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Supplementary Information SI-1. DCCT-based simulation study 

The algorithm we developed is designed to mimic the structure of the DCCT data. As described 
in the paper and presented in Figure 2, we simulate M=5 causal SNPs and K=2 non-independent 
time-to-event traits based on L=3 longitudinal traits:  

 two quantitative traits as measured in N=667 DCCT individuals (HbA1C and SBP) to 
preserve realistic dependencies between/within longitudinal traits 

 one quantitative trait (U) simulated to induce unexplained dependency between the time-
to-event traits.  

We describe in detail the procedure followed to generate such DCCT-based simulated dataset. 
Example R script is available on GitHub (https://github.com/brossardMyriam/Joint-model-for-
multiple-trait-genetics) . 

Assumed underlying system model 

(i) Linear mixed models  
 
Observed HbA1c (l=1)  

𝑌௜(ଵ)൫𝑡௜௝൯ = 𝛽଴(ଵ) + 𝑏௜଴(ଵ)  + ൫𝛽ଵ(ଵ) + 𝑏௜ଵ(ଵ) ൯𝑡௜௝ + 𝛽௚(ଵ)𝑆𝑁𝑃1௜ + 𝜀௜௝(ଵ)  

= 𝑌௜(ଵ)
∗ ൫𝑡௜௝൯ + 𝜀௜௝(ଵ) 

 𝑏௜(ଵ) = ൫𝑏௜଴(ଵ), 𝑏௜ଵ(ଵ)൯ ~𝑁ଶ(0, 𝐷(ଵ)) is the vector of random effects for HbA1c and 𝐷(ଵ) is the 

specified 2x2 positive definite covariance matrix.  
 𝛽(ଵ) = (𝛽଴(ଵ), 𝛽ଵ(ଵ), 𝛽௚(ଵ)) are specified fixed parameter values for the intercept, time and 

SNP effects on HbA1c. 
 𝜀௜௝(ଵ) ~𝑁(0, 𝜎(ଵ)

ଶ ) is the error term, with specified variance 𝜎(ଵ)
ଶ . 

Observed SBP (l=2) 

𝑌௜(ଶ)൫𝑡௜௝൯ = 𝛽଴(ଶ) + 𝑏଴௜(ଶ)  + ൫𝛽ଵ(ଶ) + 𝑏௜ଵ(ଶ) ൯𝑡௜௝ + 𝛽௚(ଶ)𝑆𝑁𝑃5௜ + 𝛽௛(ଶ) 𝑆𝑒𝑥௜ + 𝜀௜௝(ଶ)   

= 𝑌௜(ଶ)
∗ ൫𝑡௜௝൯ + 𝜀௜௝(ଶ) 

 𝑏௜(ଶ) = ൫𝑏௜଴(ଶ), 𝑏௜ଵ(ଶ)൯ ~𝑁ଶ(0, 𝐷(ଶ)) is the vector of random effects for SBP and 𝐷(ଶ) is the 

specified 2x2 positive definite covariance matrix.  
 𝛽(ଶ) = (𝛽଴(ଶ), 𝛽ଵ(ଶ), 𝛽௚(ଶ), 𝛽௛(ଶ)) are the specified fixed parameter values for the intercept, 

time, SNP and sex effects on SBP. 
 𝜀௜௝(ଶ) ~𝑁(0, 𝜎(ଶ)

ଶ ) denotes the error term, with specified variance 𝜎(ଶ)
ଶ . 

