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Abstract 

 

A modified model of the epidemic under conditions of mass vaccination was 

developed. A comparison of the model results with statistical observations in Israel 

shows good agreement. 

Model calculations are performed on the efficacy of limiting the development of an 

epidemic by both lockdown and vaccination. Mass vaccination of the population is 

the most radical method of limiting the growth of the epidemic. The introduction of a 

lockdown cannot completely prevent the development of an epidemic. The likelihood 

of the emergence of new strains of the virus is assessed.  Without vaccination, the 

probability of more than two new virus strains per year affecting the epidemic growth 

process is found to be about 60%. A controlled calculation was made of the effect of 

the timing of changes in lockdown conditions during the vaccination period on the 

development of the epidemic. It was particularly shown that the cancellation of the 

lockdown together with the start of vaccination did not reduce the maximum number 

of new infections. A controlling calculation was made of the effects of gradually 

cancelling lockdown. On the basis of these calculations, it is possible to assess the 

development of the epidemic in different variants of partial lockdown cancellation.  

Three dimensionless complexes, made up of the intensities of transmission, 

vaccination and lockdown restrictions, are found to determine the epidemic's 

development. 

The intensity of the coronavirus epidemic depends on climatic characteristics, in 

particular air temperature and the UV index. A relationship is given to estimate the 

influence of these factors on infection growth. 

 The way forward for further development of the model is outlined. The immediate 

goal of modifying the model is to use it for each age group in the population and to 

find out the links between vaccination rates and the psychological state of the 

population, i.e. people's readiness for mass vaccination.       
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Introduction 

 

The numerous models for calculating epidemic spread can be divided into two broad 

groups, which differ fundamentally from each other. One group of models is based on 

differential equations describing changes with time in the number of infected 

individuals depending on the susceptible part of the population. They vary in their 

level of detail; however, they all require numerical methods for estimating the spread 

of the epidemic. Greater detailed elaboration of the models requires the introduction 

of an increasing number of empirical coefficients, which may not always adopt stable 

values for various specific cases. A detailed description of such models can be found 

in [1]. Another, stochastic group of models describes the probability of transmission 

through contact, the number of which is calculated by means of special sophisticated 

algorithms. These models, however, also require the introduction of a large number 

of empirical constants [2]. 

It is tempting to develop models that, by simplifying the modelling approach, allow 

analytical solutions to be obtained while taking into account the most important 

properties of a real spreading epidemic, enabling administrations to rapidly analyse 

changes in the epidemiological situation depending on the management decisions 

taken. 

An example of such a model is the propagation analysis model [3]. The model was 

developed with the assumption that it can be used mainly at the initial stage of an 

epidemic, but further studies have shown its high accuracy also in the case of a 

mature epidemic.   

 

Methodology 

 

The initial system of equations, which was the basis for the proposed model, is of the 

form [3]: 

                                               
𝑑𝑆

𝑑𝑡
 = - λ x  𝑆                   (1) 

                                           
𝑑𝐼

𝑑𝑡  
 = 𝑘0 × 

𝑆×𝐼

𝑁
 ,          (2)   

Where:  

I - number of infected persons at a given time,  

𝑘0 - coronavirus infection rate (1/day) 

N -  total population of the area under consideration, 

S - number of susceptible part of the population potentially capable of becoming 

infected due to contact with infected individuals. 
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λ -  intensity factor of decrease in contacts of infected patients  with persons who 

potentially can get infected by means of quarantine and other preventive measures. 

In contrast to previously developed models of this type, in our model there is no 

inverse relationship between the values of I and S, i.e. under lockdown conditions 

and provided that I ≪ S (usually I ≤ 0.2 S), we can assume that the number of 

potentially susceptible persons does not vary with the number of infections and 

depends only on the severity of the lockdown:  

 

                                                       S = 𝑆0  × 𝑒− 𝜆𝑡                              (3) 

Where: 

𝑆0 −is the maximum number of potentially infectious persons. 

It has been shown in [4], [5], and [6] that switching from the absolute number of 

infected to their relative percentage per inhabitant yields universal dependencies for 

populated areas with substantially different populations.   

