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Abstract  

A novel mechanistic model describing the rate of COVID-19 spread is presented, that 

differs conceptually from previously published deterministic models. One of its main 

characteristics is that the pool of infected people is not assumed to be homogeneously mixed, 

but rather as a passage into which individuals enter upon contagion, move within it in a plug-

flow manner and leave at recovery, within a fixed time period. So, the present model differs 

conceptually in the way it describes the dynamics of infection. An ‘infection unit’ is defined 

as the amount of COVID-19 virus that generates contagion, if it reaches a susceptible 

individual. This model separately considers various pools: symptomatic and asymptomatic 

infected patients; three different pools of recovered individuals; pools of assisted, 

hospitalized patients; the quarantined and, finally, those who died from COVID-19. The 

transmission of the disease from an infected person to others is described by an infection rate 

function, while an encounter frequency function modulates the frequency of effective 

encounters between the infected and the susceptible. The influence of the model’s parameters 

on the predicted results is presented. The effect of social restrictions and of quarantine policy 

on pandemic spread is shown. For model calibration, a set of experimental data is used. The 

model enables the calculation of the actual behaviour of the studied pools during pandemic 

spread. 

Keywords Symptomatic and asymptomatic COVID-19, Pandemic spread, Mechanistic 

models 
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1. Introduction 

It seems that COVID-19 is one of the hardest health problems that humanity has had 

to deal with throughout its history, not so much because of the severity of the disease, nor its 

rate of spreading, but because of its global impact as the most rapidly widespread pandemic. 

This is the case due to the 21st century combination of accessible, advanced transportation 

technology and the large volume of international travel for both business and pleasure—a 

blatant feature of modern consumer societies. Currently, almost all the countries in the world 

are engaged in trial-and-error processes, in which sanitary measures (including vaccination 

rate) are competing with economic activities of all kinds in  battles between public health 

management and sustainable population maintenance (Ceylan, 2020). There is need of a 

macro-model that describes, as closely as possible, the whole of this complex issue 

(Acemoglu et al., 2020; Alvarez et al., 2020). Within such a macro-model, the modelling of 

the epidemiologic aspect and its particularities is of extreme relevance.  

The number of research papers published on COVID-19 is vast, and their scope is 

broad (Fraser et al., 2021). Sometimes, the spread of a pandemic has tendencies that seem 

random. Therefore, statistical methods have been applied to predict the spread of such 

diseases, since they take multiple factors into account by means of time-series models, 

multivariate linear regressions, grey forecasting models, backpropagation neural networks, 

etc. However, the aforementioned statistical tools seem to be insufficient for analyzing 

pandemic randomness, and these models are difficult to generalize, as noted by Ceylan 

(2020). He claims that the COVID-19 prevalence in several European countries may be 

described using variants of an autoregressive integrated moving average (“ARIMA”) model, 

a time-series-type model. Wu et al. (Wu et al., 2020) simulated the expansion of  COVID-9 

across the most populated Chinese cities connected by airlines, using what they called ‘a 

metapopulation model’ with the SEIR variables (Susceptible, Exposed, Infectious, 
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Recovered). The basic calculations applied Markov chain Monte Carlo methods. Models of 

this type are called ‘agent-based’ models because they focus on the movement of/and contact 

between individuals. They require laborious calculations that provide a geographical aspect to 

pandemic spread. Hunter et al. made a detailed comparison of equation-based models versus 

agent-based models (Hunter et al., 2018). Recently Tsori and Granek (Tsori & Granek, 2020), 

among others, commented that most of the deterministic models are of the SEIR-type; they 

also stressed the fact that a ‘perfect mixing’, that is ‘total homogeneity’ in each of the pools, 

is always assumed. They pursue mitigation of this limitation by formulating “a continuous 

spatial model based on nearest-neighbor infection kinetics,” which leads to a reaction-

diffusion-type description of pandemic spread. This enables the description of the spatial 

spread of a pandemic; their results show the two-dimensional spread across an actual 

geographical map. Nevertheless, their model maintains the same mathematical format as the 

SEIR-type models by describing the infected (I) pool as a mixed compartment, in the sense 

that an individual classified as ‘infected’ may leave this compartment independently of 

his/her ‘external age’, i.e., the time spent in it (Danckwerts, 1953); here, ‘age’ is defined, 

therefore, as the average time an infected individual spends in the I pool. (The significance of 

this point is explained below.) The Manenti et al. model describes the entire population of the 

world as a perfectly mixed batch reactor (Manenti et al., 2020) and reaches formulations that 

are equivalent to the classic SEIR or SIR models, as may be expected. Cao et al. proposed an 

improvement in the 6-compartment SEIR-type model that adds a pool of quarantined patients 

(Cao et al., 2020). They used a time-series analysis exponential smoothing method and the 

ARIMAX model, often used in statistical modeling to analyze changes that occur over time. 

A considerable improvement in the SEIR-type models was done by Ivorra et al. (Ivorra et al., 

2020). They called it the θ-SEIHRD model, and it was based on their previously published 

Bi-CoDis model (Ivorra et al., 2015). Here, they added seroprevalence as a measured 
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variable, which is a very important addition to a system with a scant number of measured 

variables.  

In this work, we focus on the mechanisms of pandemic spread and present a deterministic 

model with a novel approach. Our model differs conceptually in the manner of description of 

the transmission dynamics of the disease, the key being the ‘external age distribution’ of the 

individuals exiting the I pool (Danckwerts, 1953). 

 

1.1 The flow dynamics of the infected (I) population pool  

Here, we try to focus on one basic concept implied in the SEIR formulation and 

propose an alternative. The SEIR-inspired models, in all their variants, collide with the basic 

observation that the duration of this illness is an almost constant number of days (Manenti et 

al., 2020).  

The well-known SEIR models describe distinct pools of the susceptible (S), exposed 

(E), infectious (I), and recovered (R), and sometimes additional pools--all of them defined as 

completely mixed. In a completely mixed continuous system, the systemic response  to a 

pulse disturbance will always have a bell shape (in the case of an ideal instantaneous pulse, to 

a descending exponential), as described in basic textbooks (Levenspiel, 1972). This bell 

shape represents the ‘age distribution’ within the compartment; consequently, the ‘age’ of the 

individuals leaving the I pool will show a wide distribution. There would be individuals who 

stay in that pool a very short time, near zero, and others who stay in the pool a very long 

time, near infinite. This blatantly contradicts our knowledge about the behaviour of COVID-

19 and other Coronaviruses that produce sicknesses with quite defined durations. Therefore, 

SEIR-type models fail to properly predict this viral infection mechanism, especially for 

shorter time periods. The I pool, as it will be defined here, has an inlet of individuals from the 

pool of the susceptible, S, and outlets to other pools, but has a completely different 
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behaviour. In the terminology of process engineering, the exhibited behaviour is called ‘a 

plug flow system’, resembling a conveyor belt, transporting infected individuals. The main 

characteristic defining such a system is its population dynamics, i.e., the homogeneity of the 

‘age’ of the individuals leaving the compartment. The ‘age’ of the elements leaving the 

system cluster around a certain mean ‘residence time’, tr, with relatively small variance. In 

practice, it is well known that a COVID-19-infected individual stays as such for a finite and 

quite defined period of time only, as estimated in the literature on the basis of experimental 

findings (Bar-On et al., 2020). Though there may be some individual variations in the case of 

COVID-19, this period of time seems to be consistently around 2 weeks (Liu et al., 2020). 