Simulated latent risk factor (U) 

𝑈௜൫𝑡௜௝൯ = 𝛽଴(௎) + 𝑏௜଴(௎)  + ൫𝛽ଵ(௎) + 𝑏௜ଵ(௎) ൯𝑡௜௝ + 𝛽௚(௎)𝑆𝑁𝑃3௜ + 𝜀௜௝(௎)  

= 𝑈௜
∗൫𝑡௜௝൯ + 𝜀௜௝(௎)  

 𝑏௜(௎) = ൫𝑏௜଴(௎), 𝑏௜ଵ(௎)൯ ~𝑁ଶ(0, 𝐷(௎)) is the vector of random effects for U and 𝐷(௎) is the 

specified 2x2 positive definite covariance matrix.  
 𝛽(௎) = (𝛽଴(௎), 𝛽ଵ(௎), 𝛽௚(௎)) are specified fixed parameter values for the intercept, the time 

and the SNP effects on U. 
 𝜀௜௝(௎) ~𝑁(0, 𝜎(௎)

ଶ ) is the error term, with specified variance 𝜎(௎)
ଶ . 

  



3/19 

(ii) PH time-to-event models  
 
Simulated Time-to-DR (k=1) 

𝜆௜(ଵ)(𝑡) = 𝜆଴(ଵ)(𝑡)  × 𝑒𝑥𝑝൛𝜂௜(ଵ)  + 𝛼௎(ଵ)𝑈௜
∗(𝑡)ൟ 

With: 
 𝜆଴(ଵ)(𝑡) = 𝜑(ଵ)𝜉(ଵ)(𝜉(ଵ)𝑡)ఝ(భ)ିଵ, where 𝜑(ଵ) and 𝜉(ଵ) are the specified shape and scale 

parameters of the specified Weibull model. 
 𝜂௜(ଵ) = 𝛾௚(ଵ) 𝑆𝑁𝑃2௜ + 𝛼ଵ(ଵ)𝑌௜(ଵ)

∗ (𝑡) +  𝛾௩(ଵ)𝑇1𝐷_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛௜(ଵ) with 𝛾௚(ଵ), 𝛼ଵ(ଵ) and 𝛾௩(ଵ) 

the specified fixed effects of SNP2, 𝑌௜(ଵ)
∗ (𝑡) and T1D duration on DR. 

 𝛼௎(ଵ)is the specified effect of the shared longitudinal risk factor U used to induce 

unexplained dependency between the simulated time-to-T1DC traits. 

Simulated Time-to-DN (k=2) 

𝜆௜(ଶ)(𝑡) = 𝜆଴(ଶ)(𝑡)  × 𝑒𝑥𝑝൛𝜂௜(ଶ) +  𝛼௎(ଶ)𝑈௜
∗(𝑡) ൟ       

With: 
 𝜆଴(ଵ)(𝑡) = 𝜑(ଶ)𝜉(ଶ)(𝜉(ଶ)𝑡)ఝ(మ)ିଵ, where 𝜑(ଶ) and 𝜉(ଶ)  the specified shape and scale 

parameters of the specified Weibull model. 
 𝜂௜(ଶ) = 𝛾௚(ଶ) 𝑆𝑁𝑃4௜ + 𝛾′௚(ଶ) 𝑆𝑁𝑃5௜ + ∑ 𝛼௟(ଵ) 𝑌௜(௟)

∗ (𝑡)ଶ
௟ୀଵ + 𝛾௩(ଶ)𝑇1𝐷_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛௜(ଶ)with 

𝛾௚(ଶ), 𝛾′௚(ଶ), 𝛼ଵ(ଵ), 𝛼ଵ(ଶ) and 𝛾௩(ଶ) are the specified fixed effects of SNP2, 𝑌௜(ଶ)
∗ (𝑡) and 

T1D duration on DR. 
 𝛼௎(ଶ) is the specified effect of the shared longitudinal risk factor U used to induce 

unexplained dependency between the simulated time-to-T1DC traits. 

