
 

1 
 

Data driven phenotyping and COVID-19 case definitions: a pattern 

recognition approach. 

 

George D. Vavougios*1,2 , Christoforos Konstantatos3, Pavlos-Christoforos Sinigalias, 

Sotirios G. Zarogiannis2,5, Konstantinos Kolomvatsos1, George Stamoulis1 

Konstantinos I. Gourgoulianis2 

1 Department of Computer Science and Telecommunications, University of Thessaly, Papasiopoulou 2–
4, Galaneika, Lamia 35131, Greece. 

2 Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of 
Thessaly, Biopolis, Larissa 41500, Greece 

3 Department of Business Administration, University of Patras, University Campus – Rio, Patras 
26504, Greece 

4 Department of Mechanical Engineering and Aeronautics, University of Patras, Greece 

5 Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 
BIOPOLIS, Larissa 41500, Greece. 

6 Department of Electrical and Computer Engineering, University of Thessaly, 37 Glavani – 28th 
October Str, Deligiorgi Building, 4th floor, Volos 38221, Greece 

 

Manuscript Attributes 

 

• Title character count: 76 

• Number of references: 78 

• Number of Figures: 6 

• Number of Tables: 3 

• Word count (Manuscript: Introduction, Results, Discussion) : 3.345 

• Supplemental Data: Supplementary Table 1, Supplementary Materials 2, 

Supplementary Materials 3 

 

                                                           

* Corresponding author; E-mail address: dantevavougios@hotmail.com ; gvavougyios@uth.gr  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.04.30.21256219doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.04.30.21256219


 

2 
 

*Corresponding Author:  

George D. Vavougios, MD, PhD 

Department of Neurology, Athens Naval Hospital, Deinokratous 70, 115 21 

Email: dantevavougios@hotmail.com, Mobile: +306936528439  

 

Conflict of Interest Statement: 

None declared. 

Keywords: 

COVID-19; Pattern recognition; phenotypes; epidemiology; comorbidity; big data 

 

Acknowledgements: This study was made possible by the collaboration with the 

Carnegie Melon’s Delphi Group Survey Data and Facebook’s Data for Good 

initiative. The authors would like to thank Alex Reinhart and Wichada Le Motte-Kier 

for their impeccable work in organizing the survey and coordinating the investigator 

assemblies; Kathryn Rivard-Mazaitis for her invaluable help with the survey data 

access; Kelsey Mulcahey and Stewart Tansley from Facebook, for facilitating the 

collaboration with Delphi Group, and their work on the Facebook study; Athanasia 

Kefala for her help with the rose charts. 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.04.30.21256219doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.30.21256219


 

3 
 

 

 

Abstract 

Introduction 

COVID-19 has pathological pulmonary as well as several extrapulmonary 

manifestations and thus many different symptoms may arise in patients. The aim of 

our study was to determine COVID-19 syndromic phenotypes in a data driven manner 

using survey results extracted from Carnegie Mellon University’s Delphi Group. 

Methods 

Monthly survey results (>1 million responders per month; 320.326 responders with 

positive COVID-19 test and disease duration <30 days were included in this study) 

were used sequentially in identifying and validating COVID-19 syndromic 

phenotypes. Logistic Regression Weighted Multiple Correspondence Analysis (LRW-

MCA) was used as a preprocessing procedure, in order to weight and transform 

symptoms recorded by the survey to eigenspace coordinates (i.e. object scores per 

case / dimension), with a goal of capturing a total variance of � 75%. These scores 

along with symptom duration were subsequently used by the Two Step Clustering 

algorithm to produce symptom clusters. Post-hoc logistic regression models adjusting 

for age, gender and comorbidities and confirmatory linear principal components 

analyses were used to further explore the data. The model created from 66.165 

included responders in August, was subsequently validated in data from March – 

December 2020. 

Results 
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Five validated COVID-19 syndromes were identified in August: 1. Afebrile (0%), 

Non-Coughing (0%), Oligosymptomatic (ANCOS) 2. Febrile (100%) 

Multisymptomatic (FMS) 3. Afebrile (0%) Coughing (100%) Oligosymptomatic 

(ACOS), 4. Oligosymptomatic with additional self-described symptoms (100%; 

OSDS) and 5. Olfaction / Gustatory Impairment Predominant (100%; OGIP). 

