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Summary 

Environmental exposures during early life play a critical role in life-course health, yet the 

molecular phenotypes underlying environmental effects on health are poorly understood. In the 

Human Early Life Exposome (HELIX) project, a multi-centre cohort of 1,301 mother-child pairs, 

we associated individual exposomes consisting of >100 chemical, physical and lifestyle 

exposures assessed in pregnancy and childhood, with multi-omics profiles (methylome, 

transcriptome, metabolome and proteins) in childhood. We identified 1,170 associations, 249 in 

pregnancy and 921 in childhood, which revealed potential biological responses and sources of 

exposure. The methylome best captures the persistent influence of pregnancy exposures, 

including maternal smoking; while childhood exposures were associated with features from all 

omics layers, revealing novel signatures for indoor air quality, essential trace elements, 

endocrine disruptors and weather conditions. This study provides a unique resource 

(https://helixomics.isglobal.org/) to guide future investigation on the biological effects of the early 

life exposome.  

 

Keywords 

Exposome, environmental exposures, early-life, childhood, pregnancy, multi-omics, methylome, 

transcriptome, miRNA, metabolome 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


3 
 

Introduction 

A large proportion of environmental risk factors remain unknown or poorly defined, although 

their contribution to disease risk is estimated to be 70–90% (Lim et al., 2012; Rappaport and 

Smith, 2010). More than a decade ago, the term “exposome” was coined to encompass all 

environmental factors (i.e. non-genetic factors) to which humans are exposed throughout the 

life-course (Wild, 2005). Historically, environmental health studies focused almost exclusively on 

single exposure factors, such as air pollution, lead, or pesticides. The central tenet of the 

exposome concept is a call for a holistic and systematic approach to assessing the impacts of 

environment on health. Moreover, the exposome includes not only external exposures, but also 

the internal biological responses to these exposures through the interrogation of high-

dimensional molecular data (Niedzwiecki et al., 2019; Vermeulen et al., 2020; Wild, 2005, 

2012). 

Of particular interest is the early detection of physiological changes at the molecular level 

related to environmental exposures before the manifestation of clinical symptoms in healthy 

populations. Such information may support the biological plausibility of environment-health 

associations in population studies, help to understand toxicological mechanisms or elucidate 

how multiple exposures may be grouped based on their common influence on biological 

pathways (e.g. inflammation) or their source of exposure (e.g. diet), help to identify exposure 

biomarkers to predict current and past exposures, and will ultimately contribute to preventing 

environmental health-related disease. Integrative personal omics profiling studies, gathering 

high-throughput data on multiple molecular layers, have demonstrated that personal molecular 

profiles may be particularly useful to assess disease risk, detect early preclinical conditions and 

initiate preventive strategies (Contrepois et al., 2020; Li-Pook-Than and Snyder, 2013; 

Schüssler-Fiorenza Rose et al., 2019). 

Fetal and childhood development has life-long consequences and is critical for many chronic 

diseases including obesity, cardiometabolic diseases (Franks et al., 2010; Hardy et al., 2015; 

Juonala et al., 2011), attention-deficit and hyperactivity disorders (ADHD) (Arango et al., 2018) 

and lung function (Bui et al., 2018). Therefore, early life is a particularly important period to 

study the early biological triggers of disease: exposures during these developmentally 

vulnerable periods may have pronounced effects at the molecular level that may remain 
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clinically undetectable until adulthood.  

The molecular mechanisms through which early-life environmental exposures may impact birth 

outcomes and long-term health in humans have primarily been studied through the lens of 

epigenetics. It is thought that the epigenome orchestrates cellular responses to environmental 

perturbations and provides cell memory and plasticity (Cavalli and Heard, 2019). The prenatal 

exposure most studied has been maternal smoking during pregnancy. Offspring of smoker 

mothers have altered methylation patterns at birth and at older ages (Joubert et al., 2016), 

which have been linked to later diseases (Bauer et al., 2016) and used to develop epigenetic 

biomarkers of past exposure (Rauschert et al., 2020; Reese et al., 2017). To a lesser extent, 

other diverse exposures, from metals to socio-economic factors, have also been linked to 

differential methylation and are catalogued in public databases (Li et al., 

2019)(http://www.ewascatalog.org/). Although epigenetic marks regulate gene transcription and 

thus the proteome, the relationships between these and the exposome are less studied 

(Everson and Marsit, 2018). The metabolome, which can reflect physiological responses and 

microbiome activity as well as the direct internalization of exposures, has received particular 

attention in exposome research (Athersuch, 2012; Gauglitz et al., 2020; Niedzwiecki et al., 

2019; Rappaport et al., 2014). However, there is still a lack of large-scale studies where multi-

omics data have been contextualised and integrated to study environmental health in early life. 

In this work, we aimed to associate the personal early life exposome, measured in 1,301 

mother-child pairs of the Human Early Life Exposome (HELIX) project, with deep molecular 

phenotype data assessed in childhood and defined by the blood methylome and transcriptome, 

plasma proteins, and serum and urinary metabolites (Maitre et al., 2018a). By systematically 

documenting all associations between the exposome and the molecular phenotypes, we provide 

a unique resource (https://helixomics.isglobal.org/) for the identification of novel exposure 

biomarkers and early biological effects during developmentally vulnerable life periods.  

 

Results 

Building the early life exposome and measuring multi-omics phenotypes in children 

We assessed a broad spectrum of environmental exposures in 1,301 mother–child pairs from 

the HELIX project, a multi-centre longitudinal population-based cohort study in 6 locations in 
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Europe (Spain, UK, France, Lithuania, Norway and Greece) (Figure 1A; Supplemental 

Experimental Procedures) (Maitre et al., 2018a).  

Exposure assessment tools included mass-spectrometry based measurement of biomarkers of 

chemical exposure in urine and blood, exposure monitors, remote sensing and geospatial 

methods, and self-reports to trained interviewers (Figure 1B; Supplemental Experimental 

Procedures). The early life exposome consisted of 91 environmental exposure in pregnancy 

and 116 in childhood, covering 18 exposure families: meteorological factors, proximity to natural 

spaces, indoor and outdoor air pollution, built environment, road traffic, noise, water disinfection 

by-products, tobacco smoking, lifestyle factors (diet, physical activity), social and economic 

capital, essential minerals and chemical pollutants (non-essential metals, organochlorines, 

organophosphate pesticides, polybrominated diphenylethers, perfluoralkyl substances, phenols 

and phthalates). Exposure levels and correlation patterns between exposure variables in the 

HELIX cohort are described further elsewhere (Haug et al., 2018; Robinson et al., 2018; 

Tamayo-Uria et al., 2019). 

For these same children, we performed in-depth multi-omics molecular phenotyping, including 

measurement of blood DNA methylation (450K, Illumina), blood gene expression (HTA v2.0, 

Affymetrix), blood miRNA expression (SurePrint Human miRNA rel 21, Agilent), plasma proteins 

(Luminex), serum metabolites (AbsoluteIDQ p180 kit, Biocrates), and urinary metabolites (1H 

NMR spectroscopy) (Figure 1C; Supplemental Experimental Procedures). Around 91% of 

the children had molecular data from at least 4 of the omics platforms. While blood DNA 

methylation and transcriptomics were measured genome-wide, the other omics followed a semi-

targeted or targeted approach. Details of the plasma proteins and the urinary and serum 

metabolomic analyses can be found elsewhere (Lau et al., 2018; Vives-Usano et al., 2020).  

 

The methylome best captures the persistent influence of pregnancy exposures, while 

childhood exposures are associated with features from all omics layers  

We first systematically tested the association between each exposure variable and each 

molecular feature (Exposome-omics-wide association analysis, ExWAS) by fitting linear 

regression models adjusted for cohort, child’s age, sex, zBMI, ancestry, maternal education and 

omics specific covariates (Figure 1D; Supplemental Experimental Procedures). Out of ~10 M 
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tested associations, 1,170 were statistically significant after multiple-testing correction 

considering the number of molecular features within each omics platform (see Supplemental 

Experimental Procedures; Table S1). Significant associations are displayed by family of 

exposure in Miami plots in Figure 2A1 and 2B1. All results can be viewed in the HELIX-exp-

omics web catalogue: https://helixomics.isglobal.org/ (for genome-wide assays only results with 

p-values <0.01 were included). 

Associations between the pregnancy exposome and molecular phenotypes totalled 249, 

including 52 unique exposures and 209 unique molecular features, while the 921 associations 

with the childhood exposome corresponded to 84 unique exposures and 454 unique molecular 

features. The pregnancy exposome was predominantly associated with child DNA methylation 

(70% of associations observed) (Figure 2A2); in contrast, the childhood exposome was 

associated with all molecular layers, with the serum metabolome showing the highest number of 

associations (43% of associations observed) (Figure 2B2). The top 10 exposures in terms of 

numbers of associations included essential elements, heavy metals, tobacco smoking, 

parabens, and phthalates for the pregnancy exposome (Figure 2A3), and essential elements, 

heavy metals, persistent pollutants (PFASs and PCBs) and meteorological factors for the 

childhood exposome (Figure 2B3).  We observed fewer omics associations for outdoor air 

pollution, built environment, road traffic, noise and water disinfection by-products (Figure 2).  

 

Exposome-omics networks reveal distinct exposure clusters and the different nature of 

their underlying molecular signatures  

Given the large number of significant associations, we visualized the results in two networks for 

the pregnancy and childhood exposomes (Figures 3 and 4; Supplemental Experimental 

Procedures). In these networks, an exposure and a molecular feature were connected 

(Nnodes=538, either molecular features or exposures) if their association was statistically 

significant (Nedges=1,170) and only connected components with at least two molecular features 

were displayed. The pregnancy exposome network was mostly composed of CpGs and very 

disconnected. It contained 3 main connected components (referred to as clusters named as 

“preg#...”), the largest of which contained less than 30% of all nodes (Figure 3; Table S2). This 

lack of connectivity can be explained by the wide-spacing along the genome of the CpG sites 
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captured with the 450K array and their low correlation. These 3 clusters varied greatly by their 

size, their number of exposures and the type of omics composing them (Table 1). 

The childhood exposome network was more diverse in terms of omics features represented and 

the level of interconnection, with the biggest connected component containing 90% of all nodes 

(Figure 4; Table S2). This high connectivity highlights the correlated nature of the serum and 

urine metabolome. Within this network, we identified 11 interconnected subcomponents (i.e. 

clusters, named as “childhood#...”) using an unsupervised structural cluster analysis (Table 1) 

(Newman and Girvan, 2003; Su et al., 2010).  

In summary, over the two exposome periods, we found 14 major exposome-omics clusters 

spanning many diverse exposure families. The clusters reveal both potential biological 

pathways and potential routes or sources of exposure, as further described below. 