The basic formula for calculating the spread of the epidemic takes the form: 

 

                                   𝑖 = 𝑖0 + 
100

𝑁 
∗ 𝑒𝑥𝑝 [

𝑘 

λ
 ( 1 − 𝑒− 𝜆𝑡)  ]                    (4) 

  

𝑖  - is the relative number of infected persons per one inhabitant of the settlement in 

question, as a percentage, 

𝑖0 - is the value of i at the initial moment of the calculation period, 

k. - is the transmission rate coefficient for the settlement with a population of N, which 

is calculated by the formula [7]:  

 

                                               K = 0,355 – 0,035 * ln (  
1

𝑁 
∗ 106)                    (5)   

   

The K coefficient also depends on the transmissibility of the virus strain responsible 

for the spread of the epidemic during the time period in question. If the spread of 

infection is associated with several virus strains, the calculated relationship will be 

written as follows: 

 

                         𝑖 = 𝑖0 +  
100

𝑁  
  σ ∗ ∑ 𝑒𝑥𝑝 [

𝑘𝑖

λ 
 ( 1 − 𝑒− λ ∗(𝑡−𝑡𝑖0 )) ]𝑛

 1       (6), 

 

where: 
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i - sequence number of the strain of virus affecting the intensity of the epidemic over 

time 𝑡 − 𝑡𝑖−1 , 

𝑘𝑖 - transmission rate coefficient of the new virus strain and the time of the epidemic 

wave associated with the new coronavirus strain   

𝑡𝑖0 - start time of the new epidemic wave associated with the new coronavirus strain. 

σ - Heaviside symbol σ = 1 when t ≥   𝑡 𝑖   and σ = 0  when t <  𝑡𝑖 

Dependence (6) is obtained under the assumption that the two or more virus species 

exist independently of each other. This assumption may not hold for certain strains of 

the virus, in which case the calculation is performed as a sequential replacement of 

one virus species by another. 

Numerous examples, partly presented in [4], [5], [6] and [7], show good agreement 

between the results of calculations using the proposed relationships (4) and (6) and 

statistical observations. The calculations were performed for sites as diverse as the 

United States, the United Kingdom or Germany, as well as for cities such as Berlin 

and even its individual city districts. 

Correlation coefficients between the calculated and statistical data ranged from 0.94 

to 0.99, confirming that the proposed calculation methodology can be used to 

analyse the spread of the epidemic. 

However, the proposed dependencies do not take into account the impact of mass 

vaccination on the rate of infection. To be able to account for this crucial influence on 

the growth of the epidemic, the original differential equations should be slightly 

modified to take the following form: 

 

                                          
  𝑑𝑆

𝑑𝑡
 = 𝑆( - λ  - σ

𝛼𝑣

1−𝛼𝑣∗𝑡
   )            (7) 

                                           
𝑑𝐼

𝑑𝑡   
=  𝑘0 × 

𝑆×𝐼

𝑁
                       (8) , 

 

Where in equation (7) additionally: 

v - population vaccination rate (1/day) 

α - coefficient of vaccine efficacy, 

σ - Heaviside symbol σ = 1 when t ≥   𝑡 𝑣  and σ = 0  when t <  𝑡𝑣 , 

 𝑡𝑣 - is the start time of vaccination of the population 

Equation (8) is formally the same as equation (2), but in reality the solution would 

look different because the value of S entering this equation changes. Equation (7), 

establishes the change in the number of persons potentially susceptible to the virus 

under conditions of mass vaccination of the population. The denominator in the last 

summand of equation (7) takes into account that as the proportion of the vaccinated 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2021. ; https://doi.org/10.1101/2021.04.29.21256322doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.29.21256322
http://creativecommons.org/licenses/by-nd/4.0/


population αv*t increases, the degree of impact of vaccination on the reduction of the 

epidemic increases. The coefficient of effectiveness α depends on both the type of 

vaccine and the vaccination dose (first or second). We will assume that the maximum 

percentage of the vaccinated population will not exceed (αv*t)max ≤0.8, i.e. with 80% 

vaccination of the population, an epidemic cannot develop due to the fact that some 

10% of the Israeli population have already been cured of COVID 19 and over 10% 

have been treated asymptotically . 