Discussion 

We present 5 distinct symptom phenotypes within the COVID-19 spectrum that 

remain stable within 9 – 12 days of first symptom onset. The typical febrile 

respiratory phenotype is presented as a minority among identified syndromes, a 

finding that may impact both epidemiological surveillance norms and transmission 

dynamics. 
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Main Manuscript 

1. Introduction 

Since its emergence, COVID-19 has conceptually evolved from a viral pneumonia to 

a multisystem disease with insidious onset and diverse outcomes (1). As additional 

cases caused a shift in case definitions, big data and detailed symptom indexing arose 

as a necessity toward guiding evidence-based medicine and preventing severe 

outcomes (2). An intrinsic perturbation in using expert-based definitions is inherent 

bias (i.e. as this is a hypothesis- or observation- driven approach), and an expected 

lack of recognition of fringe cases or spectrums, that may however be deemed as such 

due to their underrepresentation within a given cohort. 

We were the first to phenotype comorbidity in obstructive sleep apnea (OSA) using a 

combination of preclustering principal component analysis to identify latent structures 

within our datasets, and subsequently map them using the TwoStep Cluster algorithm 

(3). The methodology we proposed has been adopted by other research groups (4 – 8) 

and successfully implemented in other disease models, enabling the ad hoc 

development of diverse phenotyping concepts (9 – 12). 

Data-driven recognition of COVID-19 phenotypes will allow an unbiased 

mapping of the global clinical spectrum, along with identifying susceptibility and 

severity clusters that demand a significantly different clinical approach. Furthermore, 

these data-driven phenotypes would enable the design of clinical studies and enhance 

outcome design and evaluation, producing efficacious, bias-free treatments and 

interventions. 

Therefore, the specific aims of the study were the following:  
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1. The use of reported symptoms to identify latent structures via categorical PCA 

and dimension reduction approaches, using data from the COVID-19 Delphi 

Facebook study. 

2. To scrutinize the previously created latent structures as potential COVID-19 

phenotypes or phenotyping parameters via TSC and artificial intelligence-

based classification. 

2. Materials and methods 

2.1 Study Population 

Data for this study were extracted from the COVID-19 Symptom study, based 

on symptom surveys run by the Delphi group at Carnegie Mellon University (CMU). 

Initially, Facebook selects a random sample among its users in the United States. The 

users are then presented with the option to participate in the study. In turn, 

participation entails the administration of the surveys iteration, and covers data on 

COVID-19-like symptoms, behavioral, mental health, and economic parameters, as 

well as estimates on the impact of the pandemic on the responders daily life.  

Individual, anonymized survey responses are stored in CMU’s servers and made 

accessible to healthcare professionals under a project-specific data use agreement. 

Approximately 50,000 responders participate in the study per day, with monthly 

survey results comprising more than 1 million responders per month. 

A detailed overview of the COVID-19 symptom study, its conception and 

evolution are available from: https://cmu-delphi.github.io/delphi-epidata/symptom-

survey/ 
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2.1.1. Inclusion and exclusion criteria 

In this study, we included responders with a certain COVID-19 status, i.e. 

having answered either “Yes” or “No” in the corresponding item of the survey. 

An indicative item structure from Wave 4 of the study is the following:  

• B10 – Have you been tested for coronavirus (COVID-19) in the last 14 days? 

• B10a – Did this test find that you had coronavirus (COVID-19)?  

A positive COVID-19 status was assigned to responders answering “Yes” in 

B10a, whereas a negative COVID-19 status was assigned to responders answering 

“No” in the same item. Responders that answered “I do not know” in item B10a were 

excluded from further analyses. 

As a subsequent exclusion criterion, we employed a cutoff of � 30 days in 

symptom duration. This cutoff was selected on the premises of an approximate 

“return to wellness”, estimated to occur at 14 – 21 days for 65% of patients a positive 

outpatient test result, in a recent report by a CDC (13). The purpose of this cut-off was 

to simultaneously include COVID-19 patients with longer duration illness and 

exclude symptom durations unlikely to be attribute to COVID-19 manifestations such 

as i.e. 60 days or more. In order for our approach to be forward and backward 

compatible, we opted to use the very first incarnation of symptoms attributed to 

COVID-19 and captured by the survey (i.e. the first wave). As such, a core of the 13 

first symptoms recorded by the survey would remain the same, regardless of future 

additions.  
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3. Statistical Analysis 