Procedure for data generation under the causal genetic scenario specified in Figures 2 
and 3  

Given the specified parameter values for each longitudinal sub-model:  𝛺(ଵ) =

(𝛽(ଵ)
ᇱ , 𝐷(ଵ),  𝜎(ଵ)

ଶ ) ,  𝛺(ଶ) = (𝛽(ଶ)
ᇱ , 𝐷(ଶ),  𝜎(ଶ)

ଶ ) and  𝛺(௎) = (𝛽(௎)
ᇱ , 𝐷(௎), 𝜎(௎)

ଶ ); and each time-to-event sub-

model: Γ௞ = ൫𝜑(௞),𝜉(௞), 𝛾௚(௞), 𝛼ଵ(௞), 𝛼ଶ(௞), 𝛾௩(௞), 𝛼௨(௞)൯, as well as specified minor allele frequencies 

vector 𝑝 = (𝑝ଵ, … , 𝑝௠, … 𝑝ெ) for the M causal SNPs, the proposed simulation procedure proceeds 
in three steps. In Step 1, we first simulate the longitudinal values for U for the N DCCT individuals. 
In Step 2, we simulate the R replicates of M genotype data based on observed/simulated 
longitudinal traits for DCCT individuals. In Step 3, we simulate R replicates of non-independent 
time-to-event traits for all N DCCT individuals using SNPs and the trajectories for observed 
(HbA1c, SBP) and simulated (U) longitudinal risk factors from Steps 1 & 2 data.  

 Step 1: Simulation of U 

For each individual i, we generate 𝑈௜~𝑁௡೔
൫𝑋௜(௎)𝛽(௎), 𝑍௜(௎)𝐷(௎)𝑍௜(௎)

ᇱ + 𝜎(௎)
ଶ 𝐼௡೔

൯ where 𝑋௜(௎) = (1, 𝑡௜) 

and 𝑍௜(௎) = (1, 𝑡௜) are the specified design matrices for the fixed and random effects and  𝛺(௎) =

(𝛽(௎)
ᇱ , 𝐷(௎), 𝜎(௎)

ଶ ) are the specified parameter values.  
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 Step 2: Simulation of the genetic data 

Causal SNPs with indirect effects 

We simulate genotypes for SNP1, SNP3 and SNP5 (with MAF vector 𝑝௠, 𝑚 𝜖 {1, 3, 5}) for each 
individual i (1 ≤ 𝑖 ≤ 𝑁) and each replicate r (1 ≤ 𝑟 ≤ 𝑅) under Hardy-Weinberg and linkage 
equilibrium assumptions. Particularly, for each SNPm, we first draw genotype 𝑔௜ for each 
individual i from the genotype vector g = (0, 1, 2) under a multinomial distribution with conditional 
genotype probabilities (𝜋଴௜ , 𝜋ଵ௜ , 𝜋ଶ௜), where each 𝜋௚௜ is calculated given the following: 

𝜋௚௜ = 𝑃(𝑆𝑁𝑃௜ = 𝑔௜| 𝜓௜) =
𝑃(𝜓௜, 𝑆𝑁𝑃௜ = 𝑔௜)

𝑃(𝜓௜)
 

=
𝑃(𝜓௜|𝑆𝑁𝑃௜ = 𝑔௜)𝑃(𝑆𝑁𝑃௜ = 𝑔௜)

𝑃(𝜓௜)
 

=
𝑃(𝜓௜|𝑆𝑁𝑃௜ = 𝑔௜)𝑃(𝑆𝑁𝑃௜ = 𝑔௜)

∑ 𝑃(𝜓௜|𝑆𝑁𝑃௜ = 𝑔)𝑃(𝑆𝑁𝑃௜ = 𝑔)ଶ
௚ୀ଴

 

With:  

 𝜓௜ = ൞

(𝑌௜(ଵ)ห𝑆𝑁𝑃1௜ = 𝑔௜,  𝑡௜,  𝛺(ଵ)൯ for SNP1 

൫𝑌௜(ଶ)ห𝑆𝑁𝑃2௜ = 𝑔௜ ,  𝑡௜,  𝛺(ଶ)൯ for SNP2 

൫𝑈௜ห𝑆𝑁𝑃3௜ = 𝑔௜, 𝑡௜,  𝛺(௎)൯ for SNP3 

 

 𝑃(𝜓௜(𝑡௜)|𝑆𝑁𝑃௜ = 𝑔௜) denotes the probability density function of the multivariate distribution 

for 𝜓௜, with 𝜓௜~𝑁௡೔
൫𝑋௜𝛽, 𝑍௜𝐷𝑍௜(௦)

ᇱ + 𝜎ଶ𝐼௡೔
൯ under the specified underlying linear mixed 

model. Here, 𝑋௜ and 𝑍௜ denote the design matrices of the corresponding fixed and random 
effects. 𝐷 is the covariance matrix of the random effects and 𝜎ଶ, the variance of the error 
term of the corresponding longitudinal trait 𝜓௜ 𝜖 {𝑌௜(௟), 𝑈௜}. 