The state of the patient changes throughout this period and may lead either to recovery or to a 

more severe state and then, either to a full recovery or to death. The actual events during a 

normal I period take place along one clear timeline in an orderly manner. This is a basic 

characteristic of the illness, and the SEIR models fail to describe it. Such models may fit the 

dynamics of infection in the case of a population pool over long periods of time but cannot 

describe the short-term dynamics. Here, we present an alternative approach that overcomes 

this weakness. 

2. An Alternative Approach 

2.1. The I pool 

A ‘plug flow model’ is a diametrically opposed alternative to the totally mixed 

compartments that characterize the SEIR-type models. In a plug flow system, all the elements 

that enter a compartment will leave it after residing in it a finite time, tr, which corresponds to 

the term ‘serial interval’, commonly used in epidemiology (Last, 2001). In terms of our 

model, all the infected individuals will remain in this condition approximately tr days.  

In an ideal plug flow situation, any change in the input at t=0 will produce the same 

(or similar) signal at the outlet, at t=tr. In other words, the ‘age’ of each infected individual 
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will increase steadily from 0 to tr, which represents the period during which he/she was a 

member of the I pool. In practice, there will obviously be a certain distribution around the 

mean value but, in this version of the model, we disregard it.  

For convenience in formulating this model, a dimensionless ‘residence time’ (τ=t/tr) 

in the I pool has been defined, as follows. The value of τ varies between 0 (input) and 1 

(output), running parallel to time t. It is assumed that all the infected individuals contained 

within the I pool at any time (t>tr) behave similarly after being infected. The period of t<tr 

must be treated somewhat differently, as will be shown below.  

Based on the definition of τ, Fig. 1 schematizes how individuals, with different I ages, 

are located throughout the entire I pool (top of the figure) at a given time t. At the bottom of 

Fig. 1, a single individual is shown in transit through the course of the illness (0<τ<1). For 

any t>tr, a record of all the data in the entire I pool would show the whole length of the 

passage or conveyor belt that represents the pool of the infected, occupied by infected 

individuals of increasing ‘age’ (‘residence time’ in the I pool). In other words, at the pool 

inlet (τ=0), I(t) newly infected would be entering, while the infected individuals located 

within 0<τ<1 would be those who entered the pool at an earlier time (t-τ·tr). The ‘oldest’ 

individuals, after tr days of illness, are found at the exit, τ=1, leaving the I pool. For the special 

case, in which the time elapsed from the start of the pandemic is exactly t=tr, those 

individuals who are just about to leave the I pool (at τ=1) will be those first, susceptible 

individuals who had just become infected and started their infection period at t=τ=0. 

There is another particular case that occurs when the time elapsed from the beginning 

of the pandemic is t<tr. In this case, ‘patient zero’ is located on the ‘moving sidewalk’ at 

τ=t/tr and has not yet left the I pool, the end of which is located at τ=1. As result, the ‘moving 

sidewalk’ is empty in the interval [τ,1]. Other than this special case, all patients start the 

transit through the I pool at τ=0 and exit at τ=1. 
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Figure 1.  Top: The I pool as it behaves over time, t. Bottom: The transit of a single patient 

through the I pool is delimited from the time of infection (inlet at τ=0) to the end of the 

sickness (outlet at τ=1).  

  

Before describing the I pool, we must introduce our definition of the ‘infection unit’ 

(U) – the amount of COVID-19 virus released by an infectious individual in any way or form 

having the capacity to cause the conversion of susceptible (S) individuals into infected (I) 

ones. This definition is inspired by the ‘photosynthetic unit’ concept, PSU, that is widely 

accepted in the area of photosynthesis modelling (Megard et al., 1984; Merchuk et al., 2019; 

Prézelin, 1981). Initially, the PSU concept seems intangible, yet it produces excellent 

practical results. We consider that the same may be true for our viral ‘infection unit’ concept, 

U. An infected individual moves through the I pool, producing U at a certain rate, ru(τ). This 

rate is only the result of the disease incubating in his body during his/hers transit through the 

illness (from τ=0 to τ=1) and will, therefore, not be affected by any of the variables in the 

model. A shifted Gaussian function, as shown in the lower part of Fig. 1, was chosen 
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arbitrarily to represent ru(τ). Other functions may be used without changing the underlying 

concept. 

ru(𝜏) = 𝑟𝑢𝑚𝑎𝑥 ∙ exp {−0.5 ∙ [
(𝜏−𝜏𝑚𝑎𝑥)∙𝑡𝑟

𝑏
]

2

} 
(1) 

The curve plotted in Fig. 1 concurs with the actual behaviour of the virus. Once the invading 

virus enters the body, it requires a certain amount of time to locate and penetrate its target 

cell, before activating its cellular machinery to produce the first generation of native virus. 

The durations of some of those steps have been reported for other viruses (Zhang et al., 

2020). Then, additional time (an ‘eclipse phase’) necessarily follows, during which more 

cells must be infected and finally reach τmin, the point in time at which the actual 

dissemination of the virus from the ill person’s body takes place. At this stage, the infection 

may finally be diagnosed. Since ru(τ) starts at zero and at the end of the infectious period it 

will once again be zero or close to it, it is obvious that, at some point (τ=τmax), there will be a 

peak in viral dissemination rate (rumax), followed by a ru(τ) decrease. Here, it is assumed that 

there is a certain minimum rate of U production, below which there is no infectivity (rumin), as 

shown in Fig. 1. At the end of the period (τ=1), the patient recuperates and passes into the R 

pool, unless his/her health deteriorates. This last situation will also be considered below. 

The generation of U is necessary, but on its own, it is not enough to transmit an 

infection. For transmission to occur, the presence of a susceptible individual is also required. 

In the SEIR models, the presence of susceptible individuals is permanent, as implied by the 

assumed kinetic form of the infection rate, where the product I times S appears. As long as S 

is not null, some degree of infection occurs. Nonetheless, in practical, interpersonal 

encounters, an infected individual will not always be within physical infectivity range, nor 

will the quantity of the U released by an infectious person be enough to effectively transmit 

this viral disease. This fact is expressed by means of our encounter frequency function, f(t), 
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where t is the timeline along which the pandemic progresses. We will focus on the case of a 

typical, undetected, asymptomatic person with COVID-19.  

