SUPPLEMENTAL MATERIAL

Contribution of white matter hyperintensities to ventricular enlargement in older adults

Angela CC Jochems, MSc^{1,2}, Susana Muñoz Maniega, PhD^{1,2,3}, Maria del C Valdés Hernández, PhD^{1,2,3}, Gayle Barclay¹, Natalie A Royle^{1,3}, Devasuda Anblagan, PhD^{1,3}, Lucia Ballerini, PhD^{1,2,3}, Rozanna Meijboom, PhD^{1,2,3}, Stewart Wiseman, PhD^{1,2,3}, Adele M Taylor, MA(Hons)^{3,4}, Janie Corley, PhD^{3,4}, Ellen V Backhouse, PhD^{1,2,3}, Michael S Stringer, PhD^{1,2}, David Alexander Dickie, PhD⁵, Mark E Bastin, DPhil^{1,3}, Ian J Deary, PhD^{3,4}, Simon R Cox, PhD^{3,4}, Joanna M Wardlaw, MD^{1,2,3}

¹Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK;

² UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK;

³Lothian Birth Cohorts group, The University of Edinburgh, UK;

⁴Department of Psychology, University of Edinburgh, Edinburgh, UK; ⁵Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK

Abstract

Background and Purpose. Ventricular enlargement, especially enlargement of the lateral ventricles, is thought to be positively associated with white matter hyperintensities (WMH). Possible mechanisms behind the association are unclear. Lateral ventricles might increase due to generalised brain tissue loss not specific to periventricular WMH. Alternatively, they may expand into areas of tissue loss related to WMH, take up space and grow in size.

Methods. We investigated relations between longitudinal lateral ventricle and WMH volume changes, alongside vascular risk factors, in community-dwelling older people. We assessed lateral ventricle and WMH volumes, accounting for total brain volume, blood pressure, medical assessments and self-reported history of stroke, cardiovascular disease, diabetes and smoking. We used longitudinal data at three time points, each three years apart, between ages 73 to 79, including MRI data from all available time points. **Results.** Lateral ventricle volume increased steadily with age in all participants, WMH volume change was more variable. Decrease of WMH volume was found in around 20% and increase in remaining subjects. Using a repeated-measurements linear mixed model we found that over 6 years, lateral ventricle volume increased by 3% per year of age, 0.1% per mm Hg increase in mean blood pressure, 3.2% per 1% decrease of total brain volume, and 4.5% per 1% increase of WMH volume. Over time, lateral ventricle volumes were 19% smaller in women than men. No associations were found with other variables.

Conclusions. Changes in lateral ventricle volumes and WMH volumes over time are only modestly associated, independent of general brain atrophy.

Table I. Overview of literature

First author	Year	Population (N)	Age, mean ±	Study type	WMH	WMH measures	Ventricles	Ventricle measures	Other measures	Covariates	Conclusions		
			SD (range)										
Ventricular	· volume	related to WM		I									
	COMMUNITY DWELLING ADULTS												
Aribisala ²⁵	2013	Community dwelling elderly (672)	73±1	Cross- sectional	Volume (mm ³). Absolute values: Median (IQR)	Female: 7,476 (13,838) Male: 8,086 (13,842)	Volume (mm ³). Lateral, 3 rd and 4 th ventricles. Absolute values: Median (IQR)	Female: 25,052 (14,833) Male: 37,010 (20,664)	Total brain volume and GM volumes. Not used in analyses	Factor: gender. Covariates: ICV , stroke history, diabetes, hypertension, high cholesterol, cardiovascular disease, smoking	WML are associated with brain atrophy, particularly with ventricular enlargement. WML volumes explain 0.9% of the variation in ventricular volume		
Inatomi ²	2008	Healthy adults (683)	59 ± 7 (50-88)	Cross- sectional	PVWMH (Fukuda's method; 0-4, normal – diffuse) and DWMH (Fazekas; 0-3)	Incidence PVWMH 40% Incidence DWMH 29%	Lateral ventricles; Evans' index	0.248±0.026	-	Stepwise regression: Age, sex, BMI, history hypertension, diabetes, hyperlipidaemia, ischemic heart disease, systolic blood pressure, diastolic blood pressure, haematocrit, HbA1c, total cholesterol, HDL- cholesterol, triglycerides	Ventricular enlargement correlates independently with periventricular white matter changes		
Palm ²⁹ (thesis)	2015	Population study old age (858)	75.0 ± 5.4 (66-92)	Cross- sectional	Volume (mL). Median	12.23	Ventricular volume (mL). Lateral and 3 rd ventricles. Ventricular dilatation: ventricular	Mean VV = 43.1	ICV, sulcal CSF volume (total CSF - ventricular CSF)	Age, sex, smoking, hypertension, coronary heart disease, diabetes, BMI, total intracranial volume	WMH volume was positively associated with ventricular volume and ventricular dilatation. WMH volume has a negative association with sulcal CSF volume		