The solution to equation (7) is as follows: 

 

                                            S = 𝑆0 ∗  𝑒− 𝜆𝑡 ∗ σ * (1 - 𝛼𝑣 ∗ 𝑡)       (9) 

 

After substituting (9) into (8), solving the resulting equation, transformations and 

moving to a relative number of infections, we obtain the basic calculation equation 

for  t ≥   𝑡 𝑣  : 

 𝑖 = 𝑖0 + (𝑖𝑣 −   𝑖0) ∗ 𝑒𝑥𝑝 
𝑘 

λ
[(1 −

𝛼𝑣

λ
 ) ∗   𝑒−λ𝑡𝑣 − ( 1 −

𝛼𝑣

λ
−  𝛼𝑣( 𝑡 − 𝑡𝑣))∗  𝑒−λ𝑡 ]  (10), 

 

where   𝑖 =  𝑖𝑣   at  t =   𝑡 𝑣       

The calculation is carried out first by (4) or (6) and then, for the time period during 

which the vaccination takes place, by (10). 

 

Results 

 

Let us test the proposed methodology by calculating the development and successful 

suppression of an epidemic by mass vaccination in Israel. By the time this work was 

written (mid-April 2021), about 60% of the population had been vaccinated with the 

first dose of vaccine, and about 55% of the Israeli population had been fully 

vaccinated [8]. 

The active phase of a coronavirus epidemic until mass vaccination begins (first half of 

January 2021) is calculated using equations (4), (5), and (6). With an Israeli 

population of about 8.79 million [9], the K-factor calculated using (5) is K = 0.43 

1/day. Formula (5), which was used to determine that coefficient, was obtained for 

the conditions of the autumn-winter season in Europe. Climatic conditions in Israel 

differ considerably from those in Europe, which, according to the results of numerous 

studies, can have a marked effect on the growth rate of the epidemic. The most 

notable changes in the growth rate of COVID19 are related to the effects of the UV 

index and air temperature. For example, in [10], an increase in UVI decreases the 

maximum infection rate by about 6% per unit increase in the index. Other studies 

have cited a wide range of values for the effect of temperature. In [11], based on an 

analysis of the initial stage of an epidemic in more than 100 countries and assuming 
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exponential epidemic development, the effect of changes in air temperature and UVI 

on the growth of the infection was analysed. Statistical equations for the relationship 

between air temperature and UVI and the growth rate of the epidemic are presented. 

Having made control calculations of these relationships, we found, in particular, that 

at temperatures of 10 degrees the epidemic growth rate reduced by 5% with an 

increase in temperature by 1 degree, and at temperatures around 25-30 degrees this 

decline is about 2%. The work also shows that the decrease in the epidemic intensity 

with an increase by 1 unit in the UVI value (our estimate) is about 5-7%. However, it 

should be noted that there is a very high correlation between these parameters, 

which makes it difficult to identify each of these climatic characteristics. We consider 

the introduction of a UVI value when adjusting the intensity of infection growth to be 

important, as radiation not only kills viruses, but also contributes to the population's 

resistance to infection by increasing vitamin D levels [12]. 

In the absence of any reliable information, we take the mildest option of a 1% 

decrease in ∆𝑖𝑚𝑎𝑥  with an increase in temperature by 1 degree. Thus, as a first 

approximation, we find an estimated dependence of the value of maximum infection 

on climatic characteristics in the form: 

 

                 W = ∆𝑖𝑚𝑎𝑥.𝑤 /∆𝑖𝑚𝑎𝑥  = [1- 0, 01 (θ- 6))* (1- 0, 06(U-3)]         (11) 

 

where W is the coefficient of influence of climatic parameters on intensity of epidemic 

development,  ∆𝑖𝑚𝑎𝑥.𝑤 is the maximum intensity of infection growth taking into 

account climatic factors, θ is average air temperature (C0 ), U is the value of UV 

index (for average Berlin conditions it is assumed that θ = 60 C, U=3). The value of 

maximum growth of infection is established from dependence (4) and according to [5] 

has the form:   

 

                                 ∆𝑖𝑚𝑎𝑥  =
100

𝑁  

 λ  exp (
𝑘

λ
  -1)                            (12) 

From (12) after transformations we find 

                                            Kw = K + λ lnW (13) 

where Kw is the coefficient in (4), (5), (6) and (10) taking into account the influence of 

climatic factors. For Israel, statistical data on climatic characteristics are given in [13]. 