3.1. Logistic probability case scoring 

The logistic regression model extracted from August’s data was subsequently 

used to score subsequent cases per month. Let us consider a model where 	�, 	�, … , 	� 

are symptoms (used as predictors) of the binary response variable � (1=COVID-19 

positive, 0=COVID-19 negative), which represents COVID-19 status. The log-odds 
 

of the probability � of � � 1 can be presented as follows: 


 � �� � �
1 � �� � �� � ��	� � ��	� � � ��	�, 0 � � � 1 (1) 

where �� , ��, … , �� are the model parameters, �� is the constant and 1–� is the 

probability of � � 0. The exponent of 
 retrieves the odds for each case: 

�
1 � � � �������������������  , 0 � � � 1 (2) 

where � is Napier’s number. The probability � can then be expressed as follows: 

� � �������������������

1 � �������������������
 , 0 � � � 1 (3) 

To generate our model, we calculate each �	 , where � � �1 … �� for each variable 		  

where � � �1 … ��. For each predictor (i.e., symptom) 		 , the odds ratio calculated by 

logistic regression (i.e. the exponent of �	) is used as a corresponding weight in a 

subsequent multiple correspondence analysis. Finally, the probability � is used to 

score each case. 

3.2. Pattern recognition via Multiple Correspondence Analysis 

Symptom data were used by combining a dimension reduction technique and 

cluster analysis algorithm, as previously described (9,13). Object scores derived from 

a multiple correspondence analysis (MCA) of symptom data were subsequently used 
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as input variables for the cluster analysis, along with symptom duration on COVID-19 

positive responders (9,14). The optimal number of MCA-derived dimensions was 

determined based on achieving a total variance (i.e. cumulative variance per 

dimension) of � 70% (15). MCA and MCA-preprocessing prior to cluster analysis 

are techniques that allow the identification of latent patterns within a population, 

based on a set of nominal response variables (16); OR-weighting of the input 

variables is used here as a ranking scheme based on their association with COVID-19 

positive responders vs. COVID-19 negative responders. 

3.3. Two-Step Clustering and Phenotype Extraction 

OR-weighted MCA produced case-wise object scores (i.e. composite 

quantifications of symptoms per case) along with symptom duration were 

subsequently used by the Two Step Clustering (TSC) algorithm to produce symptom 

phenotypes. As we and others have previously demonstrated, TSC is well suited for 

the identification of latent phenotypes in a given population (9,16). In this study, the 

Log-likelihood was used as a distance measure, and the Bayesian Information 

Criterion (BIC) was used as the clustering criterion for the automatic determination of 

cluster number. 

3.4. Phenotype Validation: Cross-sectional and Longitudinal aspects 

The model that was created on the pilot analysis of 66.165 responders within 

the August dataset, was subsequently validated in monthly data ranging from March – 

December 2020. Specifically, the procedure was as follows: 

(a) The weights extracted from August’s responders were applied to an MCA based 

on symptom data recorded for each subsequent and preceding month’s responders. 

(b) Object scores were calculated for each responder. 
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(c) Object scores and symptom duration per month were used in TSC. 

3.5. Crossectional validation: Phenotypes vs. controls 

Crossectional validation of the produced phenotypes essentially answers the 

question of whether a COVID-19 syndrome is associated with a positive COVID-19 

test. For this purpose, Receiver Operator Characteristic (ROC) curves were used to 

determine the diagnostic accuracy of a symptom-based probability for each 

phenotype, when compared to controls. Specifically, ROC curves were fitted by the 

probability pi extracted from the application of the logistic regression model derived 

from August’s data. Hence, pi would be expressed as follows: 

�	 � �
��
�	��
�	���
�	�

1 � �
��
�	��
�	���
�	�
 , 0 � � � 1 (4) 

where ��, ��, … , �� is the symptom per � �  ! month, and "� , "� , … , "� are the # 

extracted from August’s dataset. Finally, COVID-19 status was used as a binary 

dependent variable for the ROC curve, and the area under curve (AUC) was 

calculated per month, for each cluster. 

3.6. Longitudinal validation: Phenotype re-emergence and symptom invariance 

The primary criterion for validation was the emergence of consistent 

phenotypes in at least one month other than August based on complete or quasi-

complete symptom separation per phenotype. Essentially, this would translate in the 

identification of each phenotype based on the most salient or preclusive symptoms. 

