Ic2 Number of individuals in the recovery (step-down) ICU input I icu2 pops

D Number of deceased individuals input D pops

R Number of recovered individuals input R pops

Table 2: COVID-19 model parameter descriptions

Parameter Description Corresponding model input
βt Time-varying transmission rate Internally calculated
ω1 Proportion reduction in transmission for asymptomatic folks frac beta asym

ω2 Proportion reduction in transmission for hospitalized folks frac beta hosp

N Total number of individuals in population input N pops

δ1 Transition rate: exposed to pre-symptomatic delta

δ2 Transition rate: pre-symptomatic to symptomatic recov p

δ3 Transition rate: symptomatic to home or regular hospital bed or ICU recov s

δ4 Transition rate: regular hospital bed to home or ICU recov hosp

δ5 Transition rate: ICU to step-down ICU or decease recov icu1

γa Recovery rate: asymptomatic recov a

γb Recovery rate: home bed recov home

γc Recovery rate: step-down ICU recov icu2

ρ1 Fraction of exposed that transition to asymptomatic asym rate

ρ2 Fraction of symptomatic that transition to hospital bed hosp rate

ρ3 Fraction of symptomatic that transition directly to ICU bed sym to icu rate

ρ4 Fraction of hospitalized that transition to ICU icu rate

ρ5 Fraction of patients in ICU that die of disease death rate

3.1 Process overview
Our software package runs the spatial, stochastic modeling framework across a user-specified grid of popu-
lations. Figure 2 shows a simulated case-study using the COVID-19 model described above. In this case, we180
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simulated populations that are scattered across a spatial lattice; one could imagine these are local commu-
nities situated within counties, within a state, such that the “Regions” represent counties (Fig. 2(a)). Across
the whole meta-population (i.e., state), we impose a time-varying R0, such that each local population ex-
periences the same pattern of time-varying R0 (Fig. 2(b)). In our spatial modeling framework, we simulate
the set of ordinary differential equations (above) within each local population, allowing movement (as de-185

scribed above) during each time step of one day. This means that we can track the spread of the disease
in each population individually ((Fig. 2(c)), and we can aggregate patterns in local populations to higher
spatial scales (e.g., “Regions”; Fig. 2(d)) to look at higher-level, emergent patterns. Below we describe the
necessary setup and declarations to run the spatial simulations in SPARSEMODr.

Figure 2: Overview of stochastic, spatial modeling scheme using simulated data and the COVID-19 SPARSEMODr

model. (a) Simulated host populations of varying abundance on a spatially-explicit grid. (b) Imposing a pattern of
time-varying R0 across all of the local populations. Note that hospitalization rate may also be an underlying change
over time. (c) Pattern of new hospitalizations over time from a particular population. The lighter lines are individual
realizations of the stochastic model, while the dark line is the median trajectory of these realizations. (d) Aggregating
local patterns to regional scales to explore differences in epidemic trajectories across regions. Light and dark lines as
in panel (c).

3.2 Declaring initial conditions and constant parameters190

Users must specify the initial conditions of the state variables. To initiate the epidemic, at least one
of the following vectors must be supplied with a value of greater than one for at least one population:
input E pops, input I asym pops, input I presym pops, input I sym pops, input I home pops,

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.13.21256216doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.13.21256216
http://creativecommons.org/licenses/by-nc-nd/4.0/


input I hosp pops, input I icu1 pops, or input I icu2 pops. Any of these population parameters
not supplied will be assumed to be a vector of zeroes. Moreover, either a vector of input N pops or a vector195

of input S pops must be supplied. Let’s take the following data set for as inputs for the our examples:

N_pops <- rep(5000, 10) # 10 populations each with 5000 individuals.

E_pops <- c(0,1,0,3,2,0,14,3,0,0) # Number of initially exposed in each pop.

S_pops <- N_pops - E_pops

The user must also declare some inputs that are universal to all SPARSEMODr models: input dist mat200

is a matrix that specifies the distance between populations; input realz seeds is a vector of seeds for the
random realizations of the model; stoch sd is the standard deviation of the stochastic transmission rate,
as described above; trans type specifies the type of transmission type (frequency- or density-dependent,
see above); input census area is the spatial area of each population (only required when transmission
is density-dependent); dd trans monod k the parameter controlling density’s effect on transmission, as205

described above (only required when transmission is density-dependent); and input tw a time window
object, which we will describe in the next section. More information on these parameters is found in our
package documentation.

The next step is to populate the model-specific “control” object, which is a special R class defined in
our package. Each model in the package must have its own control class that includes the model-specific210

parameters and initial conditions of the state variables. This also lets the system know which model from
the library of SPARSEMODr models will be run.

A simple example, given the initial conditions above is as follows. In this case, all of the constant
model parameters would use default values, except the two specified.

my_covid19_control <- SPARSEMODr::covid19_control(215

input_S_pops = S_pops, # susceptible population counts

input_E_pops = E_pops, # exposed population counts

asym_rate = 0.4, # fraction of exposed that become asymptomatic

recov_icu1 = 0.125) # average ICU recovery rate, i.e., 8 days (1/8)

Also, in this case, because input N pops was not provided, the package internally assumes input N pops220

= input S pops + input E pops. covid19 control() returns a named list of vectors that must be
supplied when running the model. Error and warning messages help the user with understanding which
parameters are necessary and which are suggested.