 Unconditional genotype probability 𝑃(𝑆𝑁𝑃௜ = 𝑔) is specified by allele frequency of SNPm 
(𝑝௠) under Hardy-Weinberg equilibrium, with 𝑃(𝑆𝑁𝑃௜ = 0) = (1 − 𝑝௠)ଶ, 𝑃(𝑆𝑁𝑃௜ = 1) =

2𝑝௠(1 − 𝑝௠) and 𝑃(𝑆𝑁𝑃௜ = 2) = 𝑝௠
ଶ. 

Causal SNPs with direct effects 

For SNP2 (𝑝ଶ) and SNP4 (𝑝ସ) with direct effects on time-to-event trait k, we simulate genotypes 
for each individual i by drawing R genotypes from the multinomial distribution with genotype 
probabilities (𝜋଴, 𝜋ଵ, 𝜋ଶ), where under the Hardy-Weinberg Equilibrium assumption 𝜋଴ =

(1 − 𝑝௠)ଶ, 𝜋ଵ = 2𝑝௠(1 − 𝑝௠) and 𝜋ଶ = 𝑝௠
ଶ. As opposed to the simulation of the SNPs with 

indirect effects, the simulation of SNPs with direct effects depend on population probabilities that 
do not vary among individuals. 

 Step 3: Simulation of the non-independent time-to-event traits  

The K=2 non-independent time-to-T1DC traits (𝑇௜(௞), 𝛿௜(௞), with k=1, 2) are generated using the 

specified hazards functions 𝜆௜(௞)(𝑡) that share 𝑈௜
∗(𝑡) as an unmeasured longitudinal risk factor 

used to induce unexplained dependency. Specifically, for each individual i of each data replicate 
r from Stage 1: 

1. We sample a censoring time 𝐶௜ from a Uniform distribution on [0, 𝑡௡೔
], where 𝑡௡೔  denotes 

the time where the last measurement is collected for individual i.  
2. For each type of event k with specified parameters Γ(௞): 
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a. We compute the uncensored event times 𝑇௜(௞)
∗  by calculating the inverse of the 

cumulative of the hazard function using the Brent univariate root-finding method1,2.  
b. We generate the right-censored event time 𝑇௜(௞) and event indicator 𝛿௜(௞), as 𝑇௜(௞) =

min൫𝑇௜(௞)
∗  , 𝐶௜൯ and set 𝛿௜(௞) to 1 if 𝑇௜(௞) occurs before or at 𝐶௜ or 0 otherwise (𝛿௜(௞) =

𝐼൫𝑇௜(௞)
∗ ≤ 𝐶௜൯). 

3. Repeat 1 and 2 N times.  
4. Repeat 1 to 3 R times.  

DCCT datasets used for the simulation study and specified parameters 

We use N=667 individuals from the DCCT Conventional treatment group with longitudinal HbA1c 
(𝑌௜(ଵ)) and SBP (𝑌௜(ଶ)) values as well as baseline covariates (sex and T1D duration) measured for 

each individual i. We exclude all longitudinal values prior to the 6 months visit due to a mild non-
linear time trend observed for HbA1c (screening effect) at the beginning of the DCCT study. For 
a few individuals, we replace missing measures for either HbA1c or SBP by their predicted values 
from the linear mixed model ignoring the SNP variable. We use mean centered HbA1c and SBP 
measures.  

