Supplemental Content

Derivation and external validation of a simple risk score to predict in-hospital mortality in patients hospitalized for COVID-19, Mann et al. (2021)

eMethods. Statistical methods supplement

eTable 1. List of predictive factors in the Mi-COVID19 data registry considered. **eTable 2.** Characteristics of hospitals in the Mi-COVID19 data registry. **eTable 3.** Full data patient characteristics, by derivation and validation set.

eFigure 1. Web application user interface.

eFigure 2. Mortality rate by hospital in the Mi-COVID19 data registry. **eFigure 4.** Odds ratios and 95% confidence intervals for age in final risk model (reference age 50 years).

eAppendix A. Model selection details

eFigure 3a. Change in quality metrics for top 10 variables with most improved MSE when added to base model of in-hospital mortality from COVID-19 on hospital COVID-19 mortality rate.

eFigure 3b. Change in quality metrics for top 10 variables with most improved MSE when added to base model of in-hospital mortality from COVID-19 on patient's age and hospital COVID-19 mortality rate.

eFigure 3c. Change in quality metrics for top 10 variables with most improved MSE when added to base model of in-hospital mortality from COVID-19 on patient's age, respiratory rate on presentation, pulse oximetry on presentation, heart rate on presentation, and hospital COVID-19 mortality rate.

eFigure 3d. Change in quality metrics for top 10 variables with most improved MSE when added to base model of in-hospital mortality from COVID-19 on patient's age, respiratory rate on presentation, pulse oximetry on presentation, heart rate on presentation, creatinine on presentation, and hospital COVID-19 mortality rate.

eFigure 3e. Change in quality metrics for backward selection when removed from base model of in-hospital mortality from COVID-19 on patient's age, respiratory rate on presentation, creatinine on presentation, pulse oximetry on presentation, heart rate on presentation, and hospital COVID-19 mortality rate. **eFigure 3f.** Change in quality metrics for top 10 variables with most improved MSE when added to base model of in-hospital mortality from COVID-19 on patient's age, respiratory rate on presentation, pulse oximetry on presentation, and hospital covid mortality from COVID-19 on patient's age, respiratory rate on presentation, pulse oximetry on presentation, creatinine on presentation, and hospital COVID-19 mortality rate.

eAppendix B. Model discrimination within subgroups

eTable 4: AUC by subgroup.

- (A) Race
- (B) Gender
- (C) Age

eMethods: Statistical methods supplement

Adjusted AUC calculation

The AUC, which is defined as the area under the ROC curve, may be alternatively formulated as an estimate of the probability that a model correctly predicts a greater risk of mortality for a patient who actually died than for a patient who actually survived. Let A denote a randomly selected patient, and let B denote a randomly selected patient with the opposite outcome (i.e., if patient A died, patient B survived and vice versa). Then, let p_A and p_B be the predicted probabilities of in-hospital mortality for patient A and patient B, respectively. We say that the set of predictions (A, B, p_A , p_B) are "correct" if the patient who died had a larger predicted probability of mortality, "tied" if the predicted probabilities are equal, and "incorrect" if the patient who survived had a larger predicted probability of mortality. Then, the AUC is the average of the function $\psi(A, B, p_A, p_B)$ defined below across all possible randomly selected pairs of predictions.

$$\psi(A, B, p_A, p_B) = \begin{cases} 1 & if \text{ correct} \\ \frac{1}{2} & if \text{ tied} \\ 0 & if \text{ incorrect} \end{cases}$$

In the setting where the data includes patients from multiple hospitals and the mortality rate within each hospital is included in the model, the predicted probabilities for patients in a hospital with a higher mortality rate will already be larger than the predicted probabilities for patients in a hospital with a lower mortality rate. Therefore, there is built in discrimination between patients from different hospitals that has nothing to do with the clinical characteristics in the model. We only want to estimate the discrimination of the model based on the clinical characteristics included, without this artificial boost from including the hospital mortality rate, so we calculate an adjusted AUC instead, described below.

The key idea is that we modify the procedure described above so that we only compare pairs of patients (A, B) that are *in the same hospital*; as a result, any systematic differences between hospitals are irrelevant to the calculation of the adjusted AUC. More specifically, assume we have *m* hospitals and let N_i denote the number of patients who are in hospital *i* and *N* denote the total number of patients across all *m* hospitals. As before, let A denote a randomly selected patient. However, now let B denote a randomly selected patient *from the same hospital* as patient A where patient B has the opposite outcome. We keep all other notation the same as above.