										-	
							volume				
							(VV) /				
							sulcal CSF				
							volume				
West ¹²	2019	Community	62.4 ± 4.5	Longitudinal	Visual	223 (12%)	Visual	281 (15%)	Sulcal size in	3 Cox models	High grade WMH and ventricular
est	2017	cohort	02.1 = 1.5	20 years	rating of	with high	rating of	with high	statistical	1: age, sex,	size are associated with an
		(1881)		(MRI data	changes	grade WMH	change, 1-8	grade	model 3.	race/ethnicity,	increased dementia risk,
		(1001)		only at	in	grade wivini	(normal -	ventricular	model 5.	education APOE	independent of vascular risk
				baseline)	periventri		severe	size.		status	factors
				basenne)				Size.			lactors
					cular and		atrophy).			2: model 1 plus	
					deep		Ventricles			smoking status,	
					white		not			diabetes,	
					matter		specified.			hypertension	
					volume,					3: model 2 + MR	
					1-8		High grade			abnormalities	
					(Barely		≥4			(WMH grade \geq 3,	
					detectable					ventricular size	
					-					\geq 4, sulcal size \geq 3,	
					extensive					presence/absence	
					changes).					infarcts)	
					High						
					grade ≥3						
NORMAL P	RESSUF	RE HYDROCEF	PHALUS								
Alperin ³	2014	iNPH (8)	(72 - 90)	Case series	Volume		Volume		-	-	Gait improved in 5/8 patients who
-					(mL)		(mL).				responded positively to ACZ
					BL 8/8:	32.9 ± 37.1	Lateral				treatment.
							ventricles.	127.7 ± 35.1			PVWMH might reflect
					Change	-5.3 ± 4.0	BL 8/8:				transependymal CSF
					8/8:						
					0,01		Change	-0.5 ± 4.0			
					Change	-6.1 ± 1.9	8/8:	0.5 ± 1.0			
					5/8	0.1 ± 1.9	0/0.				
					(clinically						
					improved						
					http://www.	-0.25 ± 0.5					
)	-0.23 ± 0.3					
					Change						
					Change						
					3/8						l
MULTIPLE			T	T 1 , 1 , 1	NT 1	1	37.1				
Dalton ³¹	2002	CIS (55)	20.5	Longitudinal	Number	-	Volume	Median	-	-	Patients with visible lesions
		Symptomatic	30.5	1 year	of lesions		$(cm^3).$	(range)			(gadolinium) at three months
		(18)	(17-49)				Lateral				showed significant ventricular
							ventricles.				enlargement at one year