Specified parameter values  𝛺(ଵ),  𝛺(ଶ),  𝛺(௎)  for the longitudinal models and Γ(ଵ), Γ(ଶ) for the time-

to-event traits models, as well as for the MAFs of the M SNPs (p) for the causal scenario of Figure 
2 are summarized in Table 2 and in Table S1. Particularly, we specify SNP effects in 
 𝛺(ଵ),  𝛺(ଶ), Γ(ଵ), Γ(ଶ) and MAFs according to the DCCT Genetics Study and/or T1DC literature. For 

the non-SNP parameter values in  𝛺(ଵ),  𝛺(ଶ), we use the estimates of the linear mixed models 

fitted without the SNP in DCCT individuals. We specify non-SNP parameter values in  𝛺(௎) =

(𝛽(௎)
ᇱ , 𝐷(௎), 𝜎(௎)

ଶ ) and Γ(ଶ). Finally, we specify the shape and scale parameters in Γ(ଵ) and Γ(ଶ) to 

generate ~54% DR and ~25% DN events.  

Procedure to simulate SNPs under the global null genetic scenario  

For the genetic scenario under the global null hypothesis, where none of the SNPs is associated 
with any traits, we simulate M SNPs with the exact same MAF vector as for the causal SNPs from 
Figures 2. These SNPs are simulated independently of the longitudinal and time-to-event traits 
with the same procedure as previously described to generate the SNPs with direct effects.  
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Supplementary Information SI-2. Analysis of the DCCT Genetics Study data 

The Diabetes Control and Complications Trial (DCCT) data 

The DCCT data was a randomized-controlled trial that demonstrated intensive insulin therapy 
could prevent and/or delay progression of long-term T1DC.3 A total of 1,441 T1D patients were 
recruited between 1983 and 1993 in two cohorts: a primary prevention cohort (726 patients with 
a short duration of diabetes (1-5 years), exhibiting normal albuminuria (Albumin Excretion Rate 
(AER) <40 mg/day) and without evidence of retinopathy); a secondary intervention cohort (715 
patients with diabetes duration of 1-15 years, with AER<200 mg/day and non-proliferative 
retinopathy). Members of each cohort were randomly assigned to receive either conventional or 
intensive treatment and were followed over scheduled visits for the development of complications. 
Due to significant outcome differences between intensive and conventional treatment groups, the 
DCCT was stopped prematurely in 1993 (administrative censoring). At the DCCT closeout visit, 
patients had a mean follow-up time of 6.5 years (range 3 to 9), 99% of the patients completed the 
study and more than 95% of all scheduled examinations were completed.3  

Genome-wide genotyping in DCCT subjects was performed subsequently using Illumina 1M and 
HumanCoreExome Bead Arrays (Illumina, San Diego, CA, USA) and standard quality controls 
procedures were applied to individuals and genetic markers4,5. In this study, we use genotyped 
individuals with the HumanCoreExome Bead Array with ungenotyped autosomal SNPs imputed 
using 1000 Genomes6 data phase 3 (v5) and minimac37 (v.1.0.13), as previously described5. 
Largely because of differences in HbA1c between treatment groups since the goal of intensive 
therapy was to reduce HbA1c in non-diabetic range, our study focuses on N=667 unrelated 
individuals of European descent ancestry from the conventional treatment group. In the 
conventional treatment group, longitudinal measurements for HbA1c and SBP were both collected 
at up to 39 quarterly visits during DCCT follow-up while DR and DN events were collected at 
annual and semi-annual visits respectively.  

We use time to mild DR and time to persistent microalbuminuria, for DR and DN outcomes 
respectively, as previously defined in the motivating GWAS of HbA1c4 (see Table SI-2b). 