We can now calculate AUC^(w) as:

$$AUC^{(w)} = E[\psi(A, B, p_A, p_B)]$$

= $\sum_{i=1}^{m} E[\psi(A, B, p_A, p_B)|A \text{ in hospital } i]P(A \text{ in hospital } i)$
= $\sum_{i=1}^{m} E[\psi(A, B, p_A, p_B)|A \text{ and } B \text{ in hospital } i]P(A \text{ in hospital } i)$
= $\sum_{i=1}^{m} E[\psi(A, B, p_A, p_B)|A \text{ and } B \text{ in hospital } i]\frac{N_i}{N}$
= $\sum_{i=1}^{m} \frac{N_i}{N} AUC_i$

Where AUC_i denotes the within-hospital AUC for hospital i, i.e.,

AUC_i = $E[\psi(A, B, p_A, p_B)|A \text{ and } B \text{ in hospital } i]$

So, AUC^(w) can be written as:

$$AUC^{(w)} = \sum_{i=1}^{m} w_i AUC_i$$
$$w_i = \frac{N_i}{N}.$$

Therefore, AUC^(w) is a weighted average of the individual hospital AUC's with weights proportional to the hospital sample size.

Modeling for web application

We use the following technique to allow for approximate refitting of the model without sharing the proprietary dataset when we share the model in the web application. First, we fit the logistic regression model described on the mortality outcome. Next, we transformed the predictions using a logit transform. If you fit a linear regression model (OLS) on these transformed predictions, the coefficients of the OLS model are exactly the same as those in the original logistic regression model. The coefficients of an OLS model (β) can be calculated using matrix algebra with the design matrix (X) and the outcome vector (y):

$$\beta = (X'X)^{-1}(X'y)$$

We save the matrices G = XX and B = Xy where y is the nx1 vector of logit transformed predictions from the logistic regression model and X is the design matrix.

Then, say that one wishes to estimate the coefficients for a model without creatinine. Let creatinine be the fourth column in *X* and let G^* be *G* with the 4th row and column removed and B^* be B with the 4th row removed. Then, we can estimate the coefficients β^* for a model without creatinine as:

$$\beta^* = (G^*)^{-1}(B^*)$$

Thus, we can estimate the coefficients of the OLS model with any subset of the variables that we included in our final model. This method allows us to still share a model that can be refitted and updated while maintaining data privacy since we save and share the *G* and *B* matrices rather than the raw data.

Odds ratio and the hospital mortality rate

Note that the estimated odds ratio of mortality in a hospital with mortality rate r, for a patient with other covariates X₁ as compared to a patient with other covariates X₂, where γ is the model coefficient for rand β are the coefficients for all other covariates is $e^{\gamma r + \beta' X_1} / e^{\gamma r + \beta' X_2} = e^{\beta' X_1 - \beta' X_2}$. The hospital mortality rate is cancelled out in the odds ratio. Therefore, the estimated odds ratio between two patients in the same hospital can be calculated without knowing the hospital mortality rate.

Category	Variable
Demographics and	Age
admission	Gender
	Race
	Ethnicity
	Admission reason
	Prior residence
	How did the patient arrive to the ED?
	BMI
History	Smoking history
	Vaping history
	Left ventricular ejection fraction documented prior to admission?
	Does the patient have a history of Aortic Stenosis?
	Has the patient received any type of dialysis prior to the hospital encounter?
	Has the patient been on a home ventilator prior to the hospital encounter?
	Is the patient on home oxygen?
	Is the patient a healthcare worker?
	Is the patient a service worker?
	Previously treated by an opioid
	Previously treated by a benzodiazepine
	Previously treated by a sedative
Comorbidities	AIDS or HIV
	Diabetes - Uncomplicated
	Hypertension
	Hemiplegia or Paraplegia
	Inflammatory Bowel Disease (i.e., Crohns or Ulcerative Colitis)
	Leukemia
	Lymphoma
	Any Malignancy without Metastasis
	Metastatic Solid Tumor
	Mild Liver Disease
	Moderate or Severe Liver Disease
	Asthma
	Moderate or Severe Kidney Disease
	Myocardial Infarction (MI) (history of/prior event)
	Transplant
	Peptic Ulcer Disease
	Peripheral Vascular Disorders
	Rheumatoid Arthritis or Arthropathy/Connective Tissue
	Venous Thromboembolism (DVT/PE)
	Cardiovascular Disease
	Cerebrovascular Disease
	Chronic obstructive pulmonary disease (COPD)
	Congestive heart failure (CHF)/Cardiomyopathy
	Chronic Pulmonary Disease (other than asthma or COPD)
	Dementia
	Diabetes - Complicated
	Number of comorbidities
Symptoms	Fever (measured temperature 99.0 - 100.4 [F])
	Fatigue
	Diarrhea
	Nausea/vomiting
	Altered Mental Status