 

Maternal smoking shows robust and long-lasting effects in the child methylome and we 

detect novel signatures for prenatal cadmium 

Biological signatures for smoking have been relatively well documented, particularly for 

methylation signatures: maternal smoking during pregnancy has been associated with altered 

patterns of blood DNA methylation at birth (Bauer et al., 2016; Joubert et al., 2012, 2016), and 

some loci have shown persistent dysregulation until childhood (Joubert et al., 2016; Richmond 

et al., 2015), adolescence (Lee et al., 2015; Richmond et al., 2015) or even adulthood 

(Tehranifar et al., 2018). In our analysis, maternal smoking during pregnancy reported from 

questionnaires and urinary maternal cotinine levels (cluster preg#1) associated with 24 unique 

CpGs, representing 9 unique loci (2 Mb) annotated to 8 genes, that largely corroborate previous 

findings described in the EWAS Atlas/Catalog (Supplemental Experimental Procedures; 

Figure 5A; Table S3). Additionally, we observed that child exposure to second-hand smoke 

(cluster childhood#7) overlapped with existing literature, but to a lesser extent than maternal 

smoking (Figure 5C; Table S3). Period specific effects have been investigated elsewhere in 

more detail (Vives-Usano et al., 2020). In order to understand which pathways were perturbed 

due to exposure to tobacco smoke, we performed functional enrichment analysis of genes 

annotated to molecular features associated with pregnancy or childhood exposure 

(Supplemental Experimental Procedures). The analysis identified the following functions: 
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axon development, cognition, cholinergic synapse, insulin signalling, and several types of 

cancer (Figures 5B and 5D; Table S4, highlighted in yellow). These pathways are in line with 

the effects of maternal smoking on health detected in HELIX children: higher blood pressure 

(Warembourg et al., 2019) and BMI (Vrijheid et al., 2020), and increased behavioural problems 

(Maitre et al. under review). 

We further observed that exposure during pregnancy to the heavy metal cadmium (Cd) was 

associated with child blood methylation, and clustered with maternal smoking in cluster preg#1. 

This could be partially explained by the fact that Cd is a component of tobacco (Satarug, 2018) 

and in our dataset smoker mothers showed almost twice the level of Cd compared to non-

smokers. However, we identified 14 additional CpGs that were unique to Cd; these did not 

overlap with known smoking effects, nor with CpGs associated with maternal Cd in the placenta 

(Figure S1B; Table S5)(Everson et al., 2018). When restricting our analysis of maternal Cd to 

non-smoker mothers (N=998), 51 CpGs (48 loci) were identified, which did not overlap with 

smoking effects, but did correspond to CpGs previously associated with conditions such as 

asthma, gestational diabetes, and gestational age (Figure S1D; Table S5). Besides tobacco 

smoke, the main sources of Cd exposure are contaminated foods such as rice, potatoes and 

wheat, when frequently consumed in large quantities (Järup and Åkesson, 2009). 

 

Indoor air quality during childhood is related to biomarkers of obesity and insulin 

resistance  

We found several associations for indoor air quality during childhood (clusters childhood#7 for 

PM2.5 absorbance, and childhood#9 for benzene), in contrast to the few associations found for 

outdoor air pollution (5 CpGs with NO2 and 5 serum phosphatidylcholines with PM2.5 that do not 

overlap with indoor air pollution signatures). Individual indoor air pollution levels were estimated 

through prediction models trained from real measures with air monitors installed in the homes 

and self-reported data on home characteristics and smoking habits of the parents, among other 

factors (Tamayo-Uria et al., 2019). 

Home indoor air pollution exposure to benzene was associated with 9 CpGs, one of them 

previously related to PM2.5 levels (Figure S5C; Table S3). Indoor levels of PM2.5 absorbance, 

a marker of black/elemental carbon originating from combustion, were associated with 
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methylation of 9 CpGs, including two in common with tobacco exposure (Figure S5C; Table 

S3), and with decreased levels of serum branched amino acids (aka BCAA: Ile, Leu, and Val), 

acylcarnitine C4 (butyrylcarnitine) and two sphingolipids. There is emerging, although somewhat 

conflicting evidence of metabolic changes related to outdoor air pollution in humans and 

animals (Brower et al., 2016; Miller et al., 2015; van Veldhoven et al., 2019). Similar to our 

results, lower BCAA and acylcarnitines were detected in young obese participants exposed to 

near-roadway air pollution (Chen et al., 2019). In sensitivity analyses, where models were not 

adjusted for child BMI, the associations of indoor PM2.5abs with acylcarnitine C4 and three BCAA 

were even stronger (15-20% fold change in effect size). Associations between dysregulated 

metabolism of BCAAs and acylcarnitines with obesity and insulin resistance have been widely 

observed in animal and adult human studies (Newgard, 2017). We propose that altered BCAA 

and acylcarnitine metabolism may be an important biomarker to study further in relation to 

indoor air pollution and subsequent development of cardio-metabolic disease in later life. An 

association between indoor air pollution and increased child BMI was previously reported in the 

HELIX study, independently of correlated exposures such as second-hand smoke and lower 

social class status (Vrijheid et al., 2020).                                                                      

 

The serum and urinary metabolome reveal principal dietary routes of exposure to 

chemical pollutants  

The metabolome is a key molecular layer to detect intermediary physiological changes in 

response to environmental influences, but it is also composed of exogenous compounds which 

are internalized through different routes: principally diet, but also via airways or skin absorption. 

We observed the childhood exposome to be associated with the metabolome in a dense, 

interconnected manner (Figures 4). Three clusters contained most of the serum and urine 

metabolites: childhood#1 contained persistent chemicals (see next section); cluster childhood#3 

(Figure 6A) contained fish intake, toxic metals (mercury (Hg) and arsenic (As)), the persistent 

PFASs, and non-toxic essential elements (selenium (Se) and caesium (Cs)); and cluster 

childhood#6 (Figure 6B) contained fruit and vegetable diet-related variables and 

organophosphate (OP) pesticides. 

Cluster childhood#3 “fish and contaminants” was enriched for metabolic biomarkers of fish 
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intake such as serum lipids containing polyunsaturated fatty acids (PCaaC40:6, PCaaC36:5, 

PCaaC36:6 and PCaaC38:6) and urinary trimethylamine N-oxide (TMAO), dimethylamine and 

homarine (aka. N-methylpicolinic acid). Fish is a source of essential elements (selenium (Se), 

caesium (Cs), but it also bio-accumulates toxic metals (mercury (Hg) and arsenic (As)) and the 

persistent PFASs) (Avella-Garcia and Julvez, 2014; Christensen et al., 2017), which were also 

found in the cluster. These fish metabolites were previously found to be associated with Hg and 

As in pregnant women (Maitre et al., 2018b). 

Cluster childhood#6 “fruit and vegetables” contained mostly urinary metabolites (21 out of 44 

measured), including hippurate, proline betaine and N-methylnicotinic acid (trigonelline) which 

are known biomarkers of fruit and vegetable intake (Heinzmann et al., 2015; Lau et al., 2018). 

Interestingly, these metabolites were associated with organophosphate (OP) pesticides (DEP, 

DETP, DMP, DMTP and DMDTP measured in urine), a class of insecticides still applied in 

agriculture for insect control on food crops. Intake of fruits and vegetables is a main determinant 

of OP urinary metabolites in children and pregnant women, as previously found in the HELIX 

cohort (Papadopoulou et al., 2019). This suggests that the observed association between child 

OP levels and known biomarkers of fruit and vegetable intake is likely to arise from a higher 

fresh fruit and vegetable intake.  

Using ExposomeExplorer (Neveu et al., 2017), a catalogue of 908 dietary and pollutant 

biomarkers measured in population studies (Supplemental Experimental Procedures), we 

were able to confirm the dietary origin of many exposure-metabolite associations observed in 

our dataset (Figure 6C). These findings demonstrate the ability of metabolomics to accurately 

reflect dietary patterns. 

  

Essential trace elements are key components of the exposome 

Essential trace elements are required by living organisms to ensure normal fetal development 

and growth, and maintenance of biological functions, but can also be toxic when present in 

excess. We measured 9 essential elements (Co, Cu, Mn, Mo, Na, K, Mg, Zn, Se) and found a 

remarkable number of omics associations with maternal molybdenum (Mo), and child copper 

(Cu). 

Molybdenum (Mo), the exposure in pregnancy with the most associations (74, including 72 
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CpGs from 63 loci; cluster preg#2) (Figure 3), acts as a co-factor of 4 human enzymes (sulphite 

oxidase, xanthine oxidoreductase, aldehyde oxidase and mitochondrial amidoxime reductase) 

which are involved in various key reactions of aldehydes, purines, and sulfur metabolism 

(Schwarz, 2016). Interestingly, sulphite oxidase is involved in the catabolism of sulphur amino 

acids such as methionine, which serves as a donor of methyl groups for DNA methylation (Clare 

et al., 2019). In our data, we found that >70% of the significant CpGs were hypo-methylated in 

relation to maternal Mo, and that maternal Mo was associated with higher methionine levels in 

childhood. Thirteen of the CpGs associated with maternal Mo have previously been related to 

gestational age (Figure S5A; Table S3). Human exposure to Mo may occur via diet, water 

consumption, inhalation from molybdenum fertilizer, nanoparticles, and/or occupational 

exposure from mining operations or other industrial uses (Mohamed et al., 2020; Novotny and 

Peterson, 2018; Vázquez-Salas et al., 2014). It is generally believed that Mo is safe for human 

health (Novotny and Peterson, 2018). However, there is growing evidence that excess of Mo is 

associated with some adverse health outcomes in the general population (Meeker et al., 2008, 

2010) and with developmental effects in utero (Gauglitz et al., 2020; Vázquez-Salas et al., 2014; 

Yin et al., 2020; Zheng et al., 2020). Reproductive and genotoxic effects of Mo have been 

reported in animals with retarded fetal growth (Mohamed et al., 2020; Tallkvist and Oskarsson, 

2015). This points to the possible importance of Mo exposure during pregnancy and DNA 

methylation patterns with possible long-lasting impact on the child molecular phenotype.  

During childhood, essential trace elements were associated with multiple omics layers, with little 

overlap across molecular features (Figure 5). Copper (Cu) (cluster childhood#2), was 

associated with 89 molecular features, distributed across different omics layers. One of the most 

robust (lowest p-value) Cu associations was with increased levels of the C-reactive protein 

(CRP), an inflammatory biomarker. Cu-associated CpGs have previously been described in 

relation to obesity, type 2 diabetes and rheumatoid arthritis, a chronic inflammatory disorder, 

among others (Figure 5C; Table S3). Enriched gene-sets included: immune response, lipid 

storage and sequestering of metal ions (Figure 5D; Table S4, highlighted in green). Cu is an 

essential trace element required for numerous cellular processes, including mitochondrial 

respiration, antioxidant defense, neurotransmitter synthesis, connective tissue formation, 

pigmentation, peptide amidation and iron metabolism (De Bie et al., 2007). In line with the 
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numerous Cu biological functions, we found in HELIX that child Cu was associated with poorer 

lung function (Agier et al., 2019), higher BMI (Cadiou et al., 2020; Vrijheid et al., 2020) and 

higher blood pressure (Warembourg et al., 2019), and increased prevalence of behavioural 

problems and ADHD symptoms (Maitre et al. under review).  