The transmission of this infection via individuals who carry the virus, but are 

asymptomatic, is a characteristic of COVID-19 and was seldom seen in the SARS and MERS 

outbreaks. As long as the disease has not yet been diagnosed, no special insolation measures 

are taken. It may be assumed that there are different types of encounters between infected and 

susceptible members in a community related to lifestyles, usual daily routines, essentially 

repetitious in nature (e.g., work, study, shopping, hobbies, regular schedules and means of 

transportation). The importance of such regular routines has been recognized Backer et al. 

(Backer et al., 2020). There are also certain non-routine activities, often involving a larger 

number of people (e.g., weddings, parties, dinners, etc.). The abovementioned “super-

spreading events” can easily be included here in addition to individual singularities but here, 

for the sake of simplicity, we intentionally present only the repetitive daily encounters as 

periodic functions. One of the simplest formulations for this encounter frequency function, 

f(t), is:  

𝑓(𝑡) = 𝑎(𝑡). 𝑓𝑜 ∙ sin(2𝜋𝑡)

𝑓𝑜 = [
1 if sin(2𝜋𝑡) > 0 

0  otherwise

 
(2) 

In expression (2), the influence of the restrictions imposed on social contacts (‘social 

distancing’) and their impact on the behaviour of the population may be accounted for in a(t), 

which is instrumental in the modulation of the infection rate constant (KSI). The need for this 

modulation has already been indicated in the literature  (Canabarro et al., 2020; Loli 

Piccolomini & Zama, 2020). We adopted the following function based on another recent 

report (Prasad, 2020):  

𝑎(𝑡) = 𝛽𝑜(𝑡𝑐) ∙ 𝑒𝑥𝑝(−𝜆(𝑡𝑐) ∙ (𝑡 − 𝑡𝑐)) + 𝛽𝑓(𝑡𝑐) ∙ (1 − 𝑒𝑥𝑝(−𝜆(𝑡𝑐) ∙ (𝑡 − 𝑡𝑐))) (3) 
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where it is assumed that, once a restriction has been imposed by the authorities and it starts 

on a certain fixed day (tc), the level of social contact will decay at a rate of λ from a starting 

value βo, tending towards a limit value of βf. Obviously, the greater the severity of the 

restrictions, the higher the λ value and the lower the βf value. The Eq. (3) above may be used 

for i consecutive constraints; with λi values for each interval tci-tci+1, on which the i restriction 

is set. As previously detailed (Loli Piccolomini & Zama, 2020), to improve the flexibility of 

Eq. (3), the integration interval may be split into sub-intervals with widths that do not have to 

coincide exactly with the days on which the restrictions were decreed.  

It should also be taken into account that not every infected person in the I pool will 

transmit the disease. In this paper, we assume that all diagnosed patients (Id), are under 

proper care, completely isolated, in which case f(t)=0 and they cease to be contagion factors; 

the same applies to all assisted, hospitalized patients.  However, infected individuals who 

have not yet been identified as such because they are not showing blatant symptoms, are 

considered in the present version of this model as being the only factors of pandemic 

transmission. 

The U defined above are generated at the rate of ru(τ), produced during the evolution 

of the disease within the body of each patient during his/her passage through the illness (from 

τ=0 to τ=1); as such, this rate is not affected by any of the variables in the model. By 

definition, ru represents the rate of generation of the U by a single infected individual. In 

order to calculate total U generation, the number of infected individuals is required. The 

number of undetected infected persons at time t who are at  stage  of the illness is Ind(t-τ·tr). 

It is convenient to define the total number of U generated by individuals in the state of 

infection 𝝉 at a given time t as U(t,): 

U(t,)=𝐼𝑛𝑑(𝑡 − 𝜏 ∙ 𝒕𝒓) ∙ 𝑟𝑢(𝜏) (4) 
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Here, Ind(t-τ·tr) is the number of Ind who entered the Ind pool at an earlier time (t-τ·tr) and, as 

a result, they have an ‘infectivity rate’ of ru(τ) at a given time t, where 𝝉  is the dimensionless 

‘residence time’ (tr)  in the Ind pool, that runs along time, taking values from 𝝉=0  to 𝝉=1, as 

previously explained. Note that Eq. (4) renders the U production rate of infected individuals 

at time t in state 𝝉. Multiplying by the encounter function, we get the number of U able to 

transmit infection. Integrating over the range of 𝝉, we obtain the total rate of infection at any 

time, t>tr, within the Ind pool: 

Ψ𝑛𝑑(𝑡) = 𝑓(𝑡) ∙ ∫ 𝐼𝑛𝑑(𝑡 − 𝜏 ∙ 𝒕𝒓) ∙ 𝑟𝑢(𝜏)𝑑𝜏
1

0
 

 

(5) 

Equation (5) shows that, for the calculation at a time t, we must refer back to past values of 

Ind(t) (before t), following Eq. (4). (The precise numerical calculation procedure is detailed 

later on in this paper.) Note that, for t<tr, the number of infected individuals coincides with 

the initial condition Ind(0). For the interval 0<t≤tr, we have modified Eq. (5) as follows: 

Ψ′
𝑛𝑑(𝑡) = 𝑓(𝑡) ∙ ∫ 𝐼𝑛𝑑(𝑡 − 𝜏 ∙ 𝒕𝒓) ∙ 𝑟𝑢(𝜏)𝑑𝜏

𝑡/𝑡𝑟

0
 (6) 

 

2.2 Description of the model  

The history of a single member of the entire I pool, from the time of his/her infection 

(τ=0), is presented here. At this stage, it is important to note the  distinction between 

undetected individuals (asymptomatic), who are unaware of their medical conditions and to 

whom no social-distancing restrictions are yet applied, and those diagnosed patients, 

identified as having COVID-19, who are assumed to be under quarantine. The general 

scheme of the model may be seen in Fig. 2 below.  

In Fig. 2, the rectangles indicate that the individuals in two  I pools behave as 

described in Fig. 1 in regard to time dependence, tr, while the circles symbolize other pools, 
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in which the exit time, t, is not dependent on the ‘residence age’; that is, the sub-population is 

‘perfectly mixed’.  

  

Figure 2.  Id is the pool of diagnosed patients; Ind is the pool of undetected individuals; Rnd 

includes those undetected and recuperated; Rd includes those diagnosed and recuperated; A 

- the assisted, hospitalized patients; D - the dead; S - those susceptible. The broken lines 

indicate the action of the U that catalyze the conversion of S into I. The ri represents the 

flux rate between the different pools. 