Category	Variable
Symptoms cont.	None of the above
	Fever (measured temperature >100.4 [F])
	Subjective fever
	Generalized malaise
	Weakness
	Loss of taste
	Dyspnea / shortness of breath
	Loss of smell
	Hypoxia / new or escalated O2 requirement
	Cough (New or Worsening)
	Non-pleuritic chest pain
	Pleuritic chest pain
	Sputum productions
	Rhinorrhea
	Myalgias
Chief Complaint	Difficulty breathing or shortness of breath
	Cough
	Fever
	Chest pain
	Nausea or vomiting
	Diarrhea
	Other chief complaint
First recorded vitals	Temperature
during the hospital	Heart rate
encounter (vital	Respiratory rate
signs from ED if	Systolic blood pressure
	Diastolic blood pressure
	I riage score
Labs from day 1 or	Highest Lactate
0ay 2 01 beenitelization (first	Highest Creatinine
	Hignest Alanine Amino Transferase (ALT)
avaliable)	Highest White Blood Coll (WBC)
	Highest Transnin
	Highest Brain Natriuratic Dontido (BND)
	Highest Forritin
	Highest C-reactive protein (CRP)
	Highest Lactic Acid Debydrogenase (LDH)
	Highest Procalcitonin
	Highest Hemoglobin (Hab)
	Lowest Platelet
	Lowest Absolute Lymphocyte Count
	Lowest pH
	Highest Fibringgen
	Highest Interleukin 6 (IL-6)
	Highest ervthrocyte sedimentation rate (ESR)
Chest x-rav results	Air Spaced Density Disease
from day 1 or day 2	Loculations
of hospitalization	New or Worsening Infiltrates
(first available)	Nodular Airspace Disease
	Mass
	ł

Category	Variable						
Chest x-ray results	Pleural Effusion						
from day 1 or day 2	Pneumonia						
of hospitalization	Pulmonary Edema						
(first available)	Pulmonary Vascular Congestion						
	No Evidence of Pneumonia						
	No Change from Previous/No Interval Change						
	Atelectasis						
	Normal/No Abnormalities						
	None of the Above Statements						
	Post Obstructive Pneumonia						
	Necrotizing Pneumonia						
	Nodules						
	Aspiration						
	Aspiration Pneumonia						
	Bronchial Wall Thickening/Pleural Thickening						
	Bronchiectasis						
	Emphysema/Emphysematous Changes						
	Bronchopnuemonia						
	Hyperinflation						
	Infection (Cannot Rule Out Infection, Likely Infection)						
	Infiltrate (Not Specified)						
	Interstitial Lung Disease/Interstitial Disease						
	Neoplasm/Metastatic Disease/Malignancy						
	Mucus Plugging/Plugging						
	Pneumonitis						
	Tree in Bud						
	Interval Improvement or Resolution						
	Abscess						
	Cannot Rule Out Pneumonia						
	Granuloma						
	Opacities (central)						
	Opacities (peripheral)						
	Opacities (subpleural)						
	Opacities (Not specified)						
	Cavitation						
	Consolidation						
	Ground Glass						
	Infiltrate (Single Lobe)						
	Infiltrate (Multiple Lobes)						
	Other abnormal finding						
	Any pneumonia indication on chest x-ray						

eTable 1: List of predictive factors in the Mi-COVID19 data registry considered.