Some of the other essential trace element associations validated previous knowledge of their 

regulatory role on protein synthesis/enzymatic activity. We found that zinc (Zn) was related to 

higher transcription of CA1 (Carbonic anhydrase 1), whose expression is known to be 

influenced by Zn2+ availability (Lionetto et al., 2016) and which uses Zn2+ as a cofactor. Also, 

cobalt (Co) was associated with higher levels of PAI1 protein (Plasminogen Activator Inhibitor 

Type 1), consistent with previous studies which show that CoCl2 induces PAI-1 mRNA and 

regulates its activity (Long and Schafer, 2008; Thompson et al., 2011). 

Overall, our data highlights the importance of essential trace elements as key components of 

the exposome. We corroborated known regulatory effects of Co and Zn, and in addition, we 

discovered novel biological interactions for maternal Mo and child Cu. Since only trace amounts 

of Mo and Cu from diet are required to achieve optimal health, further studies on the potential 

long-term consequences of excess of these elements, rather than deficiency, are warranted. 

 

Molecular signatures of persistent organic pollutants implicate body mass and hepatic 

metabolic alterations in children 

Developmental exposure to persistent organic pollutants (POPs), so called because they persist 

in the environment and bio-accumulate through the food chain in human and animal fatty 

tissues, has consistently been associated with adverse birth outcomes and neurotoxicological 

outcomes (Vrijheid et al., 2016). However, evidence for child health effects associated with 

childhood exposure is inconsistent.  

We found that POPs in children, especially dioxin-like PCB118 (69 associations), HCB (28) and 

PCB138 (14), were associated with DNA methylation, serum metabolites and plasma proteins 

(IL1B and leptin) grouped in cluster childhood#1. CpGs in this cluster have previously been 

reported to be related to the inflammatory disease rheumatoid arthritis (Figure 5C; Table S3). 

Several serum sphingolipids and glycerophospholipids, inversely associated with POPs, were 

previously found to be related to higher BMI in HELIX children (Lau et al., 2018). Similarly, 
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POPs were related to lower levels of proteins that are normally enhanced in obesity. These 

included, which is mainly produced by fat cells of the adipose tissue and regulates appetite and 

energy expenditure (Fain, 2010), and IL1β, an inflammatory adipokine primarily released by the 

non-fat cells of adipose tissue (Yao et al., 2014). These associations were even stronger when 

models were not adjusted for child BMI (mean relative change +192%), indicating a strong 

influence of BMI (Figure S2). Indeed, in HELIX, we also observed an inverse relationship 

between POPs and adiposity and BMI (Vrijheid et al., 2020). The serum levels of POPs depend 

on exposure dose and timing, but also, as they accumulate in adipose tissue, on the amount 

and type of fat tissue and on recent changes in body weight/composition (Jackson et al., 2017; 

Wolff et al., 2007; Wood et al., 2016). Thus, future studies, especially in growing children, 

should consider including pharmacokinetic-pharmacodynamic (PKPD) modeling to elucidate the 

role of fat tissue distribution in observed biological effects of POPs.  

Besides associations likely linked to fat distribution in children, we also observed a positive 

association of PCB180 and TMAO, a product of gut microbiota and liver hepatic flavin 

containing monooxygenase (FMO3) enzyme activity. This association was previously reported 

in animals and humans and appeared independent of potential common dietary sources of 

PCBs and TMAO and of BMI (Petriello et al., 2018). Currently, TMAO is proposed as a 

causative agent of cardio-vascular disease (Zhu et al., 2017) but further investigations on the 

mechanistic link between PCBs, FMO3 activity/expression and cardio-vascular outcomes are 

needed. In addition, we observed a downregulation of fatty acids associated with HCB and 

PCB118 possibly indicating a perturbation of global hepatic lipid metabolism as previously 

suggested in general population and adolescents with severe obesity exposed to 

organochlorine compounds (Carrizo et al., 2017; Salihovic et al., 2016; Valvi et al., 2020). 

 

Endocrine disruptors, phthalates and parabens are associated with altered 

sphingomyelin levels 

Phthalates are synthetic compounds widely found in personal care products, drugs, food 

packaging, building products and polyvinylchloride (PVC) derivates. They are rapidly 

metabolized in the body in <24h and suspected of being endocrine disruptors (Braun, 2017). 

We found associations mainly with metabolites of the high molecular weight phthalates DEHP 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


14 
 

and DiNP measured during childhood, but not with the low molecular weight congeners. DEHP 

and DiNP exposure occurs mostly through diet, dust ingestion, and to a less extent through 

inhalation (Giovanoulis et al., 2018). 

The oxidized forms of DiNP (OHMiNP and OXOMiNP) mapped in cluster childhood#6 with 

many serum and urine metabolites. These metabolic signatures (particularly for creatinine in 

serum and urine) may be indicative of potential renal excretion patterns, in line with the fact that 

the oxidized forms are more polar, hydrophilic phthalate metabolites, which would lead to their 

rapid renal excretion. On the other hand, the metabolized forms of DEHP (MEOHP, MEHHP, 

MECPP, MEHP) mapped in cluster childhood#5 and were associated with 13 CpGs, with no 

clear overlap with reported traits/exposures (Figure 5C; Table S3). MEOHP and MECPP were 

also negatively associated with a number of serum sphingomyelins (SM.C16.0, SM.C18.0, 

SM.C18.1, SM.C20.2, SM(OH)C14.1 and SM(OH)C16.1), which are important structural lipid 

components of cell membranes, are involved in signalling pathways and are implicated in many 

disorders.  

Pregnancy exposure to DEHP metabolites and parabens (PRPA, ETPA, MEPA), another class 

of endocrine disruptors present in personal care products, showed negative associations with 

sphingomyelins (SM(OH)C16.1) and valine in children. Intermediates of sphingosine 

biosynthesis and valine have been reported to be upregulated in pregnant women exposed to 

phthalates (Zhou et al., 2018) and parabens (Zhao et al., 2020). Another study suggested 

persistent sex-specific effects of fetal exposure to phthalates and bisphenols on childhood lipid 

concentrations and glucose metabolism at a mean age of 9.7 years (Sol et al., 2020). There is 

increasing epidemiological evidence suggesting that prenatal exposure to phthalate contribute 

to childhood adverse health outcomes in a sex-specific manner (Haug et al., 2018). However, 

typically these exposures are hard to monitor in human population due to their rapid elimination 

in urine. Repeated sampling strategies and longitudinal designs, exploring the critical windows 

of phthalate and paraben exposures in pregnancy and early childhood might help to disentangle 

the persistent metabolic effects suggested in our study. 

 

Weather conditions are associated with signatures in all omics layers 

Weather conditions or meteorological factors (temperature, humidity, cloud coverage and 
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atmospheric pressure), in particular when extreme, are strong determinants of health and 

mortality (EEA, 2017). However, there are no studies systematically assessing their influence on 

molecular phenotypes. We estimated weather conditions through geographical information 

coupled with data from meteorological stations, and in childhood averaged over the month 

before the omics measurement. In childhood, these were associated with all molecular layers 

(cluster childhood#4), except for the urinary metabolome. Serum metabolites associated with 

meteorological variables in cluster childhood#4, including taurine, asymmetric dimethylarginine 

(ADMA), acylcarnitine C5, and serotonin, have been previously reported as biomarkers of sleep 

deprivation, circadian rythm and in the aetiology of depression (Davies et al., 2014; Nasca et al., 

2018; Selley, 2004). This cluster also included three proteins (adiponectin, MCP1 and HGF), 

several miRNAs, small nucleolar RNAs, and CpGs. Interestingly, adiponectin, an essential 

regulator of thermogenesis (Jankovic et al., 2013; Wei et al., 2017), increased with humidity 

(which is higher in winter in Europe) and decreased with ultraviolet radiation (higher in summer). 

This is in line with previous studies showing that exposure to cold temperatures for 2h increases 

adiponectin plasma levels (Imbeault et al., 2009). 

The CpGs associated with weather conditions in this cluster overlapped with CpGs reported for 

gestational age and infections, among others (Figure 5C; Table S3); and genes related to 

temperature were enriched for cellular response to type I interferon (Figure 5D; Table S4, 

highlighted in blue). Infectious diseases follow seasonal patterns and are more prevalent under 

particular meteorological conditions (Abhimanyu and Coussens, 2017; Lowen and Steel, 2014). 

Our findings provide evidence that, besides the direct effect of meteorological variables on 

human physiology (e.g. regulation of thermogenesis), they can indirectly affect child molecular 

profiles and potentially disease status by determining other exposures (e.g. virus survival), or 

they can represent proxies of other variables (e.g. hours of daylight). As far as we know, we are 

the first in reporting genome-wide and multi-omics signatures related to meteorological 

variables, and thus replication in larger longitudinal omics datasets covering seasonal patterns 

is needed to elucidate causal mechanisms. 

 

Exposure periods, biological matrices and molecular layers capture different molecular 

properties of the exposome 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


16 
 

We evaluated the overlap of the reported associations in our data across different exposome 

periods (pregnancy and childhood), biological matrices (serum and urine) and different 

molecular layers (DNA methylation, gene and miRNA expression), in order to better inform the 

design of future exposome studies. 

Although a substantial number of exposures (83) were assessed both in pregnancy and 

childhood (Supplemental Experimental Procedures), only 14 exposure-omics pairs were 

statistically significant in the two periods: 6 CpGs related to tobacco smoking, and several long 

chain fatty acids related to cotinine, hexachlorobenzene (HCB), perfluoroundecanoate 

(PFUnDA) and Hg (Table S6). The inter-period correlation for these exposures was low (mean: 

0.24). We can thus conclude that biological signatures of the pregnancy and childhood 

exposomes had minimal overlap. 

Regarding biological matrices, we compared the overlap of exposure associations for 12 

metabolites (amino acids, glucose, carnitine and creatinine) that were measured in both urine 

and serum. In urine, 9 out of the common 12 metabolites were associated with the childhood 

exposome with a total of 33 significant associations; and in serum, 7 out of the 12 metabolites 

were associated with exposures giving a total of 14 associations (Tables S7). At nominal 

significance, 27.3% of the urine associations replicated in serum and 7% of the serum 

associations replicated in urine. Assuming similar quality of metabolic data between platforms, 

these results suggest that a substantial proportion of associations with the exposome are 

biofluid specific. 

Next, we investigated whether different molecular layers (DNA methylation, gene and miRNA 

expression) in the same biological matrix (blood cells) pointed to the same biological pathways. 

For each CpG we searched for cis expression quantitative trait methylations (eQTMs), meaning 

correlations between gene expression and DNA methylation in 1 Mb window (Supplemental 

Experimental Procedures). Out of the 187 CpGs associated with the childhood exposome, 9 

showed eQTMs for a total of 11 genes (Table S8), however the expression of none of these 

was nominally associated with the same exposures as the CpG site. We also searched for 

experimentally validated targets of the 49 miRNAs associated with the childhood exposome 

using the miRwalk v3 tool (Sticht et al., 2018), and identified 1,267 targeted genes, representing 

44 unique mature miRNAs (Table S8). Only 17 of these genes were associated with the same 
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exposure as the original miRNA and in the expected direction (higher miRNA levels - lower 

gene expression) in a total of 18 associations (Table S8). They encompassed 7 unique 

exposures (Cd, Cu, K, PFOA, blue spaces and meteorological factors) and 9 unique miRNAs. 