Dwyer ⁴	2018	Asymptomat ic (37) Total: 192	31 (18- 50)	Longitudinal	Volume	CIS: 5,157±	BL FU Increase	5.9 (1.2-39.2) 6.3 (1.3-40.6) 0.1 (-0.9 – 7.2)	BL normalised	Two hierarchical	Atrophied lesions likely reflect
		CIS (18) RRMS (126) Progressive (48)	44.8 ± 11 $43.8 \pm$ 11.1 55.5 ± 7.9	5 years	(mm ³). BL Atrophied lesion volume Ventricul ar atrophied volume	4,427.6 RR: 12,170 \pm 12,3 12.0 SP/PP: 21,803 \pm 15,108.6 CIS: 17.6 \pm 17.9 RR: 171.1 \pm 434.3 SP/PP: 298.1 \pm 532.4 CIS:14.1 \pm 17.1 RR:139.8 \pm 348.1 SP/PP: 226.1 \pm 439.9	ventricles. Volume (mL) Baseline % lateral ventricle volume change	CIS: 27.1 ± 8.7 RR: 36.6 ±18.0 SP/PP:42.5±1 8.1 CIS: 12.7 (8.7) RR: 16.3 (15.8) SP/PP: 17.4(17.6)	brain volume and percent change. Not included in analyses.	regression models mentioned, not used for analysis. Lesion volumes and ventricular volumes.	areas that are lost to atrophy and directly replaced by CSF or via atrophy related local movement. Majority of the lesions was periventricular.
Sinnecker ⁵	2020	Total: 127 At baseline: CIS (4) RRMS (97) SPMS (22) PPMS (4)	44 ± 11 (19-66)	Cross- sectional and longitudinal 5 years	Volume (mL) T2w BL T2w FU	6.1 ± 6.7 6.4 ± 7.0	Lateral ventricles. Volume (mL) BL FU	29.7 ±14.2 33.3 ±16.2	Deep grey matter atrophy (striatum, thalamus, globus pallidus), normalised brain volume. Whole brain atrophy (estimation).	Age, gender	New or enlarging T2w lesions next to the ventricles and thalamic atrophy are associated with enlargement of the lateral ventricles, independent of normalised brain volume.

SMALL VES	SMALL VESSEL DISEASE											
Adamo ³² (not yet peer- reviewed)	2020	Total: 166 AD (117) Cognitively normal controls (NC; 49)	71.7 ± 8.5 69.6 ± 7.6	Longitudinal 1 year	Volumes (mm ³) BL PVWMH DWMH	AD: 6602.2 ± 8076.5 NC: $3754.7\pm$ 5522.9 AD: 1015.7 ± 1201 .1 NC: 571.1 ± 6 17.2	Ventricular CSF (cc) BL Growth volumes (cc)	AD: 49 ± 21.5 NC: 34.8 ± 17.8 AD: 8.9 ± 4.9 NC: 4.7 ± 1.5	BL sulcal CSF, supratentorial ICV, brain parenchymal fraction, normal appearing grey matter, normal appearing white matter, right and left hippocampi	Age, sex, education (years), scan interval, baseline MMSE, baseline DRS, ventricular CSF growth	In AD ventricular CSF growth was associated with PVWMH growth. In NC ventricular CSF growth was associated with both PVWMH and DWMH growth. Ventricular growth might be related to periventricular SVD.	
					Growth volume (cc) PVWMH DWMH	AD: 3.1 ± 3.6 NC: 1.6 ± 1.9 AD: 0.6 ± 0.6 NC: 0.4 ± 0.3						
Bjerke ³³	2014	SVD (46; 34 at FU) BL FU	74 ± 5 73 ± 5	Longitudinal 3 years	Volume (mm ³) BL FU	24 ± 18 22 ± 17	Dilation (atrophy) 1- 8 (no atrophy - severe atrophy). Probably lateral ventricles.	4.3 ± 1.8 (BL) 4.1 ± 1.8 (FU)	Ratings sulcal atrophy BL and FU (visual rating). Not used in analyses.	-	WMH volume correlated with ventricular dilation	
Giubilei ⁶	1997	VaD (24) Healthy controls (24)	71.9 ± 6 73.8 ± 5.3	Cross- sectional	Volume (-)	-	Volume (-) Ventricular spaces, not specified	VaD (ratio) 5.1 ± 2 Controls 3.7 ± 1	Subarachnoid space volume but not used in analyse.	Age	In VaD patients the T2 lesion volumes were related to the increase in volume of the ventricles	