	Da	ata Set Spec	ific Charact	eristics	General Characteristics			
Hospital ID	Full Sample Size	Complete Cases Size	COVID Mortality Rate	Discharge Date Range in Data	Bed Size	Discharges	Teaching Hospital?	Hospital Type
Α	269	260	0.15	3/17 - 5/26	1,059	44,920	Yes	Voluntary non-profit - Private
В	155	142	0.21	3/18 - 5/20	537	30,614	Yes	Voluntary non-profit - Church
С	110	109	0.13	3/28 - 7/20	109	32,636	Yes	Voluntary non-profit - Other
D	108	102	0.14	3/15 - 5/15	1,070	61,758	Yes	Voluntary non-profit - Private
Е	96	91	0.17	4/04 - 8/14	196	9,307	No	Voluntary non-profit - Private
F	90	89	0.11	3/13 - 6/21	283	15,855	Yes	Voluntary non-profit - Church
G	91	88	0.11	3/21 - 6/06	317	15,093	Yes	Voluntary non-profit - Private
Н	88	85	0.49	3/21 - 4/10	404	18,345	Yes	Proprietary
I	83	79	0.28	3/19 - 6/01	443	19,102	Yes	Voluntary non-profit - Private
J	82	78	0.11	3/20 - 5/03	443	17,240	Yes	Voluntary non-profit - Other
K	72	71	0.08	3/18 - 5/04	250	12,186	Yes	Voluntary non-profit - Private
L	69	68	0.25	3/16 - 5/14	632	30,354	Yes	Voluntary non-profit - Private
М	67	65	0.15	3/16 - 4/30	330	13,159	Yes	Voluntary non-profit - Private
Ν	66	65	0.12	3/19 - 5/09	458	34,863	Yes	Voluntary non-profit - Private
0	62	61	0.19	3/23 - 5/01	158	7,704	Yes	Proprietary
Р	67	58	0.37	3/18 - 5/21	304	15,804	Yes	Voluntary non-profit - Private
Q	54	48	0.07	3/16 - 6/23	189	8,639	No	Voluntary non-profit - Private
R	45	45	0.31	3/22 - 6/04	378	17,969	Yes	Voluntary non-profit - Private
S	49	42	0.27	3/22 - 5/09	434	26,705	Yes	Voluntary non-profit - Private
Т	46	44	0.54	3/23 - 4/19	273	10,815	Yes	Proprietary
V-A	39	39	0.21	3/18 - 7/07	391	21,759	Yes	Voluntary non-profit - Other
V-B	39	36	0.33	3/17 - 4/22	584	19,882	Yes	Proprietary
V-C	37	35	0.24	3/20 - 4/14	215	7,797	Yes	Voluntary non-profit - Private
V-D	37	33	0.27	3/16 - 4/05	877	35,908	Yes	Voluntary non-profit - Private
V-E	33	32	0.12	3/17 - 4/22	189	6,142	Yes	Voluntary non-profit - Private
V-F	30	30	0.17	3/21 - 5/10	193	9,816	Yes	Voluntary non-profit - Private
V-G	29	28	0.07	4/02 - 5/22	208	10,476	Yes	Voluntary non-profit - Private
V-H	23	22	0.26	3/16 - 4/12	361	18,166	Yes	Voluntary non-profit - Private

V-I	21	21	0.24	3/22 - 6/03	136	2,767	Yes	Voluntary non-profit - Other
V-J	22	20	0.00	3/14 - 4/12	191	12,260	Yes	Voluntary non-profit - Private
V-K	20	19	0.05	3/05 - 5/11	133	3,763	No	Voluntary non-profit - Private
V-L	19	18	0.16	3/27 - 5/02	179	7,254	No	Proprietary
V-M	16	16	0.06	4/06 - 6/12	79	3,349	Yes	Voluntary non-profit - Private
V-N	18	15	0.22	3/23 - 5/26	360	14,206	Yes	Voluntary non-profit - Private
V-O	13	12	0.08	4/01 - 4/20	186	11,579	Yes	Voluntary non-profit - Private
V-P	12	10	0.17	4/05 - 6/11	328	15,767	Yes	Voluntary non-profit - Other
V-Q	7	6	0.43	4/14 - 6/17	139	4,362	No	Proprietary
V-R	7	5	0.00	3/13 - 4/17	310	11,233	Yes	Voluntary non-profit - Private
V-S	1	1	1.00	4/14 - 4/14	78	4,953	No	Voluntary non-profit - Other
V-T	1	0	1.00	3/28 - 3/28	365	18,252	Yes	Voluntary non-profit – Other

Hospitals are ordered by the complete cases sample size for the final risk score model used. "Full Sample" is the sample size available before removing observations with missing data for the variables in the final model. The mortality rate is calculated using the full sample. A "V" at the beginning of a hospital ID indicates that that hospital was in the validation set. Hospital V-T was not included in the final validation set because there were no complete cases for that hospital.

eTable 2: Characteristics of hospitals in the Mi-COVID19 data registry.