Overall, the low correspondence between the methylome and miRNAome with the 

transcriptome highlights the high complexity of transcriptional regulation and suggests that each 

molecular layer might capture a piece of the effects of the exposome.  

 

Robustness of results with respect to ancestry and country 

HELIX consists of 1,171 European ancestry children and the rest from other ancestries, with 

Pakistani ancestry the second most common (102 children), according to self-report. We 

repeated the ExWAS in only European ancestry children (Supplemental Experimental 

Procedures), and no major differences in effect sizes was observed (Figures S3). The mean 

relative change in effect size between the two models was -23.9%, with a similar distribution for 

the pregnancy and postnatal exposomes.  

We also investigated heterogeneity across cohorts by running the statistically significant 

exposure-omics associations by cohort (Supplemental Experimental Procedures). 

Heterogeneity (I2) depended on period and molecular layer (Figure S4). Around half of all 

associations presented I2 <0.5. While some associations seemed to be very consistent among 

cohorts (e.g. maternal cadmium and methylation) others were more cohort dependent (e.g child 

meteorological conditions and serotonin). 

 

Discussion 

This is the first exposome study to systematically associate a wide range of environmental 

exposures during vulnerable early life periods with multi-omics signatures in childhood. We 

observed 1,170 unique associations between exposures and molecular features, 249 relating to 

pregnancy and 921 to childhood exposures. By partitioning these associations into clusters, this 

study reveals potential biological responses and routes of exposure. Our findings confirm 

persistent methylation changes associated with maternal tobacco smoking in pregnancy and 

principal routes of exposure to chemical pollutants through diet based on food-related 

biomarkers. Furthermore, we identify novel omics associations with indoor air quality, essential 
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trace elements, endocrine disruptors and weather conditions. Our comprehensive resource of 

all associations (https://helixomics.isglobal.org/) is the first of its kind and will serve to guide 

future investigation on the biological imprints of the early life exposome. 

Among the novel molecular signatures identified, some highlight plausible biological 

mechanisms to disease. For instance, copper, has been related to several health outcomes in 

HELIX children (lung function, blood pressure, BMI and ADHD) and here we show potential 

perturbed pathways that may mediate these associations: immune response, lipid storage and 

sequestering of metal ions. Furthermore, data generated in this study provide a resource for the 

development of epigenetic biomarkers of past exposures (Reese et al., 2017). For instance, the 

essential element molybdenum (Mo) during pregnancy is associated with methylation changes 

in a remarkable number of CpGs, which can be used to predict prenatal exposure. Also, our 

study demonstrates the ability of metabolomics to accurately reflect variance in dietary 

exposure. Diet is a complex, multidimensional exposure, and studying its contribution to health 

requires a multipronged approach, for which metabolomics is well positioned (Garcia-Perez et 

al., 2017; Lau et al., 2018; Posma et al., 2020, Stratakis, Siskos in preparation). Importantly, we 

illustrate in this study that many anthropogenic chemicals are also delivered in the body through 

the diet, adding to the complexity of metabolomic profiles in human biospecimens and creating 

an extensive network of nutrient–pollutant interactions that remains vastly unknown and poorly 

defined by conventional assessment methods (Cano-Sancho and Casas, 2020). 

Our results indicate that the choice of molecular layer and biological matrix is key in the design 

of exposome studies. We found that the prenatal environment is mainly captured by the 

methylome with sustained changes until childhood, which suggests that the methylome acts as 

the main source of biological ‘memory’ for the in utero exposome. In contrast, recent exposures 

during childhood were associated with features across all omics layers. Evidence to date 

suggests that the metabolome in particular is strongly influenced by the immediate environment, 

and may thus be more sensitive for detecting associations in cross-sectional settings (Everson 

and Marsit, 2018). However, although to a lesser extent, the metabolome also captured 

persistent biological responses to the pregnancy exposome (e.g. to phthalates and parabens). 

On the other hand, our findings were clearly dependent on the biological matrix that was 

assessed. For instance, only a few of the exposure-metabolite associations were found both in 
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serum and urine. Sampling one matrix and not another has clear implications in the biological 

mechanisms that can be detected, and thus on the exposure-omics associations that can be 

identified. 

The main strengths of our study are: 1) the comprehensive assessment of environmental 

exposures in two critical developmental time periods (pregnancy and childhood), and including 

highly sensitive biomarkers for many chemical exposures and wide-ranging geospatial 

modelling of the outdoor and built environment; 2) the extensive multi-omics assessment of 

molecular phenotypes; and 3) the wide geographic coverage and relatively large sample size for 

which we were able to measure many exposures and omics features.  

Our study also has some limitations. First, omics platforms have a coverage bias and biological 

interpretability issues. For instance, even genome-wide platforms such as the 450K methylation 

array cover a small fraction (1-2%) of all CpGs in the genome and their functional interpretation 

has been simplified by assuming they regulate the closest gene. The LC-MS/MS (Biocrates) 

method has low coverage and does not give specific fatty acid side-chain composition for lipids, 

but it is widely used in large cohort studies and provides reproducible measurements with 

unambiguous annotation, easily comparable to other studies (Floegel et al., 2013; Illig et al., 

2010; Siskos et al., 2017; Varma et al., 2018; Wong et al., 2008). We note that there are 

additional molecular layers and omics technologies of interest for future exposome studies, 

which were not included in our study, such as the gut metagenome, adductomics, sensitive 

high-resolution mass spectrometers or single cell methods (Jiang et al., 2018; Petrick et al., 

2020; Walker et al., 2019). Second, different exposures are measured with different types and 

levels of measurement error. For example, urine levels of non-persistent chemicals have a high 

intra-individual variability and are expected to suffer particularly from classical-type 

measurement error resulting in an attenuation bias (Casas et al., 2018). Exposures measured 

by models and questionnaires are expected to suffer from other types of measurement errors 

with less predictable effects (Nieuwenhuijsen et al., 2015). Moreover, the correlated nature of 

the exposome makes identification of driving exposures difficult. Mixture or multi-pollutant 

approaches aim to tackle this, however these are not yet suitable for high-dimensional datasets 

such as ours (Jain et al., 2018; Park et al., 2017). Third, our comparison with previous literature 

and functional enrichment analyses are limited by existing bias in public databases. Fourth, 
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although the majority of epidemiological studies utilize biological samples that are most readily 

accessible for the measurement of omics profiles, these may not be the ideal target tissue for 

the relevant health outcomes. Biofluids such as plasma/serum and urine, solve this in part as 

they contain molecules from peripheral organs, but they clearly are limited in their ability to 

capture some other biological events. Finally, although our models were adjusted for 

confounders, causal links would need to be proven through interventions, Mendelian 

randomization analyses or cross-contextual studies in order to move to therapeutic and 

preventative strategies.  

To conclude, this first comprehensive study of the multi-omics signatures of the early life 

exposome demonstrates that molecular phenotypes can reveal biological responses to, or 

sources of, environmental exposures at an early time point in life. This can help to improve our 

understanding of biological mechanisms and, ultimately, to detect and prevent environmental 

damage to health earlier in life, before clinical manifestation. Besides the main findings 

described here, the entire result catalogue is publicly available (https://helixomics.isglobal.org/), 

enabling exploration of the complete list of exposome-omics relationships. With the rich 

exposome and molecular information available, we provide a valuable resource to the scientific 

community for the development and validation of exposure and response biomarkers and to 

improve our understanding of disease aetiology. 

 

Data availability 

The summarized results (exposure, omics biomarker, effect, standard error, p-value) generated 

during this study are available at https://helixomics.isglobal.org/. The raw data supporting the 

current study are available from the corresponding author on request subject to ethical and 

legislative review. 

Code availability 

The code to test the relationship between the pregnancy and childhood exposomes and 

molecular features is available through the R package omicRexposome (Hernandez-Ferrer et 

al., 2019). 
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Figure legends 

Figure 1. An overview of the early life exposome and multi-omics signature study. 

A) The birth cohorts participating in the study. B) The methods used to measure the exposome 

in pregnancy and childhood. The pie chart represents the exposure families and their proportion 

corresponds to the number of different exposures measured. C) The methods used to measure 

child molecular phenotypes. Six different platforms were used in three biological matrices. D) An 

exposome-omics-wide association study (ExWAS) was applied, modelling exposure-omics one 

by one (1). These associations were visualized through network and clusters were identified as 

depicted in (2). Sensitivity analyses were undertaken running ExWAS again without adjusting 

for child BMI, only in European ancestry children and by cohorts (3). E) All summarized results 

can be found in https://helixomics.isglobal.org/. F) Exposure-omics associations and clusters 

were interpreted through literature overlap (1) and functional enrichment analyses (2). 

 

Figure 2. Exposome-omics-wide association study (ExWAS) for the pregnancy and 

childhood exposome.  

A) Summary of the pregnancy exposome-omics associations: Miami plot (1); pie charts showing 
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the proportion of associations with the different molecular layers (2); and top 10 pregnancy 

exposures (3). B) Summary of the childhood exposome-omics associations: Miami plot (1); pie 

charts showing the proportion of associations with the different molecular layers (2); and top 10 

childhood exposures (3). 

In Miami plots, each point corresponds to an exposure-omics association; the y-axes show the -

log10p-values multiplied by the direction of the association (sign of the regression coefficient); 

and the x-axis groups exposures along the 19 exposure families. In the pie-chart and histogram, 

colours indicate the molecular layer. 

 

Figure 3. Network map of the multi-omics signatures of the pregnancy Exposome. 

Network visualization of the pregnancy exposome-omics-wide association analysis (ExWAS). 

An exposure and a molecular feature were connected if their association was statistically 

significant and only connected components with at least two molecular features were displayed. 

Three main connected components were annotated, which varied greatly by their size, their 

number of exposures and the type of omics composing them. 

 

Figure 4. Network map of the multi-omics signatures of the childhood Exposome. 

Network visualization of the childhood exposome-omics-wide association analysis (ExWAS). An 

exposure and a molecular feature were connected if their association was statistically significant 

and only connected components with at least two molecular features were displayed. The 

childhood exposome network was diverse in terms of omics features represented and the level 

of interconnection, with the biggest connected component containing 90% of all nodes. Within 

this network, 11 interconnected subcomponents (i.e. clusters) were identified using an 

unsupervised structural cluster analysis, seven of them were annotated. 

 

Figure 5. Biological interpretation of the exposome-omics associations through literature 

trait overlap and functional enrichment. 

