- 1
- 2 HIV and the Seroprevalence of SARS-CoV-2
- 3 Robert L. Stout, PhD and Steven J. Rigatti, MD
- 4 Clinical Reference Laboratory, Inc.
- 5 8433 Quivira Rd Lenexa, KS 66215
- 6 Word count 916
- 7 Contact information: Robert L. Stout, PhD cell phone 913-488-5285
- 8 Address above.
- 9 Abstract
- 10

11 Importance: Healthy HIV-positive insurance applicants have a similar risk of infection12 and produce a similar antibody response as HIV-negative applicants infected with13 COVID-19.

14 Objective: Study the seroprevalence and immune response to COVID-19 in healthy

15 HIV-positive life insurance applicants.

16 Design: From January 2020 to March 2021, we examined the seroprevalence of

17 COVID-19 in all HIV-positive applicants. Antibody level in 340 age and sex matched

18 COVID-19 positive applicants, 170 HIV-positive and 170 HIV negative, are compared.

19 The data was de-identified of all personal information and separated by month, age and

20 sex.

21 Participants: Self-reported healthy HIV positive life insurance applicants were tested for antibodies to COVID-19.

1 Introduction

- 2 Immunodeficiency may place individuals at increased risk of SARS-CoV-2^{1,2} illness.
- 3 Because COVID-19 infection may be asymptomatic or minimally symptomatic, counts
- 4 of officially reported cases may substantially underestimate the overall burden of infection^{3,4}.
- 5 We investigate the seroprevalence of COVID-19 in otherwise healthy HIV-positive life
- 6 insurance applicants. For HIV-positive applicants to be considered for life insurance, they
- 7 generally must meet current treatment guidelines, have undetectable viral loads, have been
- 8 on high-activity antiviral therapy (HAART) for several years, have a CD-4 lymphocyte count
- 9 greater than 300-500 cell/microliter and have no other significant comorbidities.
- 10 Methods
- 11 From January 2020 to March 2021, a national adult convenience sample of self
- 12 reported healthy life insurance applicants were evaluated for the presence of antibody to HIV
- 13 with the Roche Elecsys HIV combi PT test⁵.
- 14 1,191 HIV-positive samples were tested for total antibody to nucleocapsid protein with the
- 15 Roche SARS CoV-2 total antibody test. The Roche SARS CoV-2 assay has a reported
- 16 sensitivity and specificity of 99.5% and 99.8% respectively⁶. All testing was done at Clinical

- 17 Reference Laboratory, Lenexa, KS.
- 18 To investigate if HIV was associated with a detectable difference in immunological response,
- 19 we examined COVID-19 antibody levels in age and sex-matched HIV positive and negative
- 20 applicants.
- 21 We recorded applicant age, sex, and month tested and deleted all personal data. Statistics
- 22 were Chi-square and t-test to test differences between positive and negative groups as
- 23 appropriate with a selected significance level of 99%. All statistical analyses were with
- 24 R(version 3.6.1)^{$\frac{7}{2}$} and R-studio (version 1.2.1335)^{$\frac{8}{2}$}.
- 25 The study conforms to the recommendations of STROBE for Cross-sectional
- 26 epidemiology studies, <u>www.equator-network.org</u>.
- 27 All participants signed disclosures indicating that results may be used for research
- 28 purposes. Western IRB (Puyallup, WA) reviewed the study under the Common Rule and
- 29 applicable guidance and determined it is exempt under 45 CFR § 46.104(d)(4) using
- 30 de-identified study samples for epidemiologic investigation. WIRB Work

31 Order #1-1324846-1.

- 32
- 33 Results: We tested 1,191 HIV-positive applicants for antibodies to COVID-19. Of these, 893
- 34 (74.5%) were male, 296 (24.5%) were female with median ages of 40 years
- 35 (IQR: 33, 40) and 45 years (IQR: 38, 53), respectively. Among the SARS-CoV-2 seropositive
- 36 cases116 (75.8%) were male with a median age of 40 (IQR: 31,47), and 37 (24.2%) were

medRxiv preprint doi: https://doi.org/10.1101/2021.04.29.21256302; this version posted May 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