3.3 Declaring time-varying parameters with the time-windows object
A time windows object is required to specify the time-varying parameters (or whether these will be constant225

in the simulation). Importantly, there are two ways to specify these ”time windows”: (1) daily, or (2) start
and end dates of the window. For the “daily” method, the parameter vectors must be of size equal to the
number of days in the simulation. For the start/end method, values for each parameter are assigned at the
beginning and end of the time window. The model then implements a linear interpolation to assign daily
values; in other words, the parameter values change linearly from the starting value to the ending value over230

the number of days within the time window.
Here is an example that was used to generate the time-varying R0 pattern of Figure 2(b). In this case,

we specify the start and end dates of our time windows, that each vary in the number of days included.
Then we specify the values of each potentially time-varying parameter at the start of each time window.
The system internally populates vectors of length equal to the number of days represented by the whole235

simulation, where parameters are assumed to change linearly within the time windows. Below, we show
examples and dates are formatted using the lubridate package (Grolemund & Wickham, 2011).

10
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# Function to specify all of the required parameters in a single time-window

# In this example, only r0 is variable between the time periods240

one.window <- function(

start_dates, #start of time window (date class)

end_dates, #end of time window (date class)

r0, #value of time-varying R0

dist_param=150, #controls dispersal kernel (see Key Features vignette)245

m=0.1, #per-capita movement rate, i.e., move every 10 days on avg.

imm_frac=0){ #zero outside immigration

data.frame(r0, start_dates, end_dates, dist_param, m, imm_frac)

}

250

library(lubridate) # for mdy()

time.window.args <- rbind(# Specify the components of 5 time windows

one.window(mdy("1-1-20"), mdy("1-31-20"), r0=3.0),

one.window(mdy("2-1-20"), mdy("2-15-20"), r0=0.8),

one.window(mdy("2-16-20"), mdy("3-10-20"), r0=0.8),255

one.window(mdy("3-11-20"), mdy("3-21-20"), r0=1.4),

one.window(mdy("3-22-20"), mdy("5-1-20"), r0=1.4)

)

# Populate the required object of class time_windows260

my_tw <- do.call(SPARSEMODr::time_windows, time.window.args)

The package documentation gives additional examples of how to flexibly structure these time window ob-
jects to allow parameters to vary over time.

3.4 Running stochastic realizations in parallel
We suggest running stochastic realizations of the SPAREMODr spatial models in parallel for efficiency. We265

have therefore created a function, model parallel(), that relies upon the future package in R to use
R-level parallelization and to speed up run times (Bengtsson, 2020). The model parallel() function also
compiles the output of the individual model runs into a user-friendly data frame.

As an example:

# Specify the number of realizations to run:270

n_realz <- 75

# Specify unique seeds to run the realizations.

## Note, realizations with the same seeds will produce

## equivalent output275

my_realz_seeds <- 1:n_realz

# Run the model in parallel and store the output:

model_output <- SPARSEMODr::model_parallel(

input_dist_mat = dist_mat,280

input_census_area = census_area,

input_tw = my_tw,

input_realz_seeds = my_realz_seeds,
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control = my_covid19_control,

...universal_model_params...)285

Here “. . .universal model params . . .” represents the universal model parameters, such as trans type

or stoch sd, as described above an in our package documentation. Note that dist mat is a pairwise
distance matrix, and census area is a vector of population areas (e.g., in km2). See the package vignettes
for examples of creating these two inputs. Since model parallel() produces a data frame, the output can
easily be subset and summarized at the user’s discretion for plotting. Our package vignettes provide coding290

examples for subsetting and plotting output (e.g., Figure 2) using tidyverse packages.

4 Conclusion
The SPARSEMODr package therefore allows for advanced simulations of disease models that are both stochas-
tic and spatially explicit. The package could be used in pedagogical contexts to demonstrate fundamental
concepts in epidemiology, such as spreading waves of transmission or spatial (a)synchrony of epidemics. In295

applied contexts, parameterized models could be simulated in realistic spatial lattices to project transmis-
sion dynamics under various scenarios of population movement. We envision multiple extensions to our
package in the future. First, more model structures can be added, including vector-borne disease models.
For package contributors, a model would have to be written in C++ and follow the conventions herein: tau-
leaping algorithm, commuter-model of host (or vector) movement between sub-populations, outputs as data300

frames, etc. Our team would provide guidance and approve all outside contributed model structures via pull
and merge requests on Github. Second, we plan to introduce a graphical user-interface that allows users to
dynamically simulate toy models under various assumptions. Such an interface could aid in understanding
the effects of targeted interventions on disease control. Given the open-source nature of this R package,
we hope that the community of epidemiological modelers will help us to refine the package, make it more305

accessible to broad audiences, add vignettes and case-studies, and add functionality that makes the package
more meaningful in applied contexts, such as wildlife conservation or human public health.
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