	Overall		
	[N = 2193]	Data	aset
Characteristic	mean/No. (SD/%) [n*]	Derivation IN = 17691	Validation [N = 424]
Age	63.9 (16.8) [2193]	64.4 (16.7) [1769]	61.5 (17.3) [424]
Gender (female)	1046 (48%) [2193]	830 (47%) [1769]	216 (51%) [424]
Race (ves)			
Black	1024 (49%) [2101]	840 (49%) [1698]	184 (46%) [403]
White	949 (45%) [2101]	744 (44%) [1698]	205 (51%) [403]
Asian	52 (2%) [2101]	45 (3%) [1698]	7 (2%) [403]
Native American or Pacific Islander	10 (0%) [2101]	10 (1%) [1698]	0 (0%) [403]
Other	66 (3%) [2101]	59 (3%) [1698]	7 (2%) [403]
Ethnicity (ves)			
Hispanic	113 (5%) [2185]	92 (5%) [1762]	21 (5%) [423]
Non-Hispanic	1907 (87%) [2185]	1535 (87%) [1762]	372 (88%) [423]
Unknown	165 (8%) [2185]	135 (8%) [1762]	30 (7%) [423]
Residing in a Nursing Facility or Assisted			
Living (yes)	408 (19%) [2164]	340 (19%) [1748]	68 (16%) [416]
Ever-smoker (yes)	809 (40%) [2041]	645 (39%) [1648]	164 (42%) [393]
BMI	32.6 (60.4) [2079]	31.2 (8.5) [1680]	38.7 (136.7) [399]
No. of comorbidities			
0	289 (13%) [2187]	228 (13%) [1769]	61 (15%) [418]
1	420 (19%) [2187]	341 (19%) [1769]	79 (19%) [418]
2	462 (21%) [2187]	369 (21%) [1769]	93 (22%) [418]
3	375 (17%) [2187]	299 (17%) [1769]	76 (18%) [418]
4	269 (12%) [2187]	225 (13%) [1769]	44 (11%) [418]
>4	372 (17%) [2187]	307 (17%) [1769]	65 (16%) [418]
Presence of comorbidity (yes)	· · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Cardiovascular disease	596 (27%) [2187]	485 (27%) [1769]	111 (27%) [418]
Congestive heart failure	334 (15%) [2187]	275 (16%) [1769]	59 (14%) [418]
Chronic obstructive pulmonary disease	273 (12%) [2187]	208 (12%) [1769]	65 (16%) [418]
Asthma	274 (13%) [2187]	219 (12%) [1769]	55 (13%) [418]
Diabetes (complicated and uncomplicated)	817 (37%) [2187]	655 (37%) [1769]	162 (39%) [418]
Severe liver disease	15 (1%) [2187]	12 (1%) [1769]	3 (1%) [418]
Cancer	175 (8%) [2187]	144 (8%) [1769]	31 (7%) [418]
Symptoms (yes)			
Fatigue	747 (34%) [2187]	585 (33%) [1769]	162 (39%) [418]
Fever (subjective and objective)	1827 (84%) [2187]	1452 (82%) [1769]	375 (90%) [418]
Chest pain	358 (16%) [2187]	301 (17%) [1769]	57 (14%) [418]
Нурохіа	878 (40%) [2187]	729 (41%) [1769]	149 (36%) [418]
First recorded heart rate			
< 90 BPM	847 (39%) [2177]	701 (40%) [1760]	146 (35%) [417]
90-100 BPM	495 (23%) [2177]	391 (22%) [1760]	104 (25%) [417]
101-124 BPM	683 (31%) [2177]	544 (31%) [1760]	139 (33%) [417]
> 124 BPM	152 (7%) [2177]	124 (7%) [1760]	28 (7%) [417]
First recorded respiratory rate			
< 20	809 (38%) [2149]	645 (37%) [1734]	164 (40%) [415]
20-24	855 (40%) [2149]	682 (39%) [1734]	173 (42%) [415]
25-30	284 (13%) [2149]	240 (14%) [1734]	44 (11%) [415]
> 30	201 (9%) [2149]	167 (10%) [1734]	34 (8%) [415]

	Overall	Data	aset
Characteristic	mean/No. (SD/%) [n*]	Derivation [N = 1769]	Validation [N = 424]
First recorded systolic blood pressure			
>= 101 mmHg	1997 (93%) [2154]	1619 (93%) [1740]	378 (91%) [414]
90 - 100 mmHg	101 (5%) [2154]	80 (5%) [1740]	21 (5%) [414]
< 90 mmHg	56 (3%) [2154]	41 (2%) [1740]	15 (4%) [414]
First recorded pulse oximetry			
91-100%	1726 (80%) [2164]	1386 (79%) [1750]	340 (82%) [414]
81-90%	342 (16%) [2164]	287 (16%) [1750]	55 (13%) [414]
71-80%	56 (3%) [2164]	45 (3%) [1750]	11 (3%) [414]
<= 70%	40 (2%) [2164]	32 (2%) [1750]	8 (2%) [414]
Triage score			
1	112 (6%) [1880]	91 (6%) [1564]	21 (7%) [316]
2	907 (48%) [1880]	731 (47%) [1564]	176 (56%) [316]
3	753 (40%) [1880]	646 (41%) [1564]	107 (34%) [316]
4	47 (3%) [1880]	37 (2%) [1564]	10 (3%) [316]
5	61 (3%) [1880]	59 (4%) [1564]	2 (1%) [316]
Highest initial creatinine (mg/dL)	1.6 (1.7) [2140]	1.7 (1.7) [1737]	1.5 (1.7) [403]
Highest initial white blood cell count (K/uL)	8.3 (6.4) [2154]	8.4 (6.7) [1750]	7.9 (4.4) [404]
Pneumonia indication on chest x-ray (yes)	1618 (79%) [2054]	1318 (78%) [1684]	300 (81%) [370]

* n is the number of complete cases in the data for the given variable. Percentages are calculated as No./n.

eTable 3: Full data patient characteristics, by derivation and validation set.