The secondary criterion was based on the hypothesis that re-emergent 

phenotypes would be furthermore identified based on non-salient, non- preclusive 

symptoms. To meet this criterion, frequency tables for each symptom were 

constructed per each month and phenotype.  
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For each symptom $ reported on each month %, for a number of months &, 

we consider the mean, '�: 

'� � $� � $� � � $�

&  (5) 

In order to assess symptom perseverance and their non-random contribution as 

patterns within each phenotype, we perform a normality test under the null hypothesis 

that the distribution of a symptom / month [$� , $� , … $�� is normal and therefore 95% 

of the observations lie within two standard deviations of '�. The following concept 

has been previously used in face recognition algorithms (22). Here, we used the 

Shapiro – Wilk test of normality, and a p-value � 0.05 was considered statistically 

significant. Symptoms achieving below threshold p-values were considered variable 

for each corresponding phenotype. Correspondingly, longitudinal symptom invariance 

(SI) was described as follows: 

$) � 1 � $


% (6) 

where $
 is the number of variant symptoms (defined by a Shapiro-Wilk p-value 

� 0.05) and M is the total number of symptoms. SI is equal to 1 (100%) when $
 � 0 

and SI is equal to 0 *0%+ when $
 � %.  

3.7. Post-hoc analyses  

Associations between each phenotype and symptoms were determined via a 

combination of the ,� test with adjusted standardized residuals (Standardized Pearson 

residuals). A ,� test p-value � 0.05 and adjusted standardized residuals either greater 

than 1.96 or less than �1.96 was considered statistically significant. Associations 

among phenotypes and responder demographic and medical history characteristics 

(age group, gender, and comorbidity) were investigated via a logistic regression 

model.  
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3.8. Determination of Data-Driven Diagnostic Rules via Decision Tree analyses 

In order to create a diagnostic rule per phenotype, we performed Decision 

Tree Analyses (DTA) via the Quick, Unbiased, Efficient, Statistical Tree (QUEST) 

algorithm (18). Decision tree analysis is a data mining technique that is implemented 

in order to create a classification scheme from a set of observations; in biomedical 

research, its main applications include the creation of data-driven diagnostic or 

predictive rules (19), (20). 

QUEST was originally proposed by Loh and Shih (21). Let us consider cluster 

(i.e. phenotype) membership as a dependent nominal variable Y with J classes (equal 

to the number of phenotypes), and each symptom as a categorical (nominal) predictor 

.. 

The decision tree expands by testing for the best predictors among the input,  

For each categorical predictor ., QUEST performs a chi-square test of independence 

at each node n, subsequently calculating the corresponding p-value: 

�� � Pr *,�
� � 1�+ (7) 

where 2 represents the degrees of freedom for ,�
�, for a predictor . with 3� 

categories: 

2 � *4�
 � 1+*3� � 1+ (8) 

The growth procedure depends on establishing the best splitting predictor at each 

node based on the smallest p-value. Conversely, the “stopping” process is determined 

by several stopping criteria. In our study, the applied criterion was node purity, i.e. the 

complete separation of a predictor variable on a dependent variable class. 

Each p-value � 0.05 was considered statistically significant. All analyses 

were performed SPSS version 24.0 (IBM, Chicago, Illinois, US).  
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4. Results 

4.1. Study population 

The total study population included 320.326 responders with a certain 

COVID-19 test status and disease duration <30 days (Figure 1). Table 1 presents the 

study population’s demographics per month. Supplementary Table 2 presents 

multinomial regression results per month and phenotype (A1 – A5). 

4.2. Phenotype extraction 

Based on the latent structures between symptom data and disease duration, 

five COVID-19 syndromes were extracted from August’s 61.165 responders: 

1. Afebrile (0%), Non-Coughing (0%), Oligosymptomatic (ANCOS).  

2. Febrile (100%) Multisymptomatic (FMS).  

3. Afebrile (0%) Coughing (100%) Oligosymptomatic (ACOS). 

4. Oligosymptomatic with additional self-described symptoms (100%; OSDS). 

5. Olfaction / Gustatory Impairment Predominant (100%; OGIP). 

Figure 2 – 6 and Supplementary Tables 2 – 6 present the symptom composition of 

each phenotype and its temporal evolution.  