A) Overlap of CpGs associated with the pregnancy exposome (columns) with CpGs associated 

with traits/exposures in the EWAS catalog (rows). B) Functional enrichment analyses of the 

pregnancy exposome (columns) for Gene Ontology (GO) terms (rows). C) Overlap of CpGs 
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associated with the childhood exposome (columns) with CpGs associated with traits/exposures 

in the EWAS catalog (rows). D) Functional enrichment analyses of the childhood exposome 

(columns) for GO terms (rows).  

Exposure variables, traits/exposures of the EWAS catalog, and GO terms are ordered according 

to a hierarchical clustering. For the overlap with the EWAS catalog, colour indicates the number 

of overlapping CpGs. For the functional enrichment analyses, colour indicates the –log10 

adjusted p-value of the enrichment. To facilitate visualization, we eliminated related GO terms 

and –log10 adjusted p-values >10 are coded as 10.   

 

Figure 6. Metabolite signatures of the childhood exposome and dietary sources. 

A) Cluster childhood#3, which includes the associations between fish and contaminants (As, 

Hg, PFOS) and serum metabolites (mainly glycerophospholipids); B) Cluster childhood#6, 

which includes the associations between diet (vegetables, fruit, cereals) and OP pesticides with 

urinary metabolites; C) Previous literature linking urine and serum metabolites with food items, 

based on the database Exposome Explorer (http://exposome-explorer.iarc.fr/). 
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Tables 

 

Table 1. Pregnancy and childhood exposome-omics clusters 

Exposome Cluster Name Exposures, ordered by degree 
N 

exposures N omics 
N 

methy 
N 

trans 
N 

miRNA 
N 

prot 
N 

met_s N met_u 
N ann. 
gene 

Pregnancy 

Preg#1 Tobacco smoke Cd, Cotinine, Mat. Smoking, Hg, 
PFUNDA 5 48 39 0 1 0 8 0 19 

Preg#2 Molybdenum (Mo) Mo 1 74 72 0 0 0 1 1 47 

Preg#3 Phtalates and parabens ETPA, MEPA, PRPA, MEHHP, BUPA, 
MECPP, MEOHP 7 20 1 0 5 0 10 4 6 

Childhood 
(postnatal) 

Childhood#1 Organochlorine 
chemicals 

PCB 118, HCB, PCB 138, PCB 153, 
PM2.5, PCB 180, House crowding, PCB 
170, Bread, DDE, Diet fat, MEP, MIBP 

13 74 43 1 1 3 24 2 41 

Childhood#2 Copper (Cu) Cu, Pb, land use 3 89 52 5 17 6 8 1 69 

Childhood#3 Fish and contaminants 
PFOS, Cs, PFNA, Se, PFUNDA, Hg, As, 
Fish, PFHXS, Cotinine, Dairy, PBDE 153, 

Fastfood, ETS, BTEX in, Sweets 
16 71 2 0 3 2 56 8 5 

Childhood#4 Weather Hum., T, UV, K, PFOA, Mg, BPA, Tl, 
PM10 

9 78 30 21 18 5 4 0 65 

Childhood#5 Phthalates (DEHP 
metabolites) 

MEOHP, MEHHP, MECPP, MEHP, 
Bakery prod 

5 16 8 1 0 0 7 0 10 

Childhood#6 Non-persistent 
chemicals and diet 

OXOMINP, KIDMED, DMTP, Co, BUPA, 
DETP, OHMiNP, Cd, Fruits, DMDTP, 

DEP, Vegetables, Meat, Cereals, Social 
participation, DMP 

16 38 13 0 1 2 1 21 15 

Childhood#7 Indoor air PM2.5 in, Smoking, Blue space, MNBP 4 22 13 0 4 0 5 0 12 

Childhood#8 Manganese (Mn) and 
Molybenum (Mo) Mn, Mo 2 10 1 6 0 1 2 0 8 

Childhood#9 Benzene Benzene in 1 9 9 0 0 0 0 0 7 
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Childhood#10 Triclozan TRCS 1 5 0 0 2 3 0 0 5 

Childhood#11 Distance road Distance road 1 2 0 0 0 0 2 0 0 

Abbreviations: methy = DNA methylation (CpGs); trans = gene expression (TCs); miRNA = miRNA expression; prot = plasma proteins; met_s = serum metabolites; met_u = urine metabolites;  
N ann. gene = number of genes annotated to molecular features 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted M

ay 7, 2021. 
; 

https://doi.org/10.1101/2021.05.04.21256605
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


3 
 

References 

Abhimanyu, and Coussens, A.K. (2017). The role of UV radiation and Vitamin D in the 

seasonality and outcomes of infectious disease. Photochem. Photobiol. Sci. 

Agier, L., Basagaña, X., Maitre, L., Granum, B., Bird, P.K., Casas, M., Oftedal, B., Wright, J., 

Andrusaityte, S., de Castro, M., et al. (2019). Early-life exposome and lung function in children 

in Europe: an analysis of data from the longitudinal, population-based HELIX cohort. Lancet. 

Planet. Heal. 3, e81–e92. 

Arango, C., Díaz-Caneja, C.M., McGorry, P.D., Rapoport, J., Sommer, I.E., Vorstman, J.A., 

McDaid, D., Marín, O., Serrano-Drozdowskyj, E., Freedman, R., et al. (2018). Preventive 

strategies for mental health. The Lancet Psychiatry 5, 591–604. 

Athersuch, T.J. (2012). The role of metabolomics in characterizing the human exposome. 

Bioanalysis 4, 2207–2212. 

Avella-Garcia, C.B., and Julvez, J. (2014). Seafood Intake and Neurodevelopment: A 

Systematic Review. Curr. Environ. Heal. Reports 1, 46–77. 

Bauer, T., Trump, S., Ishaque, N., Thürmann, L., Gu, L., Bauer, M., Bieg, M., Gu, Z., 

Weichenhan, D., Mallm, J.-P., et al. (2016). Environment-induced epigenetic reprogramming in 

genomic regulatory elements in smoking mothers and their children. Mol. Syst. Biol. 12, 861. 

De Bie, P., Muller, P., Wijmenga, C., and Klomp, L.W.J. (2007). Molecular pathogenesis of 

Wilson and Menkes disease: Correlation of mutations with molecular defects and disease 

phenotypes. J. Med. Genet. 

Braun, J.M. (2017). Early-life exposure to EDCs: role in childhood obesity and 

neurodevelopment. Nat. Rev. Endocrinol. 13, 161–173. 

Brower, J.B., Doyle-Eisele, M., Moeller, B., Stirdivant, S., McDonald, J.D., and Campen, M.J. 

(2016). Metabolomic changes in murine serum following inhalation exposure to gasoline and 

diesel engine emissions. Inhal. Toxicol. 

Bui, D.S., Lodge, C.J., Burgess, J.A., Lowe, A.J., Perret, J., Bui, M.Q., Bowatte, G., Gurrin, L., 

Johns, D.P., Thompson, B.R., et al. (2018). Childhood predictors of lung function trajectories 

and future COPD risk: a prospective cohort study from the first to the sixth decade of life. Lancet 

Respir. Med. 6, 535–544. 

Cadiou, S., Bustamante, M., Agier, L., Andrusaityte, S., Basagaña, X., Carracedo, A., Chatzi, L., 

Grazuleviciene, R., Gonzalez, J.R., Gutzkow, K.B., et al. (2020). Using methylome data to 

inform exposome-health association studies: An application to the identification of 

environmental drivers of child body mass index. Environ. Int. 138, 105622. 

Cano-Sancho, G., and Casas, M. (2020). Interactions between environmental pollutants and 

dietary nutrients: current evidence and implications in epidemiological research. J. Epidemiol. 

Community Health jech-2020-213789. 

Carrizo, D., Chevallier, O.P., Woodside, J. V, Brennan, S.F., Cantwell, M.M., Cuskelly, G., and 

Elliott, C.T. (2017). Untargeted metabolomic analysis of human serum samples associated with 

exposure levels of Persistent organic pollutants indicate important perturbations in Sphingolipids 

and Glycerophospholipids levels. Chemosphere 168, 731–738. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


4 
 

Casas, M., Basagaña, X., Sakhi, A.K., Haug, L.S., Philippat, C., Granum, B., Manzano-Salgado, 

C.B., Brochot, C., Zeman, F., de Bont, J., et al. (2018). Variability of urinary concentrations of 

non-persistent chemicals in pregnant women and school-aged children. 121, 561–573. 

Cavalli, G., and Heard, E. (2019). Advances in epigenetics link genetics to the environment and 

disease. Nature 571, 489–499. 

Chen, Z., Newgard, C.B., Kim, J.S., IIkayeva, O., Alderete, T.L., Thomas, D.C., Berhane, K., 

Breton, C., Chatzi, L., Bastain, T.M., et al. (2019). Near-roadway air pollution exposure and 

altered fatty acid oxidation among adolescents and young adults – The interplay with obesity. 

Environ. Int. 130, 104935. 

Christensen, K.Y., Raymond, M., Blackowicz, M., Liu, Y., Thompson, B.A., Anderson, H.A., and 

Turyk, M. (2017). Perfluoroalkyl substances and fish consumption. Environ. Res. 154, 145–151. 

Clare, C.E., Brassington, A.H., Kwong, W.Y., and Sinclair, K.D. (2019). One-Carbon 

Metabolism: Linking Nutritional Biochemistry to Epigenetic Programming of Long-Term 

Development. Annu. Rev. Anim. Biosci. 7, 263–287. 

Contrepois, K., Wu, S., Moneghetti, K.J., Hornburg, D., Ahadi, S., Tsai, M.-S., Metwally, A.A., 

Wei, E., Lee-Mcmullen, B., Quijada, J. V, et al. (2020). Molecular Choreography of Acute 

Exercise. Cell 181, 1112-1130.e16. 

Davies, S.K., Ang, J.E., Revell, V.L., Holmes, B., Mann, A., Robertson, F.P., Cui, N., Middleton, 

B., Ackermann, K., Kayser, M., et al. (2014). Effect of sleep deprivation on the human 

metabolome. Proc. Natl. Acad. Sci. U. S. A. 111, 10761–10766. 

EEA (2017). Climate change, impacts and vulnerability in Europe 2016 — European 

Environment Agency. 

Everson, T.M., and Marsit, C.J. (2018). Integrating -Omics Approaches into Human Population-

Based Studies of Prenatal and Early-Life Exposures. Curr. Environ. Heal. Reports 5, 328–337. 

Everson, T.M., Punshon, T., Jackson, B.P., Hao, K., Lambertini, L., Chen, J., Karagas, M.R., 

and Marsit, C.J. (2018). Cadmium-associated differential methylation throughout the placental 

genome: Epigenome-wide association study of two U.S. birth cohorts. Environ. Health Perspect. 

Fain, J.N. (2010). Release of inflammatory mediators by human adipose tissue is enhanced in 

obesity and primarily by the nonfat cells: A review. Mediators Inflamm. 

Floegel, A., Stefan, N., Yu, Z., Mühlenbruch, K., Drogan, D., Joost, H.G., Fritsche, A., Häring, 

H.U., De Angelis, M.H., Peters, A., et al. (2013). Identification of serum metabolites associated 

with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62, 639–648. 