37	female with a median age of 44 (IQR: 34.5,52.5). The difference in age and sex between the
38	COVID-19 seronegative and seropositive groups was not significant ($p_{age} = 0.23$, $p_{sex} = 0.54$).
39	The overall SARS-CoV-2 seroprevalence in HIV positive females was 12.8% (38 out of 297),
40	and was 12.9% (115 out of 894) in HIV positive men, an insignificant difference.
41	During the study period, SARS-CoV-2 seroprevalence for HIV-positive individuals increased
42	from 7/81 (8.7%) in May 2020 to 34/103 (33%) in March of 2021(Table 2). COVID-19
43	antibody levels in the age and sex-matched control plus HIV positive groups varied from
44	1.1 to > 500 cut-off intensity units (COI), a measure of the amount of antibody present. For
45	age and sex matched COVID positives, the HIV positive population had a higher
46	proportion of individuals with lower COVID antibody levels than HIV negative individuals, but
47	the distributions of antibody levels are not statistically different (Figure 1 and Table 4).
48	
49	Discussion
50	
	Previous studies of SARS-CoV-2 infection in the HIV-positive patient population have
51	Previous studies of SARS-CoV-2 infection in the HIV-positive patient population have investigated a possible increase in this population's adverse outcomes. Richardson <i>et al</i>
51 52	Previous studies of SARS-CoV-2 infection in the HIV-positive patient population have investigated a possible increase in this population's adverse outcomes. Richardson <i>et al</i> reported on the association of severity of SARS-CoV-2 in 5,700 patients in New York City
51 52 53	Previous studies of SARS-CoV-2 infection in the HIV-positive patient population have investigated a possible increase in this population's adverse outcomes. Richardson <i>et al</i> reported on the association of severity of SARS-CoV-2 in 5,700 patients in New York City though there were only 21 HIV-positive cases in the study ⁹ .
51 52 53 54	Previous studies of SARS-CoV-2 infection in the HIV-positive patient population have investigated a possible increase in this population's adverse outcomes. Richardson <i>et al</i> reported on the association of severity of SARS-CoV-2 in 5,700 patients in New York City though there were only 21 HIV-positive cases in the study ⁹ . Likewise, Tesoriero <i>et al</i> has reported an increase in SARS-CoV-2 severity and death in a
51 52 53 54 55	Previous studies of SARS-CoV-2 infection in the HIV-positive patient population have investigated a possible increase in this population's adverse outcomes. Richardson <i>et al</i> reported on the association of severity of SARS-CoV-2 in 5,700 patients in New York City though there were only 21 HIV-positive cases in the study ⁹ . Likewise, Tesoriero <i>et al</i> has reported an increase in SARS-CoV-2 severity and death in a population of patients studied in New York ¹⁰ . That report includes a larger, more

4

- 57 who become infected with COVID-19.
- 58 While public health has consistently warned immunocompromised patients to avoid risk;
- 59 patient compliance is unknown and poorly studied.
- 60 Jérémy Dufloo et al¹² have reported that antibody in both symptomatic and asymptomatic
- 61 patients is protective. The authors also note that, while the asymptomatic patient may have
- 62 lower levels of antibody, they are still protective. They report that sera from asymptomatic
- 63 individuals neutralize the virus, activate Antibody Dependent Cellular Cytotoxicity (ADCC)
- 64 and trigger complement deposition using replication competent SARS-CoV-2 or reporter cell
- 65 systems.
- 66 Limitations
- 67 Limitations of the study include self-reported health status (well) and possible
- 68 misrepresentation by the applicant. There was no attempt to determine if the antibody
- 69 was protective. Even with these limitations the study validates the need for ongoing
- 70 population-wide surveillance.

71 Conclusion

- 72 This report is based on a sample from an otherwise healthy HIV-positive population that
- appear to be compliant with current clinical treatment guidelines. As of March 2021, the
- seroprevalence of asymptomatic SARS CoV-2 infections in the HIV-positive population is
- 75 33%. Anti-COVID-19 antibody levels in HIV positive individuals, in the absence
- of other comorbidities, suggest that they should have a clinical course similar to HIV negative

5

77	individuals. The high seroprevalence of COVID-19 antibody in HIV patients suggests that the
78	current public health mitigation strategy may be inadequate to reduce the asymptomatic
79	spread of infection or that the public is failing to fully comply with those recommendations.
80	
81	Additional information:
82	Statement of conflicting interest:
83	This study was funded by Clinical Reference Laboratory, Lenexa, KS. Neither Robert Stout,
84	PhD nor Steven Rigatti, MD has any competing interest. Dr. Rigatti is a paid consult for
85	evaluation of mortality data for Clinical Reference Laboratory. The funding agency
86	had no input to the design and conduct of the study; collection, management, analysis, and
87	interpretation of the data; preparation, review, or approval of the manuscript; nor the decision
88	to submit the manuscript for publication.
89	
90	Acknowledgement
91	Both authors had full access to all the data in the study and take responsibility for the
92	integrity of the data and the accuracy of the data analysis.
93	Statement of author contribution:
94	Robert Stout directed the testing of samples, combined the demographic data and then
95	deleted all identifiable personal information. Reviewed all patient data for completeness and

- 96 prepared the initial prevalence estimates. Steve Rigatti analyzed the prevalence for the data
- 97 set and prepared the statistically analysis. Both authors prepared the text.