 

That fraction of infected individuals who are not diagnosed, either because they were 

asymptomatic or because the symptoms were mild and went unnoticed, constitute the pool, 

Ind. They are, however, contagious and can infect the susceptible population (S) in 

accordance with the U dissemination mechanism described above. All the undiagnosed 

individuals in the Ind pool recover after a time of tr, when they become members of the 

corresponding pool of the diagnosed and recovered patients, Rnd. The remainder of the total 

infected, Id, develop characteristic symptoms after the period of incubation and are then 

isolated; thus, we assume that they no longer serve as factors in contagion. After tr, when the 

Id recuperate, they enter the pool Rd. An alternative case is when a patient suffers a 

complication during his/her illness (related or not to pre-existing problems) and the patient’s 

health deteriorates further, requiring some kind of intensive treatment—thus passing to the 

assisted, hospitalized (A) pool. The point in the patient’s history, at which this change in 
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status may possibly take place, is symbolized as τIdA. The patients in the A pool either 

recuperate and transit into Rd or, contrarily, their condition deteriorates to a state of death, 

when they join the D pool, having died of COVID-19.   

Our model describes the mechanism of COVID-19 dissemination as a series of 

mathematical expressions, symbolized by the different arrows in Fig. 2. 

 

2.3. Balance in the Ind pool 

We define the total number of infected, I, as the sum of all the diagnosed and 

undetected infected individuals: 

𝐼 = 𝐼𝑛𝑑 + 𝐼𝑑 (7) 

Step S→I, the contagion is itself, is responsible for the generation of all the infected, Ind and 

Id, at rate rSI. This step is catalyzed by the U generated within the Ind pool, in accordance with 

the mechanism described above. Therefore, rSI can be presented as Eq. (5): 

𝑟𝑆𝐼(𝑡) = 𝐾𝑆𝐼 ∙
𝑆(𝑡)

𝑃0
∙ Ψ𝑛𝑑(𝑡) (8) 

The term (
𝑺(𝒕)

𝑷𝟎
) is the fraction of susceptible individuals in the population and gives physical 

meaning to the encounter function, f(t). The constant KSI characterizes the infectivity of the 

virus, though it may be somewhat different for different genetic variants of the same virus.  

The overall change in the number of individuals in the Ind pool represents the balance of the 

fluxes, S→I (influx) and Ind→Rnd (outflow). A fraction of the I generated corresponds to the 

Ind, the rest to the Id.  

Defining the ratio 𝝓 as: 

𝑟𝑆𝐼𝑛𝑑(𝑡) = 𝜙 ∙ 𝑟𝑆𝐼(𝑡) (9) 

it is obvious that the rate of the undetected, infected (Ind), moving to the pool of the 

undetected, recuperated, rIndRnd, will be similar to the inpu, rSInd  but shifted by tr days, thus: 
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𝑟𝐼𝑛𝑑𝑅𝑛𝑑(𝑡) = 𝑟𝑆𝐼𝑛𝑑(𝑡 − 𝒕𝒓) (10) 

This means that the first individuals to leave the Ind pool and reach the Rnd pool are those 

who first entered the Ind pool tr days earlier. This assures the simple fact that no patient will 

recuperate before a time tr from the beginning of the process (t=0), as usually observed in 

practice. A similar delay will take place in the transit from Id to Rd. This delay is not 

described by the SIR-type models.  

In our model, the rate of change of Ind is given simply by: 

(
𝑑𝐼𝑛𝑑

𝑑𝑡
) = 𝜙 ∙ 𝑟𝑆𝐼(𝑡) − 𝑟𝑆𝐼𝑛𝑑(𝑡 − 𝒕𝒓)= 𝜙 ∙ (𝑟𝑆𝐼(𝑡) − 𝑟𝑆𝐼(𝑡 − 𝒕𝒓)) (11) 

Equation (11) simply states that the accumulation of the infected, Ind, is equal to the 

difference between those generated and those exiting that pool to the pool of the recuperated, 

Rnd. 

2.4 Balance within the Id pool  

The population in the Id pool is kept balanced by the influx of S→Id (rSId) and two outflows, 

Id→Rd (rIdRd) and Id→A (rIdA). However, a considerable simplification may be obtained by 

accepting the abovementioned assumption (derived from Eq. (9)) about the relationship 

presented below (in Eq. (12)), that takes advantage of seroprevalence information:  

𝑟𝑆𝐼𝑛𝑑(𝑡)

𝑟𝑆𝐼𝑑(𝑡)
=

𝜙

1−𝜙
 (12) 

letting us write: 

𝑟𝑆𝐼𝑑(𝑡) = (
1−𝜙

𝜙
) ∙ 𝑟𝑆𝐼𝑛𝑑(𝑡) (13) 

It is intuitive that an infected patient will not become gravely ill immediately after 

infection, since a certain period is required before the patient may reach a state of severe 

illness. The rate of transit (rIdA) from Id to A, the pool of assisted, hospitalized patients, 

applies to some of the infected individuals, Id (t-τIdA∙ tr), at an ‘age’ τIdA in the Id pool. The 

range of possible complications in this disease is extremely wide, since it depends on the 
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patients’ previous health conditions. It would be extremely difficult to contemplate all the 

possibilities and, therefore, we assume the simplest mathematical form, and rIdA is written as: 

𝑟𝐼𝑑𝐴(𝑡) = 𝐾𝐼𝑑𝐴 ∙ 𝐼𝑑(𝑡 −  𝜏𝐼𝑑𝐴 ∙ 𝑡𝑟), (14) 

where it has also been assumed that the rate of patients exiting to pool A is proportional to 

Id(t-𝝉𝑰𝒅𝑨 ∙ 𝒕𝒓). It seems that this is the likely point at which this disease may lead to 

complications in a fraction of the patients at the ‘age’ of 𝝉𝑰𝒅𝑨. This roughly agrees  with 

reported field observations (Novack, 2020). In the special case of t<𝝉𝑰𝒅𝑨·𝒕𝒓, no patient will 

have yet exited to the assisted, hospitalized A pool; such an event can only occur after 

t=𝝉𝑰𝒅𝑨·𝒕𝒓. The output from the Id pool to the Rd pool, consisting of the diagnosed, recuperated 

patients, is written as: 

𝑟𝐼𝑑𝑅𝑑(𝑡) = 𝐾𝐼𝑑𝑅𝑑 ∙ 𝐼𝑑(𝑡 − 𝑡𝑟), (15) 

where it has been assumed that the exit rate  to pool Rd is proportional to the number of 

patients Id(t-tr), and that no patient can recover before tr days from the initial time of infection 

(t=0). Therefore, the mathematical formulation of this balance is presented as: 

 

(
𝑑𝐼𝑑

𝑑𝑡
) = (

1−𝜙

𝜙
) ∙ 𝑟𝑆𝐼𝑛𝑑(𝑡) − 𝐾𝐼𝑑𝐴 ∙ 𝐼𝑑(𝑡 − 𝜏𝐼𝑑𝐴 ∙ 𝑡𝑟) − 𝐾𝐼𝑑𝑅𝑑 ∙ 𝐼𝑑(𝑡 − 𝑡𝑟) (16) 

 

2.5 The rest of the pools 

The formulations for the rest of the pools are much simpler. There are no fixed time-

frames of which we are aware for severely ill patients who remain in pool A. The pools Rd, 

Rnd, and D grow monotonically over time, while pool S can only shrink, since we do not 

consider births nor deaths as causes of COVID-19.  