4.3. Validation and further characterization 

Repeating the multiple correspondence and cluster analyses per subsequent 

and preceding month (April – December), resulted in the validation of each phenotype 

as follows: 

(a) ANCOS and OSDS emerged in 10/10 months  

(b) MFS and ACOS emerged in 9/10 months  

(c) OGIP emerged in 4/10 months.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.04.30.21256219doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.30.21256219


 

14 
 

Based on the most salient symptoms, decision trees were subsequently 

constructed (Figure 7), providing a structured approach in identifying each 

phenotype.  

Further characterization of these 5 phenotypes was achieved via identifying 

invariant symptoms between April – December (Supplementary Files / sTables 1a – 

1e); based on these observations and the results of the Shapiro – Wilk tests: 

(a) ANCOS was characterized by general malaise in the absence of fever and 

upper respiratory tract symptoms. 

(b) ACOS was characterized as a mainly afebrile upper respiratory tract viral 

infection. 

(c) FMS was a more typical, febrile syndrome covering respiratory and 

gastrointestinal (GI) manifestations. 

(d) OGIP, the most invariant syndrome, was characterized by the absence of fever 

and diarrhea. 

(e) OSDS did not typically include symptoms of pain or pressure on the chest, nor 

difficulty in breathing. 

Interestingly, the implementation of “Headache” in December as a standalone 

question resulted in a decomposition of the OSDS phenotype. This is further 

exemplified by the comparison between text-mined headache as a symptom in August 

(10% of OSDS) versus a 3-fold increase in prevalence when asked directly in 

December. 

Multiple nominal regression of comorbidities, adjusted for age group and 

gender, revealed several statistically significant associations (Supplementary Table 

2). Notably, a history of asthma and chronic lung disease were abortive comorbidities 

for certain phenotypes (ANCOS, ACOS, OGIP for asthma and additionally OSDS for 
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chronic lung disease). Gender and age group did not display sequentially consistent 

associations with any phenotype. 

5. Discussion 

In our study, five distinct COVID-19 phenotypes were identified, 

characterized with respect to comorbidities and demographics, and validated via a 

data-driven, pattern recognition approach. The presence or absence of fever, cough, 

olfactory / gustatory dysfunction, and atypical symptoms defined these phenotypes as 

their primary features. The concept of symptom invariance was subsequently used to 

further determine their stability regarding symptom composition, indicating that the 

olfactory / gustatory predominant phenotype OGIP was the most invariant, i.e. the 

most stable, across the 4 months that it emerged in. Finally, while several 

comorbidities such as heart disease and diabetes were associated with the risk of 

manifesting specific phenotypes, other comorbidities such as asthma were found to be 

abortive. 

After its initial identification as a novel pneumonia, the increasing numbers of 

COVID-19 cases began to outline a spectrum, rather than a linear progression from 

mild viral infection to a severe one (23). The recognition of COVID-19’s 

heterogeneity however was initially limited within the setting of treatment response or 

severity phenotypes (24), (25), while the heterogeneity of non-severe cases or those 

lacking a salient respiratory aspect was not addressed. Even within the concept of 

point care phenotyping however, phenotypes similar to those identified in our study 

have been described by independent studies. Bayesian approaches have identified 

phenotypes corresponding to FMS, OGIP and ACOS in the clinical setting, and 

included them in diagnostic algorithms (26). 
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In our cohort, a similar diagnostic rule emerges and recurs in monthly 

aggregated data, corresponding to the phenotypes identified here (Figure 2). 

The importance of phenotyping COVID-19 outside the initially severe or point 

of care spectrum becomes evident when examining previous iterations of diagnostic 

criteria: fever and respiratory symptoms were initially the only manifestations 

considered relevant in defining cases (27). One of the largest studies on initially 

asymptomatic or non-respiratory symptom (NRS) phenotype of COVID-19 patients 

has shown that this approach may miss a portion of active cases that may 

subsequently convert to severe manifestations (28). Our findings support this concept, 

with NRS overlapping with the OGIP, OSFS and ANCOS phenotypes. 

As previous research has suggested, comorbidities were found to be 

independent predictors of COVID-19 phenotypes, even after adjustments for age 

group and gender (Supplementary Table 2, A1 – A5). As a general rule, two broad 

categorizations of comorbidities can be inferred: those that can intertwine with the 

pathophysiology of SARS-CoV-2, such as diabetes (29) and heart disease (30), and 

those where a treatment effect may restrict phenotype manifestations. 