Table SI-2b. Time-to-event traits analyzed in the DCCT Genetics Study  

Time-to-
event 
outcome 

Name Outcome definition 

DR Time to mild DR Time from DCCT baseline to mild non-proliferative 
diabetic retinopathy (EDTRS step 4, patient level 35/<35)  

DN Time to persistent 
microalbuminuria 

Time from DCCT baseline to the first of two consecutive 
visits with Albumin Excretion Rate >30 mg/day 

Out of the 667 DCCT individuals, we analyze N=516 subjects with genotype data, without mild 
retinopathy at DCCT baseline (or prior) or without DN event at DCCT baseline. By the time of the 
DCCT close-out visit, 297 (57.6%) experienced a DR event, 61 (11.8%) a DN event, including 47 
subjects (9.1%) that experienced both events. 
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Selection of the 307 candidate SNPs from the literature 

We identified 322 independent SNPs (r2<0.8, MAF ≥ 5% in European ancestry individuals) 
associated with HbA1c, SBP, DR and/or DN outcomes as reported in the literature4,9–14. For 
HbA1c, DR or DN we selected SNPs reported at the suggestive significance level of 𝑃∗=10-6 by 
GWAS in T1D individuals or SNP associations reported by GWAS conducted in T2D individuals 
or general populations and confirmed in T1D individuals of European ancestry at the nominal 
significance level4,9–14. For the SBP SNP list, we selected surrogate SNPs reported in the largest 
meta-analysis conducted in the general population of European ancestry at the conventional 
genome-wide significance level 𝑃∗=5x10-8 because large-scale GWAS results of SBP in 
individuals with diabetes were lacking at the time of our analyses. At total, 307 biallelic SNPs with 
imputation quality score R2 ≥ 0.50 and MAF ≥ 5%, and after pruning on linkage disequilibrium 
(r2<0.8) using LDlink8 in 1000 Genomes phase 3 European-ancestry population were analyzed in 
DCCT (See Table S8 for a full list of the SNPs).  

Analysis of the DCCT data 

We fit JM, CM-obs for each SNP, one at a time, including baseline covariates (age at diagnosis, 
T1D duration, cohort, gender, and year of entry in the DCCT study). For the covariate year of 
entry in DCCT, we group the patients into four consecutive strata with homogeneous number of 
individuals (i.e. 1983-1984, 1985-1986, 1987, using 1988-1989 as the reference category). In 
Stage 1 of JM, bivariate longitudinal mixed-effects models for HbA1c and SBP are fitted using all 
available measures at quarterly visits from DCCT baseline to the close-out visit; HbA1c and SBP 
trajectories are fitted for each individual. In Stage 2 of JM, trajectory values interpolated to the 
start time of each risk interval are then used as time-varying covariates in the Cox PH frailty 
model. Time-to-event sub-models are fitted using annual records of DR and DN events. Because 
the DR and DN outcomes were assessed with different frequency of visits in DCCT (semi-annually 
for DR and annually for DN), we assign each DR event to the one-year interval visit that included 
the observed time-to-event. We use B=500 bootstraps of DCCT individuals to compute empirical 
variance-covariance matrices for parameters estimated by the joint model and CM-obs.  

Association structures for HbA1c 

Given established cumulative effects of HbA1c on T1DC traits15,16, we compare joint model results 
obtained with contemporaneous HbA1c value with joint model results obtained using time-
weighted cumulative and updated cumulative mean HbA1c effects on T1DC15,16. Under each 
cumulative association profiles, the time-to-event sub-models are fitted by substituting the fitted 
trajectory of the HbA1c by a summary function of the prior fitted values from DCCT baseline up 
to the beginning of each risk interval (Table SI-2). While the updated mean association structure 
assumes an equal weighting for all fitted HbA1c measures at prior visits from baseline, the time-
weighted cumulative HbA1c effect association structure assumes different weights for each visit. 
Here, we use a time-weighted formulation that considers all HbA1c values from DCCT baseline 
up to 5 years prior to the start of each risk interval following previous DCCT data analysis15. We 
extracted weights from this study15 (Figure SI-2) and recalibrated such that the sum of the weights 
is equal to 1 for each risk interval (Table SI-2).  
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Table SI-2. Three alternative association structures for HbA1c effects on T1DC traits in 
DCCT 

Parametrization Time-dependent association structure in the two-stage approach 
Contemporaneous 
(current value) 