Franks, P.W., Hanson, R.L., Knowler, W.C., Sievers, M.L., Bennett, P.H., and Looker, H.C. 

(2010). Childhood Obesity, Other Cardiovascular Risk Factors, and Premature Death. N. Engl. 

J. Med. 362, 485–493. 

Garcia-Perez, I., Posma, J.M., Gibson, R., Chambers, E.S., Hansen, T.H., Vestergaard, H., 

Hansen, T., Beckmann, M., Pedersen, O., Elliott, P., et al. (2017). Objective assessment of 

dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial. 

Lancet Diabetes Endocrinol. 5, 184–195. 

Gauglitz, J.M., Aceves, C.M., Aksenov, A.A., Aleti, G., Almaliti, J., Bouslimani, A., Brown, E.A., 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


5 
 

Campeau, A., Caraballo-Rodríguez, A.M., Chaar, R., et al. (2020). Untargeted mass 

spectrometry-based metabolomics approach unveils molecular changes  in raw and processed 

foods and beverages. Food Chem. 302, 125290. 

Giovanoulis, G., Bui, T., Xu, F., Papadopoulou, E., Padilla-Sanchez, J.A., Covaci, A., Haug, 

L.S., Cousins, A.P., Magnér, J., Cousins, I.T., et al. (2018). Multi-pathway human exposure 

assessment of phthalate esters and DINCH. Environ. Int. 112, 115–126. 

Hardy, R., Lawlor, D.A., and Kuh, D. (2015). A life course approach to cardiovascular aging. 

Future Cardiol. 11, 101–113. 

Haug, L.S., Sakhi, A.K., Cequier, E., Casas, M., Maitre, L., Basagana, X., Andrusaityte, S., 

Chalkiadaki, G., Chatzi, L., Coen, M., et al. (2018). In-utero and childhood chemical exposome 

in six European mother-child cohorts. Environ. Int. 121, 751–763. 

Heinzmann, S.S., Holmes, E., Kochhar, S., Nicholson, J.K., and Schmitt-Kopplin, P. (2015). 2-

Furoylglycine as a Candidate Biomarker of Coffee Consumption. J. Agric. Food Chem. 63, 

8615–8621. 

Hernandez-Ferrer, C., Wellenius, G.A., Tamayo, I., Basagaña, X., Sunyer, J., Vrijheid, M., and 

Gonzalez, J.R. (2019). Comprehensive study of the exposome and omic data using rexposome 

Bioconductor packages. Bioinformatics. 

Illig, T., Gieger, C., Zhai, G., Römisch-Margl, W., Wang-Sattler, R., Prehn, C., Altmaier, E., 

Kastenmüller, G., Kato, B.S., Mewes, H.W., et al. (2010). A genome-wide perspective of genetic 

variation in human metabolism. Nat. Genet. 42, 137–141. 

Imbeault, P., Dépault, I., and Haman, F. (2009). Cold exposure increases adiponectin levels in 

men. Metabolism. 

Jackson, E., Shoemaker, R., Larian, N., and Cassis, L. (2017). Adipose tissue as a site of toxin 

accumulation. Compr. Physiol. 7, 1085–1135. 

Jain, P., Vineis, P., Liquet, B., Vlaanderen, J., Bodinier, B., van Veldhoven, K., Kogevinas, M., 

Athersuch, T.J., Font-Ribera, L., Villanueva, C.M., et al. (2018). A multivariate approach to 

investigate the combined biological effects of multiple exposures. J. Epidemiol. Community 

Health 72, 564–571. 

Jankovic, A., Korac, A., Buzadzic, B., Otasevic, V., Stancic, A., Vucetic, M., Markelic, M., 

Velickovic, K., Golic, I., and Korac, B. (2013). Endocrine and metabolic signaling in 

retroperitoneal white adipose tissue remodeling during cold acclimation. J. Obes. 

Järup, L., and Åkesson, A. (2009). Current status of cadmium as an environmental health 

problem. Toxicol. Appl. Pharmacol. 238, 201–208. 

Jiang, C., Wang, X., Li, X., Inlora, J., Wang, T., Liu, Q., and Snyder, M. (2018). Dynamic Human 

Environmental Exposome Revealed by Longitudinal Personal Monitoring. Cell 175, 277-

291.e31. 

Joubert, B.R., Håberg, S.E., Nilsen, R.M., Wang, X., Vollset, S.E., Murphy, S.K., Nystad, W., 

Bell, D.A., Peddada, S.D., and London, S.J. (2012). Research | Children ’ s Health 450K 

Epigenome-Wide Scan Identifies Differential DNA Methyla - in Newborns Related to Maternal 

Smoking during Pregnancy. Environ. Health Perspect. 120, 1425–1432. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


6 
 

Joubert, B.R., Felix, J.F., Yousefi, P., Bakulski, K.M., Just, A.C., Breton, C., Reese, S.E., 

Markunas, C.A., Richmond, R.C., Xu, C.J., et al. (2016). DNA Methylation in Newborns and 

Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am. J. Hum. Genet. 

98, 680–696. 

Juonala, M., Magnussen, C.G., Berenson, G.S., Venn, A., Burns, T.L., Sabin, M.A., Srinivasan, 

S.R., Daniels, S.R., Davis, P.H., Chen, W., et al. (2011). Childhood Adiposity, Adult Adiposity, 

and Cardiovascular Risk Factors. N. Engl. J. Med. 365, 1876–1885. 

Lau, C.-H.E., Siskos, A.P., Maitre, L., Robinson, O., Athersuch, T.J., Want, E.J., Urquiza, J., 

Casas, M., Vafeiadi, M., Roumeliotaki, T., et al. (2018). Determinants of the urinary and serum 

metabolome in children from six European populations. BMC Med. 16, 202. 

Lee, K.W.K., Richmond, R., Hu, P., French, L., Shin, J., Bourdon, C., Reischl, E., 

Waldenberger, M., Zeilinger, S., Gaunt, T., et al. (2015). Prenatal exposure to maternal cigarette 

smoking and DNA methylation: Epigenome-wide association in a discovery sample of 

adolescents and replication in an independent cohort at birth through 17 years of age. Environ. 

Health Perspect. 

Li-Pook-Than, J., and Snyder, M. (2013). IPOP goes the world: Integrated personalized omics 

profiling and the road toward improved health care. Chem. Biol. 20, 660–666. 

Li, M., Zou, D., Li, Z., Gao, R., Sang, J., Zhang, Y., Li, R., Xia, L., Zhang, T., Niu, G., et al. 

(2019). EWAS Atlas: A curated knowledgebase of epigenome-wide association studies. Nucleic 

Acids Res. 47, D983–D988. 

Lim, S.S., Vos, T., Flaxman, A.D., Danaei, G., Shibuya, K., Adair-Rohani, H., Amann, M., 

Anderson, H.R., Andrews, K.G., Aryee, M., et al. (2012). A comparative risk assessment of 

burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 

1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 

2224–2260. 

Lionetto, M.G., Caricato, R., Giordano, M.E., and Schettino, T. (2016). The complex relationship 

between metals and carbonic anhydrase: New insights and perspectives. Int. J. Mol. Sci. 

Long, X., and Schafer, A.I. (2008). Inhibition of plasminogen activator inhibitor-1 expression in 

vascular smooth muscle cells by protoporphyrins through a heme oxygenase-independent 

mechanism. Mol. Cell. Biochem. 

Lowen, A.C., and Steel, J. (2014). Roles of Humidity and Temperature in Shaping Influenza 

Seasonality. J. Virol. 

Maitre, L., de Bont, J., Casas, M., Robinson, O., Aasvang, G.M., Agier, L., Andrušaitytė, S., 

Ballester, F., Basagaña, X., Borràs, E., et al. (2018a). Human Early Life Exposome (HELIX) 

study: a European population-based exposome cohort. BMJ Open 8, e021311. 

Maitre, L., Robinson, O., Martinez, D., Toledano, M.B., Ibarluzea, J., Marina, L.S., Sunyer, J., 

Villanueva, C.M., Keun, H.C., Vrijheid, M., et al. (2018b). Urine Metabolic Signatures of Multiple 

Environmental Pollutants in Pregnant Women: An Exposome Approach. Environ. Sci. Technol. 

52, 13469–13480. 

Meeker, J.D., Rossano, M.G., Protas, B., Diamond, M.P., Puscheck, E., Daly, D., Paneth, N., 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


7 
 

and Wirth, J.J. (2008). Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human 

Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 116, 

1473–1479. 

Meeker, J.D., Rossano, M.G., Protas, B., Padmanahban, V., Diamond, M.P., Puscheck, E., 

Daly, D., Paneth, N., and Wirth, J.J. (2010). Environmental exposure to metals and male 

reproductive hormones: circulating testosterone is inversely associated with blood molybdenum. 

Fertil. Steril. 93, 130–140. 

Miller, D.B., Karoly, E.D., Jones, J.C., Ward, W.O., Vallanat, B.D., Andrews, D.L., Schladweiler, 

M.C., Snow, S.J., Bass, V.L., Richards, J.E., et al. (2015). Inhaled ozone (O3)-induces changes 

in serum metabolomic and liver transcriptomic profiles in rats. Toxicol. Appl. Pharmacol. 

Mohamed, H.R.H., El-Atawy, R.H., Ghoneim, A.M., and El-Ghor, A.A. (2020). Induction of fetal 

abnormalities and genotoxicity by molybdenum nanoparticles in pregnant female mice and 

fetuses. Environ. Sci. Pollut. Res. 27, 23950–23962. 

Nasca, C., Bigio, B., Lee, F.S., Young, S.P., Kautz, M.M., Albright, A., Beasley, J., Millington, 

D.S., Mathé, A.A., Kocsis, J.H., et al. (2018). Acetyl-L-carnitine deficiency in patients with major 

depressive disorder. Proc. Natl. Acad. Sci. U. S. A. 115, 8627–8632. 

Neveu, V., Moussy, A., Rouaix, H., Wedekind, R., Pon, A., Knox, C., Wishart, D.S., and 

Scalbert, A. (2017). Exposome-Explorer: a manually-curated database on biomarkers of 

exposure to dietary and environmental factors. Nucleic Acids Res. 45, D979–D984. 

Newgard, C.B. (2017). Metabolomics and Metabolic Diseases: Where Do We Stand? Cell 

Metab. 25, 43–56. 

Newman, M.E.J., and Girvan, M. (2003). Finding and evaluating community structure in 

networks. 

Niedzwiecki, M.M., Walker, D.I., Vermeulen, R., Chadeau-Hyam, M., Jones, D.P., and Miller, 

G.W. (2019). The Exposome: Molecules to Populations. Annu. Rev. Pharmacol. Toxicol. 59, 

107–127. 

Nieuwenhuijsen, M.J., Donaire-Gonzalez, D., Rivas, I., de Castro, M., Cirach, M., Hoek, G., 

Seto, E., Jerrett, M., and Sunyer, J. (2015). Variability in and agreement between modeled and 

personal continuously measured black carbon levels using novel smartphone and sensor 

technologies. Environ. Sci. Technol. 49, 2977–2982. 