Shim ⁷	2015	Controls (14) Systolic hypertension (SH) (11) Carotid stenosis (6) AD (26)	 84.14±5.9 9 84.73±3.2 9 72.33±10. 69 74.88±9.1 8 At time of clinical evaluatio n 	Cross- sectional Pathology (6.79±2.52 years till autopsy)	Total WMH, PVH, DWMH MRI: volumes, normalise d by ICV Tissue: demyelin ation (0- 3)	WMH: 9.39 ±10.56 PVH: 8.30 ± 8.74 DWMH: 1.09 ± 2.09	Ventricular volume (mm ³ , all ventricles; named Ventricular Index, VI) Tissue: atrophy of ventricular ependymal (0-3)	64.43 ± 25.75	-	Sex, years of education, CDR, HIS, hypertension, diabetes Age at clinical evaluation and duration to death	Volume of WMH, PVWMH, DWMH and the VI increased with age. Volume of WMHs and PVWMHs associated with severity of ventricular lining breakdown
Ventricles		<u> </u>	п		1				I		
Apostolova ⁸	2012	Elderly; NC (46) MCI (33) AD (43)	$66.4 \pm 7.8 \\73.1 \pm 6.0 \\75.7 \pm 7.6$	Cross- sectional	-	-	Volumes (mm ³) Lateral ventricles (frontal, temporal and occipital horns); volume	-	-	Age, sex, education	Aging affects the volumes of the hippocampus and lateral ventricles independent of AD pathology
Bastin ¹	2010	Healthy elderly (90)	75.7 ± 5.1 (range 68- 88)	Cross- sectional	-	-	Lateral ventricles; volumes (mm ³)	1443507 (140390)	ICV	Age	Significant correlation between lateral ventricle volume and age after controlling for intracranial volume
Carmichael 9	2007	Community dwelling (377) Cognitively normal (264) MCI (80) Dementia (33)	72.7±3.56 74.4±4.45 77.9±5.51	Longitudinal 4 years	-	-	Ventricle-to -brain ratio (VBR) Volume lateral ventricles/ whole brain (mm ³)	-	-	Age, gender, education level, presence and incidence of cerebral infarcts, dementia category, dementia progression	Lateral ventricles (as measured with ventricle-to-brain ratio) of normal subjects who decline rapidly to dementia are larger than those of normal who remain stable or decline gradually

Manolio ²⁶	1994	Community cohort (303)	65-95	Cross- sectional	Visual changes (0-9; no white matter changes – worse than extensive, confluent changes)	(values mentioned per age group for men and women)	Visual assessment (0-9; small- severe enlargemen t) Probably lateral ventricles	(values mentioned per age group for men and women)	Also visual ratings of sulcal size (sulcal atrophy increased with age)	Age, sex, prior stroke, hypertension, diabetes, white race (ventricles)	Atrophy and WMH are associated with age, prior stroke, and known cardiovascular risk factors.
Sapkota ³⁴	2018	Total: 723 AD (439) MCI (77) VCI (52) FTD (125) DLB (30)	70.8±9.4 71.7±9.3 70.3±8.2 71.1±8.2 66.9±9.1 73.2±8.8	Longitudinal 2 years	Volume (cm ³)	Total 7.1±10.8 AD 7.8±11.1 MCI 3.3±4.8 VCI 13.2±17.5 FTD 4.6±6.8 DLB 7.2±11.6	Volume (cm ³). Ventricular cerebrospin al fluid compartme nt. Not further specified. BL	Total 42.1±20.5 AD 43.4±19.9 MCI 31.4±17.2 VCI 45.6±24.5 FTD 42.5±21.2 DLB 42.7±20.0	Total intracranial volume	Baseline age and apolipoprotein E status	Larger ventricular size at baseline was associated with poorer dementia severity and steeper decline. Association was moderated by early life education and IQ and occupation later in life and is different for sex. Not analysed in relation to WMH. Volumes corrected for ICV
Zheng ³⁵	2019	Healthy adults (54)	43.3 ± 14.9 (21- 71)	Cross- sectional	Volume (-)	-	Volume (-) All ventricles	-	Volumes of total grey matter, white matter, deep grey matter nuclei, hippocampi, not used for analyses	Age	Volume of WMH, lateral ventricle, inferior lateral ventricle, and 3 rd ventricle showed a nonlinear correlation with age
White matte	er hyper	intensities									
Zivadinov ³⁶	2019	RRMS (176)	30.7 ± 7.9	Longitudinal 6 months, yearly for 10 years	Volume (mL) BL FU	7.80 ± 10.50 11.7±12.8	Volume (mL) (ventricles not specified)	41.2±13.6	Mentions cortical volumes and brain volume, not used in analyses	Age, sex, treatment change	Atrophied T2 lesions were mostly located in periventricular regions and cortical gyri borders