In this light, several noteworthy associations include comorbid asthma and 

chronic lung disease, which appear to reduce the risk of manifesting the FMS 

phenotype (Supplementary Table 2, A2). This seemingly paradoxical relationship 

has been previously explored in the literature, and mainly attributed to the protective 

effects of inhaled corticosteroids (ICS); Specifically, while their use may lead to 

quiescent type I/III interferon responses, the concomitant downregulation of ACE2 

and TMPRSS2 may restrict SARS-CoV-2 from entering pneumonocytes (31,32). As 

our data are limited regarding medication use and the specific respiratory disease of 

each responder, we cannot safely attribute the associations observed to ICS usage. 
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Based on current literature, ICS treatment plausibly presents a potential 

phenotype abortive effect in otherwise vulnerable populations such as asthma patients 

(33). Recent evidence on the efficacy of ICS as ad hoc COVID-19 treatments provide 

further support for this concept (34). 

In a similar fashion, the phenotype abortive effect of cancer as a comorbidity 

could reflect yet another treatment rather than disease effect. Such an effect may 

account for this association, considering that several anti-cancer treatments are 

undergoing trials as repurposed COVID-19 treatments (35). As no data were collected 

on primary tumors, staging and treatment (36) due to the nature of the survey, this 

hypothesis cannot be scrutinized further. 

5.1. Limitations and Strengths 

The results of our study should be interpreted within the context of their 

limitations. As a survey administered via Facebook, our source data incur the 

corresponding selection bias. This however is potentially balanced by the large 

sample size of the final cohort, and represents the single largest study of its kind. 

Survivor bias is also inherently present in our study, considering that responders are 

unlikely to have severe COVID-19 at the time of survey administration. The lack of 

follow-up data correspondingly precludes that phenotype shifts (e.g. ANCOS or 

OSDS to FMS) cannot be explored. Another important consideration is that OSDS 

inevitably absorbs symptoms not originally covered by the initial study iterations and 

is correspondingly decomposed when these symptoms are identified and added. A 

prime example of this case is headache as symptom; when left to the discretion of the 

responder, it might not be evaluated properly as a feature (38). This paradigm 

becomes evident by the discordance between text-mining (April – November data, 

10% of OSDS) vs. asked directly (i.e. 30% in all phenotypes and decomposition of 
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OSDS as a “pure” phenotype).  Comorbidities, reported by majority as broad 

categories, cannot be safely considered in strict interpretations as to their associations 

with phenotypes. Finally, as gender categories beyond male/female are 

underrepresented in the monthly samples, they cannot be safely used to extrapolate 

their contribution on clinical phenotypes. These intrinsic caveats of the study are 

inherited from the broader structure of the data, and the post-hoc extraction of a data 

subset for a specific concept (i.e. data driven phenotyping of COVID-19 syndromes). 

The main strength of the study was the determination and retro- and 

anterograde validation of COVID-19 syndromes in the largest community sample to 

date. The phenotypes we uncover solidify phenotypes previously described by 

independent studies, and furthermore provide the basis and tools for the development 

of utilizable diagnostic rules. One of the most important concepts explored here is that 

the febrile respiratory phenotype represents a lesser portion of COVID-19 phenotypes 

in the community, a finding that should be considered both in epidemiological 

profiling and healthcare provision. Our findings support the concept of symptom-

based phenotypes of COVID-19, that remain distinct within 9-12 days from first 

symptom onset. The existence of phenotypes rather than severity strata may further 

explain the low diagnostic accuracy achieved by rule in or rule out algorithms based 

solely on symptoms, without accounting for their dependency and intercorrelations, 

even between different systems (i.e. GI and respiratory). In order to utilize our 

findings in the clinical setting and make them available to other researchers, we have 

developed an online application that calculates the symptom-based logistic probability 

Px (Available from: http://se8ec.csb.app). In this community-based sample, febrile 

respiratory disease was infrequent compared to atypical presentations within a range 
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of 9 – 12 days from symptom onset; this finding may be critical in current 

epidemiological surveillance and the development of transmission dynamics concepts. 
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Tables 