Novotny, J.A., and Peterson, C.A. (2018). Molybdenum. Adv. Nutr. 9, 272–273. 

Papadopoulou, E., Haug, L.S., Sakhi, A.K., Andrusaityte, S., Basagaña, X., Brantsaeter, A.L., 

Casas, M., Fernández-Barrés, S., Grazuleviciene, R., Knutsen, H.K., et al. (2019). Diet as a 

Source of Exposure to Environmental Contaminants for Pregnant Women and Children from Six 

European Countries. Environ. Health Perspect. 127, 107005. 

Park, S.K., Zhao, Z., and Mukherjee, B. (2017). Construction of environmental risk score 

beyond standard linear models using machine learning methods: application to metal mixtures, 

oxidative stress and cardiovascular disease in NHANES. Environ. Heal. 16. 

Petrick, L.M., Uppal, K., and Funk, W.E. (2020). Metabolomics and adductomics of newborn 

bloodspots to retrospectively assess the early-life exposome. Curr. Opin. Pediatr. 32, 300–307. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


8 
 

Petriello, M.C., Charnigo, R., Sunkara, M., Soman, S., Pavuk, M., Birnbaum, L., Morris, A.J., 

and Hennig, B. (2018). Relationship between serum trimethylamine N-oxide and exposure to 

dioxin-like pollutants. Environ. Res. 

Posma, J.M., Garcia-Perez, I., Frost, G., Aljuraiban, G.S., Chan, Q., Van Horn, L., Daviglus, M., 

Stamler, J., Holmes, E., Elliott, P., et al. (2020). Nutriome–metabolome relationships provide 

insights into dietary intake and metabolism. Nat. Food 1, 426–436. 

Rappaport, S.M., and Smith, M.T. (2010). Epidemiology. Environment and disease risks. 

Science 330, 460–461. 

Rappaport, S.M., Barupal, D.K., Wishart, D., Vineis, P., and Scalbert, A. (2014). The blood 

exposome and its role in discovering causes of disease. Environ. Health Perspect. 122, 769–

774. 

Rauschert, S., Melton, P.E., Heiskala, A., Karhunen, V., Burdge, G., Craig, J.M., Godfrey, K.M., 

Lillycrop, K., Mori, T.A., Beilin, L.J., et al. (2020). Machine learning-based dna methylation score 

for fetal exposure to maternal smoking: Development and validation in samples collected from 

adolescents and adults. Environ. Health Perspect. 128, 1–11. 

Reese, S.E., Zhao, S., Wu, M.C., Joubert, B.R., Parr, C.L., Håberg, S.E., Ueland, P.M., Nilsen, 

R.M., Midttun, Ø., Vollset, S.E., et al. (2017). DNA methylation score as a biomarker in 

newborns for sustained maternal smoking during pregnancy. Environ. Health Perspect. 125, 

760–766. 

Richmond, R.C., Simpkin, A.J., Woodward, G., Gaunt, T.R., Lyttleton, O., McArdle, W.L., Ring, 

S.M., Smith, A.D.A.C., Timpson, N.J., Tilling, K., et al. (2015). Prenatal exposure to maternal 

smoking and offspring DNA methylation across the lifecourse: Findings from the Avon 

Longitudinal Study of Parents and Children (ALSPAC). Hum. Mol. Genet. 24, 2201–2217. 

Robinson, O., Tamayo, I., de Castro, M., Valentin, A., Giorgis-Allemand, L., Hjertager Krog, N., 

Marit Aasvang, G., Ambros, A., Ballester, F., Bird, P., et al. (2018). The Urban Exposome during 

Pregnancy and Its Socioeconomic Determinants. Environ. Health Perspect. 126, 077005. 

Salihovic, S., Ganna, A., Fall, T., Broeckling, C.D., Prenni, J.E., van Bavel, B., Lind, P.M., 

Ingelsson, E., and Lind, L. (2016). The metabolic fingerprint of p,p′-DDE and HCB exposure in 

humans. Environ. Int. 88, 60–66. 

Satarug, S. (2018). Dietary Cadmium Intake and Its Effects on Kidneys. Toxics 6. 

Schüssler-Fiorenza Rose, S.M., Contrepois, K., Moneghetti, K.J., Zhou, W., Mishra, T., 

Mataraso, S., Dagan-Rosenfeld, O., Ganz, A.B., Dunn, J., Hornburg, D., et al. (2019). A 

longitudinal big data approach for precision health. Nat. Med. 25, 792–804. 

Schwarz, G. (2016). Molybdenum cofactor and human disease. Curr. Opin. Chem. Biol. 

Selley, M.L. (2004). Increased (E)-4-hydroxy-2-nonenal and asymmetric dimethylarginine 

concentrations and decreased nitric oxide concentrations in the plasma of patients with major 

depression. J. Affect. Disord. 80, 249–256. 

Siskos, A.P., Jain, P., Römisch-Margl, W., Bennett, M., Achaintre, D., Asad, Y., Marney, L., 

Richardson, L., Koulman, A., Griffin, J.L., et al. (2017). Interlaboratory Reproducibility of a 

Targeted Metabolomics Platform for Analysis of Human Serum and Plasma. Anal. Chem. 89, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


9 
 

656–665. 

Sol, C.M., Santos, S., Duijts, L., Asimakopoulos, A.G., Martinez-Moral, M.-P., Kannan, K., 

Jaddoe, V.W. V, and Trasande, L. (2020). Fetal phthalates and bisphenols and childhood lipid 

and glucose metabolism. A  population-based prospective cohort study. Environ. Int. 144, 

106063. 

Sticht, C., De La Torre, C., Parveen, A., and Gretz, N. (2018). Mirwalk: An online resource for 

prediction of microrna binding sites. PLoS One. 

Su, G., Kuchinsky, A., Morris, J.H., States, D.J., and Meng, F. (2010). GLay: community 

structure analysis of biological networks. Bioinformatics 26, 3135–3137. 

Tallkvist, J., and Oskarsson, A. (2015). Molybdenum. In Handbook on the Toxicology of Metals: 

Fourth Edition, (Elsevier Inc.), pp. 1077–1089. 

Tamayo-Uria, I., Maitre, L., Thomsen, C., Nieuwenhuijsen, M.J., Chatzi, L., Siroux, V., Aasvang, 

G.M., Agier, L., Andrusaityte, S., Casas, M., et al. (2019). The early-life exposome: Description 

and patterns in six European countries. Environ. Int. 123, 189–200. 

Tehranifar, P., Wu, H.-C., McDonald, J.A., Jasmine, F., Santella, R.M., Gurvich, I., Flom, J.D., 

and Terry, M.B. (2018). Maternal cigarette smoking during pregnancy and offspring DNA 

methylation in midlife. Epigenetics 13, 129–134. 

Thompson, L.C., Goswami, S., and Peterson, C.B. (2011). Metals affect the structure and 

activity of human plasminogen activator inhibitor-1. II. Binding affinity and conformational 

changes. Protein Sci. 

Valvi, D., Walker, D.I., Inge, T., Bartell, S.M., Jenkins, T., Helmrath, M., Ziegler, T.R., La Merrill, 

M.A., Eckel, S.P., Conti, D., et al. (2020). Environmental chemical burden in metabolic tissues 

and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted 

metabolomic approach. Environ. Int. 143. 

Varma, V.R., Oommen, A.M., Varma, S., Casanova, R., An, Y., Andrews, R.M., O’Brien, R., 

Pletnikova, O., Troncoso, J.C., Toledo, J., et al. (2018). Brain and blood metabolite signatures 

of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLOS Med. 

15, e1002482. 

Vázquez-Salas, R.A., López-Carrillo, L., Menezes-Filho, J.A., Rothenberg, S.J., Cebrián, M.E., 

Schnaas, L., Viana, G.F. de S., and Torres-Sánchez, L. (2014). Prenatal molybdenum exposure 

and infant neurodevelopment in Mexican children. Nutr. Neurosci. 17, 72–80. 

van Veldhoven, K., Kiss, A., Keski-Rahkonen, P., Robinot, N., Scalbert, A., Cullinan, P., Chung, 

K.F., Collins, P., Sinharay, R., Barratt, B.M., et al. (2019). Impact of short-term traffic-related air 

pollution on the metabolome – Results from two metabolome-wide experimental studies. 

Environ. Int. 123, 124–131. 

Vermeulen, R., Schymanski, E.L., Barabási, A.-L., and Miller, G.W. (2020). The exposome and 

health: Where chemistry meets biology. Science (80-. ). 367, 392 LP – 396. 

Vives-Usano, M., Hernandez-Ferrer, C., Maitre, L., Ruiz-Arenas, C., Andrusaityte, S., Borràs, 

E., Carracedo, Á., Casas, M., Chatzi, L., Coen, M., et al. (2020). In utero and childhood 

exposure to tobacco smoke and multi-layer molecular signatures in children. BMC Med. 18, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


10 
 

243. 

Vrijheid, M., Casas, M., Gascon, M., Valvi, D., and Nieuwenhuijsen, M. (2016). Environmental 

pollutants and child health-A review of recent concerns. Int. J. Hyg. Environ. Health 219, 331–

342. 

Vrijheid, M., Fossati, S., Maitre, L., Márquez, S., Roumeliotaki, T., Agier, L., Andrusaityte, S., 

Cadiou, S., Casas, M., de Castro, M., et al. (2020). Early-Life Environmental Exposures and 

Childhood Obesity: An Exposome-Wide Approach. Environ. Health Perspect. 128, 67009. 

Walker, D.I., Valvi, D., Rothman, N., Lan, Q., Miller, G.W., and Jones, D.P. (2019). The 

Metabolome: a Key Measure for Exposome Research in Epidemiology. Curr. Epidemiol. 

Reports 6, 93–103. 

Warembourg, C., Maitre, L., Tamayo-Uria, I., Fossati, S., Roumeliotaki, T., Aasvang, G.M., 

Andrusaityte, S., Casas, M., Cequier, E., Chatzi, L., et al. (2019). Early-Life Environmental 

Exposures and Blood Pressure in Children. J. Am. Coll. Cardiol. 74, 1317–1328. 

Wei, Q., Lee, J.H., Wang, H., Bongmba, O.Y.N., Wu, C.S., Pradhan, G., Sun, Z., Chew, L., 

Bajaj, M., Chan, L., et al. (2017). Adiponectin is required for maintaining normal body 

temperature in a cold environment. BMC Physiol. 

Wild, C.P. (2005). Complementing the genome with an “exposome”: the outstanding challenge 

of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. 

Biomarkers Prev. 14, 1847–1850. 

Wild, C.P. (2012). The exposome: from concept to utility. Int. J. Epidemiol. 41, 24–32. 

Wolff, M.S., Anderson, H.A., Britton, J.A., and Rothman, N. (2007). Pharmacokinetic variability 

and modern epidemiology - The example of dichlorodiphenyltrichloroethane, body mass index, 

and birth cohort. Cancer Epidemiol. Biomarkers Prev. 