	Age (category)	n	% positive	*р
	<30	137	23 (16.8%)	
Age	30-50	753	94 (12.5%)	0.23
	50+	299	35 (11.7%)	
	Total	1189	152 (12.8%)	

Table 1: SARS-CoV-2 Seropositivity by Age in the HIV-positive population.

No age was available for 2 applicants

Table 2: COVID-19 Seroprevalence for HIV-positive applicants by sex.

		Population	Positive for COVID-19	*р
		N (%)	antibodies N (%)	
Sex	Female	296 (24.2%)	37 (24.2%)	
	Male	895 (75.8%)	116 (75.8%)	0.59
	Total	1191 (100%)	153 (9.6% of total)	

*p values based on Pearson Chi-square, 2 tailed test.

Table 3: HIV positive samples from January 2020 to March 2021 tested for CVOID-19 antibody

YEAR	MONTH	TOTAL	COVID-19
2020	JAN-APR	289	2 (0.6%)
	ΜΑΥ	81	7 (8.7%)
	JUNE	76	6 (7.9%)
	JULY	76	6 (7.9%)
	AUGUST	82	13 (15.9%)
	SEPTEMBER	68	9 (13.2%)
	OCTOBER	85	9 (10.6%)
	NOVEMBER	95	13 (13.7%)
	DECEMBER	79	15 (19%)
2021	JANUARY	82	19 (23.2%)
	FEBUARY	75	20 (26.7%)
	MARCH	103	34 (33%)
	TOTAL	1191	153 (12.8%)

Table 4: Serum antibody levels to COVID-19 in HIV positive and negative applicants.

Null hypothesis	test	Significance	Decision
The distribution of COVID-19 is the same across the categories of HIV status	Independent- samples Mann- Whitney U Test	0.147	Retain the null hypothesis

Asymptotic significances are displayed. The significance level is 0.05

Comparison of COVID-19 antibody levels in HIV positive and negative serum samples.

References

- Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020:ciaa248.
- 2 Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21:335–337.
- Kronbichler A, Kresse D, Yoon S, et al. Asymptomatic patients as a source of COVID-19 infections: A systematic review and meta- analysis. Int J Infect Dis. 2020 Sep;98:180-186.
 doi: 1001016/j.ijid.2020.06.052.
- 4 Robert Stout, PhD; Steven Rigatti, MD, DBIM, DABFM; The Silent Pandemic COVID-19 in the Asymptomatic Population; Epidemol Int J 2021, 5(1): 000175.
- 5. Roche Elecsys® anti-HIV package insert 2020 Ref 05390095160
- 6. Elecsys® Anti-SARS-CoV-2. Package Insert 2020-07, V4.0; Reference 09203095190 and 09203079190.
- 7. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- 8. RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL <u>http://www.rstudio.com/</u>.
- Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323:2052–2059.
- James M. Tesoriero, PhD; Carol-Ann E. Swain, PhD; Jennifer L. Pierce, BS; Lucila Zamboni, PhD; MengWu, PhD; David R. Holtgrave, PhD; Charles J. Gonzalez, MD; Tomoko Udo, PhD; Johanne E. Morne, MS; Rachel Hart-Malloy, PhD; Deepa T. Rajulu, MS; Shu-

Yin John Leung, MA; Eli S. Rosenberg, PhD COVID-19 Outcomes Among Persons Living With or Without Diagnosed HIV Infection in NewYork State *JAMA Network Open.* 2021;4(2):e2037069. https://doi:10.1001/jamanetworkopen.2020.37069

11. Jérémy Dufloo, Ludivine Grzelak, Isabelle Staropoli, Yoann Madec, Laura Tondeur, François Anna, Stéphane Pelleau, Aurélie Wiedemann, Cyril Planchais, Julian Buchrieser, Rémy Robinot, Marie-Noelle Ungeheuer, Hugo Mouquet, Pierre Charneau, Michael White, Yves Lévy, Bruno Hoen, Arnaud Fontanet, Olivier Schwartz, Timothée Bruel; Asymptomatic and symptomatic SARS-CoV-2 infections elicit polyfunctional antibodies. Cell Reports Medicine S2666-3791(21)00103-8 DOI: <u>https://doi.org/10.1016/j.xcrm.2021.100275</u>