For period from April till October this factor decreases to Kw = 0.41 1/day, from 

November till March climate differs comparatively little from average European 

climate and that's why Kw is taken without correction for climatic factors 

Fig. 1 shows calculations using dependencies (6) and (10) and statistical data for 

Israel for the period 08.05.2020 to 09.04.2021. 
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In performing the calculations, the coefficient that takes into account the severity of 

lockdown for Israel was assumed to be the same as for most European countries [7] 

λ = 0.035 1/day. 

 

Fig.1: Development of the epidemic in Israel 

 

In this figure:  

i stat. - observed data,  

i calc. - calculation without vaccination,  

i calc. vac. - calculation for conditions of mass vaccination of the population. 

The effective vaccination rate parameter was defined as the sum of the effects of 

both vaccine doses: 

                              𝛼𝑣 =    𝛼1 𝑣1 + 𝛼2𝑣2                     (14) 

Vaccination rates for each vaccine dose were calculated from the data given in [9] as 

the ratio of the percentage of the population vaccinated to the total time of mass 

vaccination of the population.  Pfizer and Moderna vaccine efficacy ratios for the first 

and full vaccination doses were taken as 𝛼1= 0.46, 𝛼2= 0.92 respectively [14].   

For Israeli conditions, the effective vaccination rate parameter reaches a value of    

αv = 0, 008 1/day (for comparison: for Berlin for the same period αv = 0, 001 1/day). 

The spread of the epidemic was calculated taking into account the fact that infection 

was associated with three major virus strains. For the first virus strain (from 

08.05.2020) the calculation factor was taken as Kw = 0.41 1/d, for the second strain 

(from 24.07.2020) Kw = 0.435 1/d and for the third (from 20.11.2020) Kw = 0.47 1/d.. 

Accordingly, three "waves" of epidemic spread are traced. Such a high Kw value for 
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the third wave of the epidemic is mainly due to the high transmissibility of the English 

virus strain [15] responsible for the third wave of the epidemic.  

 

Discussion 

 

In general, the calculated data correspond quite satisfactorily with the statistics for 

the whole period of the epidemic in Israel. The correlation coefficient between 

estimated and observed data is higher than 0.995. 

The observed number of infected persons was significantly higher than the calculated 

data between 112 and 140 days from the beginning of the epidemic, probably due to 

the influence of Rosh Hashanah in early September. In [7], a correlation is given to 

determine the effect of an abrupt change in lockdown conditions on the intensity of 

transmission. The use of that relationship would have allowed such changes in 

lockdown conditions to be taken into account, particularly during major holidays, but 

we did not consider it necessary to make such clarifications, because the main 

objective of the present work is to analyze the effect of vaccination on the 

development of an epidemic. For that purpose, model calculations were made of the 

relationship between i max and vaccination rate. The value of   i max was calculated 

using dependence (10), assuming that     𝑡  =  𝑡𝑚𝑎𝑥  . The maximum vaccination time 

was estimated based on the condition that no further spread of the epidemic is 

possible with a vaccination rate of around 80% ,i.e.  𝛼𝑣𝑡𝑚𝑎𝑥 = 0, 8   therefore  𝑡𝑚𝑎𝑥 = 

0, 8/ ( 𝛼𝑣).                                                                                   

The equation for calculating the i max after a simple transformation is: 

 

                       i max  =𝑖0 + (𝑖𝑣 −   𝑖0) ∗ 𝑒𝑥𝑝 
𝑘 

λ
(1 −

𝛼𝑣

λ
 ) ∗   𝑒−λ𝑡𝑣              (15) 

The notations in (15) are given above for relation (10). 