𝑓ଵ(௞)(𝑌ప(ଵ)
∗෢ ൫𝑡௜௝൯) =  𝑌ప(ଵ)

∗෢ ൫𝑡௜௝൯ 

Updated 
cumulative mean 𝑓ଵ(௞)(𝑌ప(ଵ)

∗෢ ൫𝑡௜௝൯) =
1

𝑗
 ෍ 𝑌ప(ଵ)

∗෢ ൫𝑡௜௝൯

௝

௞ୀଵ

 

Time-weighted 
cumulative 

𝑓ଵ(௞) ቀ𝑌ప(ଵ)
∗෢ ൫𝑡௜௝൯ቁ =

⎩
⎪
⎨

⎪
⎧

 ෍ 𝑤௞𝑌ప(ଵ)
∗෢ ൫𝑡௜(௝ି௞)൯

௝

௞ୀଵ

 𝑖𝑓 𝑡௜௝ < 5

 ෍ 𝑤௞𝑌ప(ଵ)
∗෢ ൫𝑡௜(௝ି௞)൯ 

௄

௞ୀଵ

 𝑖𝑓 𝑡௜௝ ≥ 5

 

 
Here, we use K=5 to account for the fitted HbA1c values up to 5 years 
prior to the current time point 𝑡௜௝ , with weights 𝑤௞ based on Lind et al15 

(see Figure SI-2). 
,  
 

 
  

Figure SI-2. Relative 
contribution of past HbA1c 
measures to the risk of 
mild retinopathy at current 
time point, based on Lind 
et al15. The X axis 
represents the time (in 
year) since the current 
HbA1c measurement. 
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Supplementary Information SI-3. Notes on a multi-trait SNP association test for SNP 
effects estimated under the proposed joint model framework 

Although our primary aim is to develop inference methods to distinguish among direct and/or 
indirect SNP associations with each time-to-event trait, the multi-trait aspect of the joint model 
also lends itself to multi-trait SNP association testing for SNP discovery. In this section, we present 
a multi-trait SNP association test derived from the parameters of the joint model and report test 
performance in the DCCT-based simulated data and results in application to DCCT study. 

Multi-trait SNP association test 

The proposed multi-trait SNP association test, assesses if at least one of the SNP has a non-null 
effect on any of the L+K traits (ie at least one 𝛽௚(௟) 𝑜𝑟 𝛾௚(௞) ≠ 0, 1 ≤ 𝑙 ≤ 𝐿 and k ≤ 𝑙 ≤ 𝐾 ) against 

the global null hypothesis that all the SNPs have a null effect on the traits (ie all L+K traits 𝛽௚(௟) =

 𝛾௚(௞) = 0, with 1 ≤ 𝑙 ≤ 𝐿 and k ≤ 𝑙 ≤ 𝐾). This test is a generalized Wald statistic constructed from 

the SNP effects vector 𝜑௚=(𝛽௚, 𝛾௚) and its bootstrap covariance matrix Σ௚, 𝑊ఝ೒
= 𝜑௚ෞ ்Σ௚

ିଵ𝜑௚ෞ  which 

is assumed to asymptotically follows a 𝜒ଶ distribution with L+K df. 

Performances of the multi-trait SNP association test for SNP discovery 

We evaluate the statistical performance (power, type I error) of the multi-trait SNP association 
test from the joint models (JM-cmp, JM-mis), in comparison to the results from marginal linear 
mixed models and Cox PH models (referred as MM). Under the global null hypothesis, the multi-
trait SNP association test does not show any marked departure from its expected distribution (𝜒ଶ 
with four degrees of freedom), as shown in the following Quantile-Quantile plot (Figure SI-3a). 
Furthermore, type I error under the global null genetic scenario appears well controlled, 
respectively: 0.048 at 𝑃∗ = 0.05  and 0.0097 at 𝑃∗ = 0.01.  