Table 1. Demographics per month of the study population 

  April 
N=22320 

May 
N=38043 

June 
N=51582 

July 
N=78951 

August* 
N=66155 

September 
N=12801 

October 
N=19137 

November 
N=22698 

December 
N=48629 

COVID-19+  4000 4955 6573 13370 10279 1773 5936 10026 21617 
Age Group 18-24 1783 2973 4202 7047 5965 1194 1211 1606 3312 
 25-34 4856 7423 9837 15559 12158 2204 3353 4805 9002 
 35-44 4794 7249 8919 14450 11502 2116 3886 4856 9529 
 45-54 4281 7030 8886 13660 11146 2119 3519 4095 8809 
 55-64 3220 6235 8661 12385 10775 2173 3320 3227 7440 
 65-74 1447 3597 5655 7791 7218 1483 1808 1539 3907 
 >75 312 907 1632 2317 2155 531 573 427 1181 
 NA 1627 2629 3790 5742 5246 981 1467 2143 5449 
Gender M 5001 9754 13230 20313 17427 3434 4555 4752 10684 
 F 15459 24985 33672 51556 42364 8170 12732 15360 31612 
 NB 149 284 366 613 532 104 141 176 347 
 SD 102 219 252 357 297 72 119 144 248 
 NA 153 325 449 653 565 100 128 128 322 
 N/A 1456 2486 3613 5459 4980 921 1462 2138 5416 
Cancer  1223 2338 3209 4353 3783 816 1082 1040 2289 
 HD 6556 7768 8450 13352 10792 2036 4738 6213 12229 
 HTN 3952 4682 5129 8263 6486 1302 2979 3931 7785 
Asthma  12222 19035 24962 38645 32205 6031 11461 14309 28597 
 CLD 9361 14946 19201 30197 25728 5141 9644 12504 25272 
 KD 8035 12264 14668 22830 19393 3907 8203 10029 20615 
 AD 8807 14702 19365 28438 23692 4587 8450 10533 21677 
Diabetes T1D 4817 8313 9950 17181 12822 2627 5102 5565 12807 
 T2D 4202 4397 4556 7698 5899 1110 2803 3933 7743 
 IC 3091 5150 5847 10235 7325 14755 3519 4087 9238 

Notes: Age Groups are measured in years. Cancer was specified as any form of neoplasm except skin cancer. NA: Not available; N/A: Not 
answered; NB: Non-Binary; SD: Self-Described; M: Male F: Female HD: Heart Disease; HTN: Hypertension; CLD: Chronic Lung 
Disease such as COPD; KD: Kidney Disease AD: Autoimmune Disease; IC: Immunocompromised. Please note that for November’s 
responders we selected participants that received wave 4 of Delphi Study Questionnaire. 
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Table 2. Cluster composition and symptom-based prediction vs. COVID-19- 

(controls) – August 

 N AUC p-value 95% CI 
ANCOS (1) 2506 <0.5 NA NA 
FMS (2) 2266 0.963 <0.001 0.961 – 0.965 
ACOS (3) 2060 0.737 <0.001 0.729 – 0.746 
OSDS (4) 1013 0.777 <0.001 0.762 – 0.792 
OGIP (5) 2434 0.983 <0.001 0.982 – 0.984 
Notes:Five COVID-19 syndromes were identified in August: 1. Afebrile (0%), Non-Coughing (0%), 
Oligosymptomatic (ANCOS) 2. Febrile (100%) Multisymptomatic (FMS) 3. Afebrile (0%) Coughing 
(100%) Oligosymptomatic (ACOS), 4. Oligosymptomatic with additional self-described symptoms 
(100%; OSDS) and 5. Olfaction / Gustatory Impairment Predominant (100%; OGIP). AUC: Area 
Under Curve. 
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Figures 

Figures Legends 

Figure 1. Study Workflow. Phenotype legends: Afebrile (0%), Non-Coughing (0%), 
Oligosymptomatic (ANCOS) 2. Febrile (100%) Multisymptomatic (FMS) 3. Afebrile 
(0%) Coughing (100%) Oligosymptomatic (ACOS), 4. Oligosymptomatic with 
additional self-described symptoms (100%; OSDS) and 5. Olfaction / Gustatory 
Impairment Predominant (100%; OGIP). 