Mi-COVID19 COVID-19 In-Hospital Mortality Risk Score Model

	Age:
nstructions	35
Enter the characteristics of a patient hospitalized due to COVID-19 to calculate the estimated risk of in- iospital mortality for the patient. If you do not have access to a variable, select 'Not available' or delete all numbers from the input box. A hospital COVID-19 mortality ate of 2 is assumed if pone is given	Respiratory Rate on presentation: Less than 20 20-24 25-30 Greater than 30 Not available
Posults	Pulse Oximetry on presentation:
	91-100%
stimated risk of in-nospital nortality due to COVID-19:	81-90%
%	0 71-80%
	70% or lower
	O Not available
	Creatinine on presentation:
	1

Mi-COVID19 COVID-19 In-Hospital Mortality Risk Score Model

Instructions	Current Patient	Reference Patient	
Enter the characteristics of a patient	Age:	Age:	
ospitalized due to COVID-19	35	50	
odds ratio for in-hospital mortality as	Respiratory Rate on presentation:	Respiratory Rate on presentation:	
compared to a a reference patient	 Less than 20 	Less than 20	
(Reference Patient) at the same	0 20-24	0 20-24	
characteristics for the reference	◎ 25-30	25-30	
patient to calculate different odds	Greater than 30	Greater than 30	
atios.	 Not available 	 Not available 	
f you do not have access to a /ariable, select 'Not available' or	Pulse Oximetry on presentation:	Pulse Oximetry on presentation:	
delete all numbers from the input	91-100%	91-100%	
хос.	0 81-90%	0 81-90%	
Results	0 71-80%	0 71-80%	
The odds ratio of in-hospital	70% or lower	70% or lower	
nortality due to COVID-19 for the Current Patient compared to the	Not available	 Not available 	
Reference Patient is:	Creatinine on presentation:	Creatinine on presentation:	
0.2	1	1	

eFigure 1: Web application user interface. The app can be accessed at <u>https://micovidriskcalc.org/</u>.

eFigure 2: Mortality rate by hospital in the Mi-COVID19 data registry. The mortality rate is calculated using the full sample of patients who tested positive for SARS-CoV-2 available in the Mi-COVID19 data. Hospitals are ordered by the complete cases sample size for the final risk model. A "V" at the beginning of a hospital ID indicates that that hospital was in the validation set. Hospital V-T was not included in the final validation set because there were no complete cases for that hospital.

eFigure 4. Odds ratio and 95% confidence interval for age in final risk model with a reference age of 50 years old. The grey shaded region represents the 95% confidence interval for the odds ratio.

eAppendix A: Model selection details

FORWARD SELECTION STEP 1 Base Model: Mortality ~ Hospital

		Change from Base Model Mortality ~ Hospital			
Variable	Ν	MSE	AUC ^(w)	R-squared	
Age	1769	-0.013	0.220	0.081	
ED arrival	1659	-0.010	0.156	0.063	
Respiratory rate	1734	-0.008	0.149	0.051	
Triage score	1505	-0.007	0.147	0.047	
Number of comorbidities	1769	-0.007	0.190	0.044	
Altered mental status	1769	-0.006	0.087	0.038	
Dementia	1769	-0.006	0.087	0.037	
Creatine Phosphokinase (CPK)	447	-0.006	0.093	0.029	
Hypoxia	1769	-0.005	0.127	0.031	
Prior residence	1746	-0.004	0.108	0.025	

eFigure 3a: Change in quality metrics for top 10 variables with most improved MSE when added to base model of in-hospital mortality from COVID-19 on hospital COVID-19 mortality rate. (i) Histograms of change in MSE, AUC^(w) and R-squared for all 20 hospitals in the derivation set. (ii) Histograms of change in MSE, AUC^(w) and R-squared for all 20 hospitals in the derivation set. (iii) Change in quality metrics for all derivation hospitals combined. Bolded variables were chosen for inclusion in the next step of forward selection.

Based on these results, we included age in the model for the next step of forward selection because it was the variable with the most improved MSE, AUC^(w), and R-squared overall (iii) and showed improvement for almost all hospitals on these metrics (i and ii).