The balances for the recuperated patients’ pools, Rd and Rnd (both these pools are 

considered here to be resistant to COVID-19) involve the following fluxes: Ind→Rnd (rIndRnd); 

Id→Rd (rIdRd); and A→Rd (rARd). Flux rIndRnd (from Eq. (10)) represents undetected, infected 
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patients who have recuperated; flux rIdRd (from Eq. (15)) represents diagnosed, infected 

patients who have recuperated; and rARd represents those who recuperated after a period of 

assisted, hospital treatments. Our mathematical expression for rARd follows a simple first-

order law: 

𝑟𝐴𝑅𝑑(𝑡) = 𝐾𝐴𝑅𝑑 ∙ 𝐴(𝑡) (17) 

The balances for pools Rd, Rnd and R are formulated as: 

𝑑𝑅𝑑

𝑑𝑡
= 𝐾𝐼𝑑𝑅𝑑 ∙ 𝐼𝑑(𝑡 − 𝒕𝒓) + 𝐾𝐴𝑅𝑑 ∙ 𝐴(𝑡) (18) 

𝑑𝑅𝑛𝑑

𝑑𝑡
= 𝑟𝑆𝐼𝑛𝑑(𝑡 − 𝒕𝒓) (19) 

𝑅(𝑡) = 𝑅𝑑(𝑡) + 𝑅𝑛𝑑(𝑡) (20) 

Similarly, the balance of the assisted, hospitalized patients’ pool, A, is written as: 

𝑑𝐴

𝑑𝑡
= 𝐾𝐼𝑑𝐴 ∙ 𝐼𝑑(𝑡 − 𝜏𝐼𝑑𝐴 ∙ 𝒕𝒓) − (𝐾𝐴𝑅𝑑 + 𝐾𝐴𝐷) ∙ 𝐴(𝑡), (21) 

where the first term on the right-hand side of Eq. (21) represents the flux into pool A coming 

from pool Id and the second term is the sum of the recuperation and death rates of the 

assisted, hospitalized patients.  

The rate of change in the balance of COVID-19 mortality assumes that all the patients who 

reach pool D previously passed through pool A. It is written as:  

𝑑𝐷

𝑑𝑡
= −𝑟𝐴𝐷 = 𝐾𝐴𝐷 ∙ 𝐴(𝑡) (22) 

The balance of the susceptible patients’ pool S is written as: 

𝑑𝑆

𝑑𝑡
= −𝑟𝑆𝐼𝑛𝑑(𝑡) − 𝑟𝑆𝐼𝑑(𝑡) (23) 

In Eq. (23), the first and the second terms represent the outflows from the pool S to two types 

of infected pools, Ind and Id, respectively. Recall that neither births nor deaths, other than 

those due to COVID-19, are considered in the present model. Thus, the total population, P0, 

remains constant: 

𝑃0 = 𝑆 + 𝐼 + 𝐴 + 𝑅 + 𝐷. (24) 
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Since, in our model, natality and mortality other than from COVID-19 were not taken into 

account, the use of Eq. (24) makes redundant one of the balances presented in this model. 

 

3. Model calibration 

The hitherto described model (see scheme in Fig. 2) consists of a set of delay 

differential (DDE) and algebraic equations numbered from (1) to (24). In order to perform a 

model calibration and simulations thereof, we employed the MATLAB solver DDE23 with 

constant delays to integrate the system of DDEs. Our system is positive, since all the state 

variables have non-negative values for t≥0. The constant delays considered in the current 

formulation of the model were essentially two: ‘residence time’ (tr) in the I pool and 

‘residence time’ (tr·τIdA) of those individuals shifted into pool A. Other constant delays are 

those corresponding to the number of subintervals into which the limits of the integrations in 

Eqs. (5) and (6) are divided.  

In order to estimate the parameters, data from the early evolution of  COVID-19 in 

Italy (Giordano et al., 2020) was used, as an example of the application of the “Infection 

Units Model.” Table 1 shows the set of fitting parameters and the initial conditions for the 

DDEs used. We fit the solution of the set of DDEs  to the measured data from the cumulative 

diagnosed, infected (ΣId), recovered Rd and deceased D populations, relative to 35 days,  

from February 21, 2020 to March 26, 2020 (Giordano et al., 2020). The parameters of our 

model were calibrated by minimizing the following multi-output function, based on the 

average relative root mean squared error (aRRMSE), as elsewhere described (Borchani et al., 

2015): 

a𝑅𝑅𝑀𝑆𝐸 =
1

𝑑
∑ √

∑ (𝑦𝑗
(𝑙)

− 𝑦̂𝑗
(𝑙)

)2𝑁𝑡𝑒𝑠𝑡
𝑙=1

∑ (𝑦𝑗
(𝑙)

− 𝑦̅𝑗
(𝑙)

)2𝑁𝑡𝑒𝑠𝑡
𝑙=1

𝑑

𝑗=1

 

(25) 
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where y represents the experimental variable (i.e., ΣId, Rd or D ); d is the number of 

experimental variables (i.e., 3; ΣId, Rd and D); Ntest is the size of the data set; 𝒚𝒋
(𝒍)

 and  

and 𝒚̂𝒋
(𝒍)

 are the vectors of the actual and predicted outputs for the time vector, respectively, 

and 𝒚̅𝒋
(𝒍)

 is the vector of average of the actual outputs. The aRRMSE automatically rescales 

the error contributions of each target variable (Borchani et al., 2015). Minimization of Eq. 

(25) was performed by using the MATLAB Genetic Algorithm Solver with the following 

options: (i) a crossover fraction of 0.8; (ii) “mutationadaptfeasible” as mutation function; (iii) 

“selectionroulette” as selection function; (iv) a population size of 500; and (v) 50 generations.  

 The available experimental data started from February 21, 2020, when the figures of 

the pandemic were low, but revealing: ΣId=20, Rd=0 and D=1. If there had been a ‘patient 

zero’ (i.e., a single initiator, Id(0)=1) of the COVID-19 outbreak, that individual must have 

emerged a few days earlier; as such, we assumed that this initial event happened around 15 

days before. Thus, the integration interval was  50 days: a virtual first period of 15 days to 

capture the start of the pandemic outbreak, and a second period of 35 days that included the 

data from February 21, 2020.The initial conditions of this pandemic are  displayed in Table 1 

below.  