Figures 2 – 6. Rose charts and heatmaps presenting the temporal relationships 
between phenotypes and symptoms. Phenotype legends: Afebrile (0%), Non-
Coughing (0%), Oligosymptomatic (ANCOS) 2. Febrile (100%) Multisymptomatic 
(FMS) 3. Afebrile (0%) Coughing (100%) Oligosymptomatic (ACOS), 4. 
Oligosymptomatic with additional self-described symptoms (100%; OSDS) and 5. 
Olfaction / Gustatory Impairment Predominant (100%; OGIP). 

Figure 7. Decision Tree developed using the QUEST algorithm. The decision tree’s 
branches are based on splits, i.e. variables that were selected based on a chi-square 
test-determined p-value. The dependent variable for this analysis was a cluster 
number, represented as a nominal categorical variable with 5 levels corresponding to 
the 5 clusters.  
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Node 0
Category % n

24,4 25061,000
22,0 22662,000
20,0 20603,000

9,9 10134,000
23,7 24345,000

Total 100,0 10279

Fever
Adj. P-value=0,000, Chi-square=9546,

079, df=4

TwoStep Cluster Number

Node 1
Category % n

0,4 101,000
93,8 22662,000

0,0 03,000
5,5 1324,000
0,3 75,000

Total 23,5 2415

Other
Adj. P-value=0,000, Chi-square=2415,

000, df=3

Yes

Node 2
Category % n

31,7 24961,000
0,0 02,000

26,2 20603,000
11,2 8814,000
30,9 24275,000

Total 76,5 7864

Other
Adj. P-value=0,000, Chi-square=7864,

000, df=3

No

Node 3
Category % n

0,0 01,000
0,0 02,000
0,0 03,000

100,0 1324,000
0,0 05,000

Total 1,3 132

Yes

Node 4
Category % n

0,4 101,000
99,3 22662,000

0,0 03,000
0,0 04,000
0,3 75,000

Total 22,2 2283

Cough
Adj. P-value=0,000, Chi-square=75,611, 

df=2

No

Node 5
Category % n

0,0 01,000
0,0 02,000
0,0 03,000

100,0 8814,000
0,0 05,000

Total 8,6 881

Yes

Node 6
Category % n

35,7 24961,000
0,0 02,000

29,5 20603,000
0,0 04,000

34,8 24275,000
Total 67,9 6983

Loss of Smell or Taste
Adj. P-value=0,000, Chi-square=6983,

000, df=2

No

Node 7
Category % n

2,9 101,000
95,6 3242,000

0,0 03,000
0,0 04,000
1,5 55,000

Total 3,3 339

Loss of Smell or Taste
Adj. P-value=0,001, Chi-square=16,206, 

df=2

No

Node 8
Category % n

0,0 01,000
99,9 19422,000

0,0 03,000
0,0 04,000
0,1 25,000

Total 18,9 1944

Yes

Node 9
Category % n

0,0 01,000
0,0 02,000
0,0 03,000
0,0 04,000

100,0 24275,000
Total 23,6 2427

Yes

Node 10
Category % n

54,8 24961,000
0,0 02,000

45,2 20603,000
0,0 04,000
0,0 05,000

Total 44,3 4556

Cough
Adj. P-value=0,000, Chi-square=4556,

000, df=1

No

Node 11
Category % n

0,0 01,000
97,3 1792,000

0,0 03,000
0,0 04,000
2,7 55,000

Total 1,8 184

Yes

Node 12
Category % n

6,5 101,000
93,5 1452,000

0,0 03,000
0,0 04,000
0,0 05,000

Total 1,5 155

No

Node 13
Category % n

100,0 24961,000
0,0 02,000
0,0 03,000
0,0 04,000
0,0 05,000

Total 24,3 2496

No

Node 14
Category % n

0,0 01,000
0,0 02,000

100,0 20603,000
0,0 04,000
0,0 05,000

Total 20,0 2060

Yes

1,000
2,000
3,000
4,000
5,000
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Responders in August
n > 1.100.000

Responders answering (yes/no) 
in COVID-19 testing

n = 61.165

Pattern Recognition and 
Phenotype Extraction

Phenotype Characterization
(ANCOS, ACOS, OGIP, FMS, OSDS)

Exploratory Analyses 
(MRA, DC)

Validation and Confirmatory 
Analyses per month
April – December, 
Pooled population 

n = 320.326)
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