FORWARD SELECTION STEP 2 Base Model: Mortality ~ Age + Hospital

		Change from Base Model			
		Mor	tality ~ Age + Hos	oital	
Variable	Ν	MSE	AUC ^(w)	R-squared	
Respiratory rate	1734	-0.007	0.032	0.045	
Creatine Phosphokinase (CPK)	447	-0.006	0.041	0.031	
Triage score	1505	-0.006	0.033	0.037	
Нурохіа	1769	-0.004	0.035	0.028	
Pulse oximetry	1750	-0.004	0.021	0.024	
ED arrival	1659	-0.003	0.012	0.019	
Highest creatinine	1737	-0.003	0.020	0.016	
Heart rate	1760	-0.003	0.010	0.016	
Altered mental status	1769	-0.002	0.014	0.010	
Consolidation on chest x-ray	1684	-0.002	0.014	0.010	

eFigure 3b: Change in quality metrics for top 10 variables with most improved MSE when added to base model of in-hospital mortality from COVID-19 on patient's age and hospital COVID-19 mortality rate. (i) Histograms of change in MSE, AUC^(w) and R-squared for all 20 hospitals in the derivation set. (ii) Histograms of change in MSE, AUC^(w) and R-squared for all 20 hospitals in the derivation set with outliers removed. (iii) Change in quality metrics for all derivation hospitals combined. Bolded variables were chosen for inclusion in the next step of forward selection.

Based on these results, we included respiratory rate, pulse oximetry, and heart rate in the model for the next step of forward selection. Respiratory rate was the variable with the most improved MSE and pulse oximetry and heart rate were two other vital signs that appeared to be predictive in the model overall (iii) and consistently across individual hospitals (i and ii). CPK was missing for a majority of patients and was unlikely to be widely available for COVID-19 patients. The triage score showed improvement, however, the other vital signs are included in the triage score. We also prioritized adding the vital signs over symptoms such as hypoxia. ED arrival described the manner in which a patient arrived at the hospital (such as "car," "ambulance," and "by foot"), which we did not expect to be widely available at all hospitals. Therefore, in the second step of forward selection, we decided to include the three most predictive vital signs. In the following steps, we could determine whether any of the other variables that appeared predictive in this step remained predictive after the vital signs were added to the model.

		Change from Base Model			
		Mortality ~ Age + Respiratory Rate + Pulse			
		Oximet	ry + Heart Rate + I	Hospital	
Variable	Ν	MSE		R-squared	
Highest interleukin 6 (IL-6)	130	-0.003	0.001	0.016	
Creatine Phosphokinase (CPK)	438	-0.003	0.031	0.016	
Highest creatinine	1687	-0.002	0.016	0.015	
ED arrival	1610	-0.002	0.007	0.012	
Consolidation on chest x-ray	1634	-0.001	0.006	0.007	
Number of comorbidities	1716	-0.001	0.013	0.007	
Hypoxia	1716	-0.001	0.011	0.006	
Triage score	1458	-0.001	0.007	0.005	
Highest hemoglobin (Hgb)	1698	-0.001	0.002	0.004	
Altered mental status	1716	-0.001	0.009	0.004	

eFigure 3c: Change in quality metrics for top 10 variables with most improved MSE when added to base model of in-hospital mortality from COVID-19 on patient's age, respiratory rate on presentation, pulse oximetry on presentation, heart rate on presentation, and hospital COVID-19 mortality rate. (i) Histograms of change in MSE, AUC^(w) and R-squared for all 20 hospitals in the derivation set. (ii) Histograms of change in MSE, AUC^(w) and R-squared for all 20 hospitals in the derivation set. (iii) Change in quality metrics for all derivation hospitals combined. Bolded variables were chosen for inclusion in the next step of forward selection.

Based on these results, we included the patient's initial *creatinine* level in the model. The IL-6 and CPK lab values were available for very few patients. Creatinine was the factor with the most improvement in MSE and AUC^(w) overall (iii) after these variables and it showed reasonably consistent improvement across hospitals (i and ii).

		Change from Base Model		
		Mortality ~ Age + Respiratory Rate + Pulse		
		Oximetry + Heart Rate + Creatinine + Hospital		ine + Hospital
Variable	Ν	MSE	AUC ^(w)	R-squared
Highest interleukin 6 (IL-6)	129	-0.003	-0.015	0.017
ED arrival	1582	-0.001	0.004	0.008
Consolidation on chest x-ray	1609	-0.001	0.005	0.007
Нурохіа	1687	-0.001	0.005	0.006
New or worsening infiltrates on chest-xray	1609	-0.001	0.003	0.004
Triage score	1434	-0.001	0.004	0.004
Mild liver disease	1687	-0.001	0.002	0.004
Previously treated by a benzodiazepine	1687	-0.001	-0.001	0.004
Previolusly treated by a sedative	1687	-0.001	-0.001	0.004
Previoiusly treated by an opioid	1687	-0.001	-0.001	0.004

eFigure 3d: Change in quality metrics for top 10 variables with most improved MSE when added to base model of in-hospital mortality from COVID-19 on patient's age, respiratory rate on presentation, pulse oximetry on presentation, heart rate on presentation, creatinine on presentation, and hospital COVID-19 mortality rate. (i) Histograms of change in MSE, AUC^(w) and R-squared for all 20 hospitals in the derivation set. (ii) Histograms of change in QSE, AUC^(w) and R-squared for all 20 hospitals in the derivation set. (iii) Change in quality metrics for all derivation hospitals combined.