Since, at that time, no seroprevalence data were available,  is left here as a variable 

to be found by the optimization procedure. Neither were the data on A taken, due to the 

uncertainty regarding certain criteria, like the availability of free space (beds) and equipment 

for intensive treatment in the hospitals. The impact of the degree of compliance by the 

general population with the newly imposed regulations on ‘social distancing’ was taken into 

account. The Italian Government adopted new restrictive measures aimed at combating the 

spread of COVID-19. According to Italian announcements, the integration period (see Eq. 3 

above) was divided into three phases, delimited by the corresponding tc0-3 values in Table 1. 
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Consequently, three parameters were needed for λ and βf (see Table 1). The starting value, βo, 

was fixed at 1. 

 

Table 1. Displays a summary of the parameters identified with the Genetic Algorithm for 

the early development of the COVID-19 in Italy. The range of the boundary values (low 

and high), initial conditions, constraints, and fixed parameters during the optimization 

process are listed. 

 

Parameter Low High Fitted value 

KSI 0 30 28.950 

KIdRd 0 5 6.876 10-2 

KIdA 0 5 48.138 10-2 

KARd 0 5 5.016 10-2 

KAD 0 5 4.591 10-2 

βfo 0.1 0.8 26.543 10-2 

βf1 0.1 0.8 13.043 10-2 

βf2 0.1 0.8 12.073 10-2 

λo 0.001 0.9 6.510 10-2 

λ1 0.001 0.9 7.318 10-2 

λ2 0.001 0.9 11.190 10-2 

tc0 15 30 15.2 

tc1 30 40 30.1 

tc2 40 50 44.8 

tr 12 17 12.2 

τIdA 0.1 0.9 0.124 

ϕ 0.5 0.9 0.543 

Constraints 

KSI>KIdA>KIdRd>KARd> KAD βfo>βf1>βf2 

Initial conditions 

Ind(0)=3; Id(0)=1; D(0)=0; Rd(0); Rnd(0)=0; A(0)=0; S(0)=59999996 

Fixed parameters 

τmax=0.5 

 

 The fitting of the model to the experimental data of ΣId, Rd, and D is displayed in Fig. 

3; the fit is satisfactory (aRRMSE=0.0461). A was not taken as an input but as an output, to 

avoid the uncertainty in the reported data. This is related to the lack of homogeneity in 

medical criteria and the availability of hospital beds and medical devices in different 

locations.  This fit renders the numerical values for the parameters shown in Table 1. Of 

special interest is the mean residence time of an I patient (serial interval), tr=12.2 days and 

the fraction of infected individuals who were undetected, ϕ =0.543. Both these values are 
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within range of the reports available from multiple sources and strengthen the validity of our 

obtained results.  

   

Figure 3. Infection Units Model fitted to Italy: (a) cumulative diagnosed, infected 

population, ΣId; (b) diagnosed, recovered population, Rd; (c) dead population, D. 

Experimental data (cycles); modelled populations (continuous lines). 

 

4. Model behaviour 

In this section, we present numerical simulations that assess various characteristics of 

this model. To that end, simulations were run of our model extended to 200 days, with some 

modifications of the parameters from Table 1; each parameter was modified, one at a time, to 

reveal each one’s relative influence. These simulations were run with the parameters obtained 

with the fitted values listed in Table 1. The effect of the constant KSI on the predictions of the 

all variables (S, Id, Ind, A, D, Rd and Rnd) is presented in Fig. 4.   
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Figure 4.  Calculated plots of those diagnosed, infected, dead and recuperated for 

increasing values of the basic infectivity coefficient, KSI. 

 

These plots include the time ranges and the field data used for the fittings, but should 

not be considered as extrapolations, rather as extensions of their ranges, for the purpose of 

qualitatively exploring the potential of our model. The constants in Table I are strictly valid 

for the time ranges on which they were based. For a more accurate simulation, research based 

on much more data over a longer time period should be carried out; such a study is currently 

beyond our means. The primary purpose of this study is to present our novel conceptual 

approach.  

The constant, KSI, which may be seen as an infectivity coefficient in the formulation 

of the rate of S decrease, rSI, is one of the main factors affecting the performance of the 

model. Within the context of the COVID-19 pandemic, its variation range is rather limited to 

the altered infectivity of various the mutations. Nonetheless, a wider range of variation is 
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shown in Fig. 4, in order to display the general characteristics and the potential of extension 

of our model to other viruses with a similar mechanism of dissemination. The profiles of the 

diagnosed, infected Id, the dead D, the assisted, hospitalized A and the diagnosed, recuperated 

Rd are shown. Bear in mind that Id(t) is the number of instantaneous infected, and not the 

cumulative number that is published sometimes. The latter can be readily calculated from 

Id(t). As expected, the lowest values of KSI led to the failure of the virus to spread in the 

population. As KSI increases, a peak in Id(t) appears. The larger the KSI, the higher the peak 

and the earlier it appears. The peak in the curve indicates the point at which the rate of 

recovery that takes place after tr days; plus, the rate of transfer to pool A equals the rate of 

new infections. The plots of D, A and Rd concur with this behaviour and follow from it. A has 

a shape that is similar to that of Id(t), but at a substantially lower level.  

 In Fig. 5, the plots of the undetected, infected pools Ind and Rnd are shown for the 

same values of KSI as in Fig. 4 above. Their plots are similar to those of Id(t) and Rd(t), 

respectively. The calculation of those values is only possible if the knowledge of  is 

accessible from public seroprevalence data.  

  

Figure 5. Calculated plots of undetected, infected (A), and undetected, recuperated (B) for 

increasing values of the basic infectivity coefficient, KSI. 
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5. Quarantine 

The quarantine that is usually applied in most countries may be incorporated into the 

present model. Every time a patient is identified as having COVID-19, an epidemiologic 

study is carried out and all persons suspected of having been in potentially contagious contact 

with him/her are sent into quarantine, isolated for a duration that is usually less than tr. Those 

persons are indicated in the integrated scheme shown in Fig. 6, as pool Q. Those who test 

positive for COVID-19, during or at the end of the quarantine period, go to the Id pool, while 

the rest rejoin the susceptible in the S pool. 

 

Figure 6. Integrated scheme of the Infection Units Model including the quarantine pool, Q. 

The main associated parameter is the number of isolated persons per one confirmed infected, 

w. 