Wong, H.L., Pfeiffer, R.M., Fears, T.R., Vermeulen, R., Ji, S., and Rabkin, C.S. (2008). 

Reproducibility and correlations of multiplex cytokine levels in asymptomatic persons. Cancer 

Epidemiol. Biomarkers Prev. 17, 3450–3456. 

Wood, S.A., Xu, F., Armitage, J.M., and Wania, F. (2016). Unravelling the Relationship between 

Body Mass Index and Polychlorinated Biphenyl Concentrations Using a Mechanistic Model. 

Environ. Sci. Technol. 50, 10055–10064. 

Yao, L., Herlea-Pana, O., Heuser-Baker, J., Chen, Y., and Barlic-Dicen, J. (2014). Roles of the 

chemokine system in development of obesity, insulin resistance, and cardiovascular disease. J. 

Immunol. Res. 2014. 

Yin, S., Wang, C., Wei, J., Wang, D., Jin, L., Liu, J., Wang, L., Li, Z., Ren, A., and Yin, C. 

(2020). Essential trace elements in placental tissue and risk for fetal neural tube defects. 

Environ. Int. 139, 105688. 

Zhao, H., Zheng, Y., Zhu, L., Xiang, L., Zhou, Y., Li, J., Fang, J., Xu, S., Xia, W., and Cai, Z. 

(2020). Paraben Exposure Related To Purine Metabolism and Other Pathways Revealed by 

Mass Spectrometry-Based Metabolomics. Environ. Sci. Technol. 54, 3447–3454. 

Zheng, Y., Zhang, C., Weisskopf, M.G., Williams, P.L., Claus Henn, B., Parsons, P.J., Palmer, 

C.D., Buck Louis, G.M., and James-Todd, T. (2020). Evaluating associations between early 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


11 
 

pregnancy trace elements mixture and 2nd trimester gestational glucose levels: A comparison 

of three statistical approaches. Int. J. Hyg. Environ. Health 224, 113446. 

Zhou, M., Ford, B., Lee, D., Tindula, G., Huen, K., Tran, V., Bradman, A., Gunier, R., Eskenazi, 

B., Nomura, D.K., et al. (2018). Metabolomic Markers of Phthalate Exposure in Plasma and 

Urine of Pregnant Women. Front. Public Heal. 6, 298. 

Zhu, W., Wang, Z., Tang, W.H.W., and Hazen, S.L. (2017). Gut microbe-generated 

trimethylamine N-oxide from dietary choline is prothrombotic in subjects. Circulation 135, 1671–

1673. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


N=1301

Population
and design

ExposomeExposome
Omics

Exposome-omics-wide association study
(ExWAS)

Web Catalogue Biological insights

Pregnancy Childhood

Exposome Multi- omics

DNA methylome
Transcription
Proteins
Serum metabolites

Urine metabolites

Personal

General

Sources Pathways

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


F. Biological insights

D. Exposome-omics-wide association study (ExWAS)

White 

blood 

cells 

Urine

Plasma 

&

Serum

B.  Exposome (pregnancy and childhood)

Exposome

X1

X2

X…

Xi

X1

X2

X…

Xi

P
re

gn
an

cy
C

h
ild

h
o

o
d

HELIX study
N=1,301 mother-child pairs

6 European countries
Mean age 8y

A. Population

DB EWAS Atlas
EWAS Catalog
Exposome Explorer

Body mass index

(1) ExWAS

Ancestry

Cohort

Omics

Y1

Y2

Y…

Yi

Y1

Y2

Y…

Yi

(2) Network (3) Sensitivity

(1) Literature overlap (2) Functional enrichment

DB Gene-sets
Molecular motifs
Diseases

C. Omics (childhood)

CH3

CH3

Cluster childhood#1

GIS modelling

Mobile devices 
& sensors

Questionnaires

Biomonitoring

DNA methylation
(450K, 386,518 CpGs)

Transcription
- Gene expression (HTAv2, 
58,254 transcript clusters)
- miRNAs (Agilent, 1,117 
miRNAs)

Proteins
(3 multiplex assays, 

36 proteins)

Metabolites
(AbsoluteIDQ p180, 177 
metabolites)

Metabolites
(1H NMR, 44 annotated
metabolites)

E. Web catalogue

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


●●

●●●

●

● ●
●

●

●

●

●●●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●●●●
●●●●●
●●

●●●

●

●

●●●

●●●●●
●●●●
●

●

●

●
●●

●

●

●●
●

●

●●●
●●●●

●

●

●

●●

●●
●●

●●●
●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●
●●●●
●

●

●

●●

●●●●

●

●

●

●

●●●
●

●●●●●●●

●●●●
●●●●
●

●
●●

●●
●

●●●●

●

●

●

●●●

●

● ●●
●

●●

●
●

●●●●●●●

●

●●●●●●●●●
● ●●●●

●

●

●

●

●

●

●
● ●

●●●●
●

●

●

−10

0

10

20
M

et
eo

ro
lo

g
ic

al

B
u
ilt

 
en

vi
ro

n
m

en
t

Tr
af

fi
c

N
at

u
ra

l 
sp

ac
es

Li
fe

st
yl

e

N
oi

se

N
on

-e
ss

en
ti
al

 
m

et
al

s

O
C
s

O
P 

Pe
st

ic
id

es

PB
D

E
s

PF
A
S
s

Ph
th

al
at

es

To
b
ac

co
 s

m
ok

e

E
ss

en
ti
al

 
m

in
er

al
s

A
ir
 p

ol
lu

ti
on

Ph
en

ol
s

W
at

er
 D

B
Ps

●

●

●

●

●

●

Serum metab.

Urine metab.

Methylome

miRNA

Proteome

Transcriptome

-l
og

1
0
(p

-v
al

u
e)

*
d
ir
ec

ti
on

 o
f 
as

so
ci

at
io

n
A. Pregnancy

●

●

●

●

●●
●

●●●●●●●●●●●●●●●●●●

●●●

●

●●
●●

●

●

●●●●

●
●

●

●●●

●●
●●●

●

●●
●

●

●
●

●●●●●●●●●●●
●●
●

●●

●

●

●

●●●●●
●●●

●

●

●

●●

●●●
●●

●●●●

●

●●

●●●

●●●●●●●●

●

●●
●●●●●●●●

●●

●●● ●
●●

●

●

● ●●●●●●●●●●●●●●

●●●●●
●

●

●●●●●●
●●●

●

●●●●●●

●●●●

●●●●●
●
●

●

●

●●
●
●

●●●

●

●

●●●●●●●●
●●
●●●●

●
●●

●
●●
●
●●●●●●●
●

●

●●

●●

●● ● ●●

●

●
●

●

●

●●●

●
●

●

●

●●●●

●●

●●

●●●
●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●

●●●●●●●

●

●●●

●
●

●

●

●

●

●●●●
●●
●●●●

●●

●●●
●●

●
●●

●●●

●●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●
●●●

●●●

●●

●

●●●

●

●

●●●●●●●

●●●●●●●●

●●●●
●●

●●●
●

●

●●
●

●

●

●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●
●●●●

●

●●
●●

●

●●

●●●
●●●●
●●●
●●
●●●●●

●

●●

●●

●

●

●

●●

●●●

●

●

●●●

●●●●●
●●●●●

●●●●
●

●
●

●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●

●●

●●

●

●

●

●●

●

●

●

●●●●●●●●

●

●●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●

●
●●

●

●

●

●●

●

●

●

●●

●

●●●●●

●●●●

●

●

●●●●

●

●●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●
●●
●●●

●
●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●

●●

●

●

●●●

●

●●●●●●●●●●
●●●●●●
●●●

●●●

●●
●●●

●

●

●

●●●●●

●

●

●●

●

●●●●●
●

●
●

●●●

●

●
●●●●

●●●●●●

●●●●

●
●●●

●

●

●●●●
●●

●
●

●

●

●

●

●●●●●●

●

●●●●●

●

●●

●●●●

●●●

●●●●●●●●●●●

●●●
●

●

0

20

40

M
et

eo
ro

lo
g
ic

al

B
u
ilt

 
en

vi
ro

n
m

en
t

Tr
af

fi
c

N
at

u
ra

l 
sp

ac
es

Li
fe

st
yl

e

N
oi

se

N
on

-e
ss

en
ti
al

 
m

et
al

s

O
C
s

O
P 

Pe
st

ic
id

es

PB
D

E
s

PF
A
S
s

Ph
th

al
at

es

To
b
ac

co
 s

m
ok

e

E
ss

en
ti
al

 
m

in
er

al
s

A
ir
 p

ol
lu

ti
on

Ph
en

ol
s

S
oc

ia
l 
an

d
 

ec
on

om
ic

 c
ap

.

In
d
oo

r 
ai

r

-l
og

1
0
(p

-v
al

u
e)

*
d
ir
ec

ti
on

 o
f 
as

so
ci

at
io

n

●

●

●

●

●

●

Serum metab.

Urine metab.

Methylome

miRNA

Proteome

Transcriptome

B. Childhood

Per omics

CpG sites

Serum metabolites

Urine metabolites

Proteins

miRNAs

Transcipt clusters

Top 10 exposures

N=249

0

20

40

60

80

M
o Cd

Co
tin

ine

M
at
. s

m
ok

ing
ET

PA K

M
NB

P Zn

M
EP

A
TH

M
s

Cu
PCB 1

18
PFO

S Cs
Hum

.
PFN

A
PFU

NDA Se Hg T

100

75

50

25

0

CpG sites

miRNAs

Transcript clusters

Proteins

Urine 
metabolites

Serum 
metabolites

N=921

Per omics

Top 10 exposures

(1)

(2)

(3)

(1)
(2)

(3)

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


Preg#3 
Phthalates 
& parabens

Preg#2 
Molybdenum

Preg#1
Tobacco 
smoke

Cu

Tl As Se

BUPA

MEHHP

Cd Cs

Fruits Fastfood

MECPP
MEOHP

PBDE 153
PCB 170

DDT
PAmoderate

DDEHCB
PCB 180

PAvigorous

PM2.5 NO2 outPM10

Press. (t1)

Land use Green space

NDVI

Chloroform

Brom_THMs

DEP

THMs

BPATRCS

Distance road

Connectivity

PMabs out

Building

Walkability
MNBP

OHMiNP

MBZP

PRPA
K

Zn

Mg

ETPA

Cotinine

Mat. smoking

MEPA

Mo

PFUNDA

Hg

CpG sites

miRNAs

Transcript clusters

Proteins

Serum metabolites

Urine metabolites

Exposures

Legend

Pregnancy: Exposome-omics network

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


7#Indoor air

1# Organochlorine
chemicals

6# Non-persistent 
chemicals and diet

5# Phthalates 
(DEHP metabolites)

3# Fish and 
contaminants

4# Weather

2# Copper

Childhood: Exposome-omics network

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.04.21256605doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256605


Overlap pregnancy exposome with EWAS catalog
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