(Systematic)	(Systematic) Reviews											
Appelman ¹	2009	General population Cognitive impaired (AD) Cerebrovasc ular risk factors Symptomatic vascular disease (Stroke)	-	Cross- sectional Cross- sectional Cross- sectional Longitudinal	-	-	-	-	-	9/17 studies used covariates. Age, sex, age + sex, age + sex + race or age in combination with vascular risk factors (3/17)	General population: 7/10 studies found relation between WMH and ventricular enlargement of which 1/10 only PVWMH and 1/10 only DWMH. Cognitively impaired: 2/4 found relation between PVWMH and ventricular enlargement, others did not find relation. Several studies also found relation between WML and cortical grey matter atrophy. Cerebrovascular risk factors: 1/2 study found relation between WMH and global atrophy, other study found relation between WMH and ventricular enlargement. Symptomatic vascular disease: 1 study. WMH at baseline correlated with rate of ventricular enlargement.	
De Guio ³⁷	2020	-	-	-	-	-	Total brain atrophy		-	Age, sex, cardiovascular risk factors. CADASIL: age , lacunar volume (1 study) No covariates used in longitudinal studies	Cross-sectional: Lower brain volume + WMH (5 studies), only in upper quartile of WMH. No relationship found in CADASIL patients (4 studies). <u>Longitudinal (7):</u> 4/7 reported larger brain atrophy in patients with larger baseline. 3/7 found no relation	

Bold covariates are significant. ACZ: acetazolamide; AD: Alzheimer's disease; BL: baseline; BMI: body mass index; CIS: clinically isolated syndrome; CSF: cerebrospinal fluid; diaBP: diastolic blood pressure; DLB: Lewy Body dementia; DRS: Dementia rating scale; DWMH: deep white matter hyperintensities; FTD: frontotemporal dementia; GM: grey matter; HDL: high density lipoprotein; ICV: intracranial volume; iNPH: idiopatic normal pressure hydrocephalus; IQR: interquartile range; MCI: Mild cognitive impairment; NPH: normal pressure hydrocephalus; PPMS: primary progressive multiple sclerosis; PVWMH: periventricular white matter hyperintensities; RRMS: Relapse-Remitting Multiple Sclerosis; SPMS: secondary progressive multiple sclerosis; SVD: small vessel disease; sysBP: systolic blood pressure; VCI: vascular cognitive impairment; VaD: vascular dementia; WMH: white matter hyperintensities; WML: white matter lesions

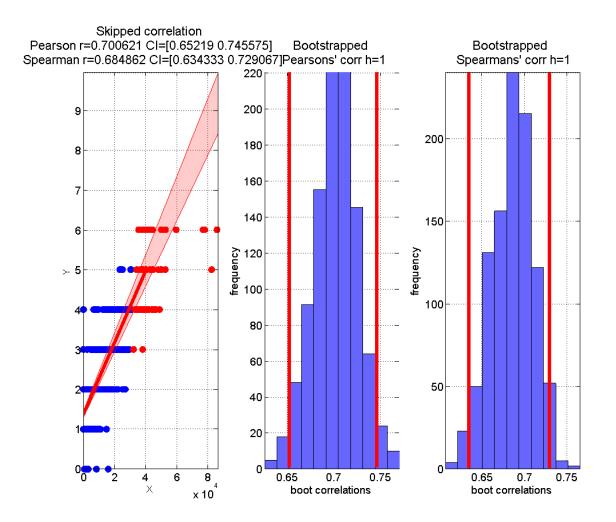


Figure I. Results of skipped correlations between Fazekas scores and WMH segmentation method used at Wave 3 and Wave 4.