Based on these results, we did not include any further variables in the model. Th IL-6 lab values again were available for very few patients. After that, none of the other variables improved MSE, AUC^(w), or R-squared overall enough to warrant inclusion (iii).

BACKWARD SELECTION STEP 1

eFigure 3e: Change in quality metrics for backward selection when removed from base model of in-hospital mortality from COVID-19 on patient's age, respiratory rate on presentation, pulse oximetry on presentation, heart rate on presentation, creatinine on presentation, and hospital COVID-19 mortality rate. (i) Histograms of change in MSE, AUC^(w) and R-squared for all 20 hospitals in the derivation set. (ii) Histograms of change in MSE, AUC^(w) and R-squared for all 20 hospitals in the derivation set. (ii) Histograms of change in MSE, AUC^(w) and R-squared for all 20 hospitals in the derivation set.

Based on these results, we decided to remove heart rate on presentation from the model because removing it from the model actually consistently improved MSE and R-squared across individual hospitals (i and ii). All other variables were kept in the model, because removing them from the model hurt the quality metrics across individual hospitals.

FORWARD SELECTION STEP 5

		Change from Base Model Mortality ~ Age + Respiratory Rate + Pulse Oximetry + Creatinine + Hospital		
Variable	Ν	MSE	AUC ^(w)	R-squared
Highest interleukin 6 (IL-6)	130	-0.004	-0.017	0.021
ED arrival	1585	-0.001	0.004	0.009
Consolidation on chest x-ray	1611	-0.001	0.004	0.006
Нурохіа	1690	-0.001	0.008	0.005
New or worsening infiltrates on chest-xray	1611	-0.001	0.004	0.004
Triage score	1437	-0.001	0.007	0.004
Previously treated by a benzodiazepine	1690	-0.001	<0.001	0.003
Previoiusly treated by a sedative	1690	-0.001	<0.001	0.003
Previoiusly treated by an opioid	1690	-0.001	< 0.001	0.003
Altered mental status	1690	< 0.001	0.004	0.003

eFigure 3f: Change in quality metrics for top 10 variables with most improved MSE when added to base model of in-hospital mortality from COVID-19 on patient's age, respiratory rate on presentation, pulse oximetry on presentation, creatinine on presentation, and hospital COVID-19 mortality rate. (i) Histograms of change in MSE, AUC^(w) and R-squared for all 20 hospitals in the derivation set. (ii) Histograms of change in MSE, AUC^(w) and R-squared for all 20 hospitals in the derivation set. (iii) Change in quality metrics for all derivation hospitals combined.

Based on these results, we did not include any further variables in the model. The IL-6 lab values again were available for very few patients. After that, none of the other variables improved MSE, AUC^(w), or R-squared overall enough to warrant inclusion (iii).

eAppendix B: Model discrimination within subgroups

In order to understand how the model performed for patients with different characteristics (fairness), we calculated the model AUC with the full data (derivation and validation set combined), but subsetted to different subgroups of race, gender, and age. Because the median age of patients who died in the data was 74 years, we use this as a cutoff for the age subgroup analysis. We note that the model shows similar discrimination for Black and white patients, as well as for female and male patients (Appendix Table 4). The model shows less discrimination for patients 75 years or older, but still improves over random guessing by almost 20% (Appendix Table 4).

1	Δ)
-V	<u> </u>	'

	Race		
	Black	White	
AUC by group	0.80 [n=966]	0.78 [n=909]	
Overall AUC	0.79 [N = 1,875]		

(R)
١	-	/

	Gender		
	Female	Male	
AUC by group	0.81 [n=1,000]	0.79 [n=1,088]	
Overall AUC	0.80 [N = 2,088]		

(C)

	Age		
	< 75	75 or older	
AUC by group	0.80 [n=1,503]	0.68 [n=585]	
Overall AUC	0.80 [N = 2,088]		

AUC values are calculated with predictions assuming a hospital mortality rate of .2 for all patients, using the full complete cases dataset (derivation and validation sets combined with complete cases for the variables included in the risk model).

The subgroup analysis for race excludes individuals who were not identified as either Black or white in the dataset, and therefore the overall AUC is calculated with a subset of this data.

eTable 4: AUC by subgroup. (A) Race. (B) Gender. (C) Age.