 

Strictly, those Q individuals usually enter the Id pool at a known ‘residence age’ 

larger than zero; this is, however, ignored in the present version of the model for the sake of 

simplicity. Additionally, precise data on the number of persons under quarantine are scant 

and not very reliable. Note that, here, Q is not the latent or pre-symptomatic stage that has 

been defined in other sources, but represents the actual quarantine as conducted in most 

countries. Quarantined individuals exit the S pool, at least temporarily, when joining the Q 

pool. The procedure of release from quarantine has several variants that may include the 
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simple requirement of the asymptomatic passage of a certain amount of time and/or one or 

two negative COVID-19 tests; those testing positive enter pool Id(t), while the rest rejoin the 

S pool. For the present demonstration and for the sake of simplicity, we assume that the 

average ‘residence time’ (tr) of an individual in pool Q (trQ), until receiving the results of the 

COVID-19 test from the health authorities, is 0.3·tr. We represent the number of isolated 

individuals per one confirmed infected by the letter w.  

𝒘 =
𝑟𝑆𝑄(𝑡)

𝑟𝑆𝐼𝑑(𝑡)
 

(26) 

In order to reformulate the model to integrate pool Q, we rewrite Eqs. (12), (13), (23) and 

(24) as: 

 

𝑟𝑆𝐼𝑛𝑑(𝑡)

𝑟𝑆𝐼𝑑(𝑡)+𝑟𝑄𝐼𝑑(𝑡)
=

𝜙

1−𝜙
 (27) 

 

𝑟𝑆𝐼𝑑(𝑡) = (
1−𝜙

𝜙
) ∙ 𝑟𝑆𝐼𝑛𝑑(𝑡) − 𝑟𝑄𝐼𝑑(𝑡) (28) 

 

𝑑𝑆

𝑑𝑡
= −𝑟𝑆𝐼𝑛𝑑(𝑡) − 𝑟𝑆𝐼𝑑(𝑡) − 𝑟𝑆𝑄(𝑡) + 𝑟𝑄𝑆(𝑡) − 𝑟𝑄𝐼𝑑(𝑡) 

(29) 

 

𝑃0 = 𝑆 + 𝐼 + 𝐴 + 𝑅 + 𝐷 + 𝑄 (30) 

 

In Eq. (29), the first and the second terms on the right-hand side correspond to the outputs 

from pool S to the two pools of infected people, Ind(t) and Id(t), respectively, as seen in Eq. 

(23). The third term in Eq. (29), 𝒓𝑺𝑸(𝒕), represents the flux from pool S to Q, which is simply 

w times the flux from S(t) to Id(t). The ratio w is defined in Eq. (31) below:  
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𝑟𝑆𝑄(𝑡) = 𝑤 ∙ 𝑟𝑆𝐼𝑑(𝑡) (31) 

 

The fourth and fifth terms are related to the exit of individuals from pool Q. The fourth term, 

𝒓𝑸𝑺(𝒕) is the net output from pool Q to S, defined as follows: 

𝑟𝑄𝑆(𝑡) =  𝑤 ∙ 𝑟𝑆𝐼𝑑(𝑡 − 𝑡𝑟𝑄) (32) 

It has been assumed that this flux is proportional to the number of persons in isolation, Q. 

The term 𝒓𝑸𝑰𝒅(𝑡) is given by: 

𝑟𝑄𝐼𝑑(𝑡) =  𝐾𝑄𝐼𝑑 ∙ 𝑄(𝑡 − 𝑡𝑟𝑄) (33) 

 

Figure 7 shows the influence of w on the Id plot. A higher value of w attests to the more 

stringent prophylactic measures that were taken. Thus, this model stresses the importance of 

quarantine in the management and control of the pandemics. 

 

 

Figure 7. Calculated plots of diagnosed, infected (Id) for increasing values of the mean 

number of isolated persons per one confirmed infected (w). 

 

 

 

Time, days

0 50 100 150 200

I d

0

2.0x105

4.0x105

6.0x105

8.0x105

106

1.2x106

w=0

w=2

w=5

w=1000

K
QId

=0.001

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.01.21256433doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.01.21256433
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

27 
 

6. Conclusions 

A novel, deterministic mathematical model of the spread of the COVID-19 virus is presented 

here. This model describes the mechanism of the spread of pandemics, as it is seen in 

practice. It includes variables such as the number of individuals in pools: S (susceptible); Id 

(diagnosed, infected); Ind  (undetected, infected); IA  (assisted, hospitalized); IdR 

(diagnosed,recuperated);  IndR (undetected, recuperated); and of the Q (quarantined) 

individuals in a given population pool. The main novelty in our model consists of presenting 

of the I pool, not as a mixed compartment, but as a plug flow system, in which each 

individual remains for a fixed period of time. In this sense the present model is conceptually 

different from SIRD-type models and, in fact, from most of the available deterministic 

models. It is expected that the key ideas in this model will become useful building-blocks for 

the construction of more complex and generalized ‘supermodels’, that should include 

metapopulations, agent-based elements, statistical tools, cultural and economic aspects and 

their influence on the spread of pandemics, such as COVID-19. 
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7. Nomenclature  

A Assisted, hospitalized individuals  

a(t) Function representing influence of restrictions imposed by ‘social distancing’ 

on social contact (dimensionless) 

b Parameter in the ru equation which modulates the width of the shifted ru 

Gaussian curve (days) 

D Dead individuals  

f Encounter function (dimensionless) 

fo Coefficient in the encounter function f (dimensionless) 

I Infected individuals  

Id Diagnosed infected individuals  

Ind Undetected infected individuals  

KAD Rate constant in rAD (day-1) 

KARd Rate constant in rARd (day-1) 

KIdA Rate constant in rIdA (day-1) 

KIdRd Rate constant in rIdRd (day-1) 

KQId Rate constant in rQId (day-1) 

KSI Infectivity coefficient in rSI (infected persons U-1) 

P0 Target population (persons) 

Q Isolated individuals  

R Recovered individuals  

rAD Flux of individuals from pools A to D (persons/day-1) 

rARd Flux of individuals from pools A to Rd (persons/day-1) 

Rd Recovered individuals from pool Id (diagnosed, infected persons)  
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rIdA Flux of individuals from pools Id to A (persons/day-1) 

rIdRd Flux of individuals from pools Id to Rd (persons/day-1) 

rIndRnd Flux of individuals from pools Ind to Rnd (persons/day-1) 

Rnd Recovered individuals from pool Ind (undetected, infected persons) 

rQId Flux of individuals from pools Q to Id (persons/day-1) 

rQS Flux of individuals from pools Q to S (persons/day-1) 

rSI Flux of individuals from pools S to I (persons/day-1) 

rSid Flux of individuals from pools S to Id (persons/day-1) 

rSind Flux of individuals from pools S to Ind (persons/day-1) 

rSQ Flux of individuals from pools S to Q (persons/day-1) 

ru Individual infectivity of an infected person (U/day-1/individual-1) 

rumax Maximum value of the ru equation (=1) (U day-1 individual-1) 