 

Under the causal genetic scenario, when the JM is fully specified (JM-cmp), as shown in Figure 
SI-3b, the power of the proposed multi-trait SNP association test appears higher (or similar) than 
the power based on the minimum P-value from MM in all scenarios of SNP associations 
(MM_MinP uncorrected and MM_MinP_cor corrected for the four traits analyzed separately 
assuming that the traits are independent, which is unrealistic but represents an extreme case of 
conservative P-value). When the joint model is mis-specified (JM-mis), the multi-trait SNP 

Figure SI-3a. Quantile-Quantile 
plot of the multi-trait SNP 
association test p values (JM-
cmp), assessed under the global 
null genetic scenario. P-values for 
all SNPs, were pooled, yielding to 
R=5000 replicates. 
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association test is still as or more powerful than the MM_MinP for all causal SNPs except for 
SNP2 where the power reduction is more pronounced at more stringent significant levels (𝑃∗ ≤

10ିହ). Multi-trait association results for SNP3 also show attenuated power compared to the 
uncorrected MM_MinP; but its power remain higher than the power of the conservative 
MM_MinP_cor. Except for SNP5 that has both direct and indirect effects on time-to-DN, the other 
simulated causal SNPs have either a single direct or a single indirect effect on the time-to-event 
traits; the latter do not represent scenarios of SNP associations where we would expect large 
power improvement from the proposed multi-trait SNP association test (largest power 
improvement would be expected for SNPs with effects on multiple traits).  

Figure SI-3b. Power of the multi-trait SNP association tests (Pmult) under the joint models 
(JM-cmp, JM-mis) to detect a SNP association, compared to the minimum SNP P-value 
from the marginal models (MM) fitted separately for each trait corrected and uncorrected 
for the number of traits tested (Min_P_Cor and MinP). Power is assessed using R=1000 
replicates of N=667 DCCT subjects simulated under the causal genetic scenario from Figure 2. 

 

Application of the multi-trait SNP association test in DCCT 

Out of the 307 SNPs analyzed in DCCT individuals with the joint model, we identify two SNPs 
reaching the Bonferroni corrected significance threshold for the effective number of SNPs tested 
(𝑃∗=1.7x10-4, Figure SI-3c A). These SNPs are rs10810632 (BNC2, Pmult=9.1x10-8) and 
rs1358030 (nearby SORCS1, Pmult=3.4x10-7) and are among the SNPs reported associated with 
HbA1c and time-to-T1DC traits in the previous GWAS of HbA1c in the Conventional treatment 
group of DCCT4. We obtained similar conclusions with the two other compared association 
structures for HbA1c on T1DC (Figure SI-3c, panels B and C).  
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Figure SI-3c. Mirror-plots of the multi-trait SNP association test P-values (-log10) from the 
joint model using alternatively each association structure for HbA1c effects on time-to-
T1DC traits. For each Manhattan plot, the upper panel represents the P-values (-log 10) of the 
multi-trait SNP association test, and the lower panel represents the results of the minimum P-
value from the separate analysis of each trait, included for comparison. On each upper panel, the 
horizontal lines represent the significance levels (in red: Bonferroni-corrected thresholds 
(𝑃∗ =1.7x10-4) and in grey the nominal significance levels). On each lower panel, the grey dashed 
lines represent the nominal significance and Bonferroni-corrected significance levels for the 
effective number of SNPs tested and the Bonferroni-corrected significance level further corrected 
for the four traits tested (under the assumption of independent traits). 
 

(see Figure on next page) 
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A. Contemporaneous HbA1c effects  

 

B. Updated cumulative mean HbA1c effects 

 

C. Time-weighted cumulative HbA1c effects.  

  

 

rs10810632 
rs1358030 

rs10810632 rs1358030 

rs10810632 
rs1358030 

rs10810632 rs1358030 

rs10810632 rs1358030 

rs10810632 
rs1358030 
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SNP2 and SNP4 having direct associations on DR and on DN, assessed using R=1000 replicates 
of N=667 DCCT subjects simulated under the causal genetic scenario from Figure 2 
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