S Susceptible individuals 

t Time (day) 

tc Starting time of restriction implementation by authorities (day) 

tr Serial interval - average ‘residence time’/‘age’ in the I pool (day) 

trQ Average ‘residence time’/‘age’ in the Q pool (day) 

U                

 

Infection units (dimensionless) 

 

  

Greek letters 

w Mean number of isolated persons per one confirmed infected (persons) 

βf The limit value towards which a(t) tends (dimensionless) 

βo The starting value of the function a(t) (dimensionless) 

λ Decay rate of social contact (day-1) 
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τ Dimensionless residence time, tr, defined in the I pool (-) 

τIdA Typical age of the patient passing from pool Id to that pool A (-) 

τmax Point in τ where rumax is reached in the ru equation (-) 

τmix Point in τ where rumin is reached in the ru equation (-) 

ϕ Fraction of infected individuals (I) that were undetected, Ind (dimensionless)  

Ψ’nd Infectivity of the Ind pool for t<tr (U day-1) 

Ψnd Infectivity of the Ind pool for t≥tr (U day-1) 

 

 

References 

Acemoglu, D., Chernozhukov, V., Werning, I., Whinston, M.D. 2020. A multi-risk SIR model with 
optimally targeted lockdown. NBER working paper(w27102). 

Alvarez, F.E., Argente, D., Lippi, F. 2020. A simple planning problem for covid-19 lockdown. National 
Bureau of Economic Research. 0898-2937. 

Backer, J.A., Mollema, L., Klinkenberg, D., van der Klis, F.R., de Melker, H.E., van den Hof, S., 
Wallinga, J. 2020. The impact of physical distancing measures against COVID-19 transmission 
on contacts and mixing patterns in the Netherlands: repeated cross-sectional surveys. 
medRxiv. 

Bar-On, Y.M., Flamholz, A., Phillips, R., Milo, R. 2020. Science Forum: SARS-CoV-2 (COVID-19) by the 
numbers. Elife, 9, e57309. 

Borchani, H., Varando, G., Bielza, C., Larranaga, P. 2015. A survey on multi‐output regression. Wiley 
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5(5), 216-233. 

Canabarro, A., Tenório, E., Martins, R., Martins, L., Brito, S., Chaves, R. 2020. Data-driven study of the 
COVID-19 pandemic via age-structured modelling and prediction of the health system failure 
in Brazil amid diverse intervention strategies. Plos one, 15(7), e0236310. 

Cao, J., Jiang, X., Zhao, B. 2020. Mathematical modeling and epidemic prediction of COVID-19 and its 
significance to epidemic prevention and control measures. Journal of Biomedical Research & 
Innovation, 1(1), 1-19. 

Ceylan, Z. 2020. Estimation of COVID-19 prevalence in Italy, Spain, and France. Science of The Total 
Environment, 138817. 

Danckwerts, P.V. 1953. Continuous flow systems: Distribution of residence times. Chemical 
Engineering Science, 2(1), 1-13. 

Fraser, N., Brierley, L., Dey, G., Polka, J.K., Pálfy, M., Nanni, F., Coates, J.A. 2021. The evolving role of 
preprints in the dissemination of COVID-19 research and their impact on the science 
communication landscape. PLoS biology, 19(4), e3000959. 

Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A., Colaneri, M. 2020. 
Modelling the COVID-19 epidemic and implementation of population-wide interventions in 
Italy. Nature Medicine, 26(6), 855-860. 

Hunter, E., Mac Namee, B., Kelleher, J.D. 2018. A Comparison of Agent-Based Models and Equation 
Based Models for Infectious Disease Epidemiology. AICS. pp. 33-44. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.01.21256433doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.01.21256433
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

31 
 

Ivorra, B., Ferrández, M.R., Vela-Pérez, M., Ramos, A. 2020. Mathematical modeling of the spread of 
the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The 
case of China. Communications in Nonlinear Science and Numerical Simulation, 105303. 

Ivorra, B., Ngom, D., Ramos, Á.M. 2015. Be-codis: A mathematical model to predict the risk of 
human diseases spread between countries—validation and application to the 2014–2015 
ebola virus disease epidemic. Bulletin of Mathematical Biology, 77(9), 1668-1704. 

Last, J. 2001. A Dictionary of Epidemiology. 4th ed. Oxford University Press: Oxford, New York. 
Levenspiel, O. 1972. Chemical Reaction Engineering, Wiley Eastern Limited. 
Liu, Y., Gayle, A.A., Wilder-Smith, A., Rocklöv, J. 2020. The reproductive number of COVID-19 is 

higher compared to SARS coronavirus. Journal of Travel Medicine, Mar 13; 27(2), taaa021. 
Loli Piccolomini, E., Zama, F. 2020. Monitoring Italian COVID-19 spread by a forced SEIRD model. PloS 

one, 15(8), e0237417. 
Manenti, F., Galeazzi, A., Bisotti, F., Prifti, K., Dell'Angelo, A., Di Pretoro, A., Ariatti, C. 2020. Analogies 

between SARS-CoV-2 infection dynamics and batch chemical reactor behavior. Chemical 
Engineering Science, 227, 115918. 

Megard, R.O., Tonkyn, D.W., Senft, W.H. 1984. Kinetics of oxygenic photosynthesis in planktonic 
algae. Journal of Plankton Research, 6(2), 325-337. 

Merchuk, J., Garcia-Camacho, F., Molina-Grima, E. 2019. Photobioreactors–Models of 
Photosynthesis and Related Effects. in: Comprehensive Biotechnology, (Ed.) M. Moo-Young, 
Vol. Vol. 2, Elsevier: Pergamon, pp. 320–360. 

Novack, V. 2020. Director of Soroka Clinical Research Center Novak. Personal Communication. 
Prasad, J. 2020. A data first approach to modelling Covid-19. medRxiv. 
Prézelin, B. 1981. Light reactions in photosynthesis. Physiological bases of phytoplankton ecology, 1-

43. 
Tsori, Y., Granek, R. 2020. Epidemiological model for the inhomogeneous spatial spreading of COVID-

19 and other diseases. medRxiv. 
Wu, J.T., Leung, K., Leung, G.M. 2020. Nowcasting and forecasting the potential domestic and 

international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling 
study. The Lancet, 395(10225), 689-697. 

Zhang, Y., Enden, G., Wei, W., Zhou, F., Chen, J., Merchuk, J.C. 2020. Baculovirus transit through 
insect cell membranes: A mechanistic approach. Chemical Engineering Science, 115727. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.01.21256433doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.01.21256433
http://creativecommons.org/licenses/by-nc-nd/4.0/