The results of the calculations for this relationship are shown in Fig. 2. 

 

 

Fig. 2: Effect of vaccination rate on the intensity of epidemic growth 
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The effective vaccination rate is related to the coefficient λ, which was assumed 

constant in the calculations and equal to λ = 0.035 1/day. As would be expected, the 

maximum number of infections decreases as the vaccination rate increases. 

The proposed computational model for infection reduction due to vaccination yielded 

computational data in good agreement with observations. Mass vaccination is the 

most effective means of controlling the spread of virus infection. At the same time, 

however, even during mass vaccination a dramatic weakening of the lockdown 

conditions can lead to an increase in the intensity of the spread of the epidemic. 

Figure 3 compares the statistics for the vaccination period with the results of 

calculations under different lockdown conditions. 

 

 

Fig. 3: Epidemic development during the vaccination period under different lockdown conditions 

 

The calculations were performed for the condition that lockdown is cancelled 

simultaneously from the start of mass vaccination, partially (λ = 0.033 1/day) or 

completely (λ = 0.031 1/day). (The relationship between lockdown conditions and the 

model coefficient λ is discussed in [7]). In both cases, an increase in the number of 

infections can be expected despite continuous vaccination. Moreover, in the case of 

complete elimination of lockdown, the model predictions suggest that the maximum 

number of infections would even exceed that for conditions of no vaccination but 

strict maintenance of lockdown (see Figure 1). 

However, it should be borne in mind that when mass vaccination is carried out, the 

likelihood of a new strain of virus emerging and therefore a new epidemic wave is 

significantly lower than when the lockdown rules are followed. 

An estimate of the probability of the number of mutations without vaccination of the 

population can be made by assuming that a significant change in the properties of 

the strain is a rare event. If on average 3 such mutations occur per year (our model 
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results show that in many localities and countries 4 such mutations occur per year), 

using the Poisson distribution, we obtain for the probability density of new strains of 

the virus: 

                                  p (n) = 
3𝑛

𝑛!
 * e-3                                (16) 

 

As a result of the estimation of (16), we obtain in particular that without vaccination, 

the probability of more than two new virus strains a year influencing the growth of the 

epidemic is around 60%. 

 We also modelled the change in the maximum number of infected persons when the 

lockdown is delayed by (t L.–t v.)  days, instead of being mitigated or cancelled when 

vaccination starts. The results of these calculations are shown in Figure 4. In this 

figure the dimensionless time parameter T = (t L–t v) / (t max. – t v),) is given on the 

abscissa axis, the dimensionless complex I = (i max...L -   i max...   ) / i max.   * 100 %, 

showing the magnitude of the change in the maximum infection values when the 

lockdown requirements are reduced. The calculation was carried out according to 

(15), but instead of t v the time of change in lockdown conditions t L. was substituted in 

this equation. The values of the number of infected persons i0 and I L   for selected 

times t L at λ = 0.035 1/day were calculated using equation (10). 

 

 

Fig. 4: Epidemic development at different times of changing lockdown conditions during mass 

vaccination 

 

When the timing of the lockdown change and the start of vaccination coincide, i.e. 

when T = 0, the increase in the epidemic is maximum, e.g. if the lockdown is 

completely cancelled, the increase in the number of infections is almost 30%. If 

lockdown is cancelled one month after vaccination has begun, the maximum increase 

in infections does not exceed 15%, and after two months, it is only about 5%. These 

results are obtained for the real vaccination rate in Israel. Thus, based on these 

calculations, it is possible to estimate the consequences of changing the conditions 
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of lockdown compliance depending on the vaccination rate and the timing of these 

changes. 

The epidemic process, according to the model developed, is defined by three 

dimensionless parameters:  
𝑘 

λ
 , 

𝛼𝑣

λ
  and  λt. The variables that make up these 

complexes all characterize the magnitudes of the intensities of individual processes: 

K for infection, λ for reduction of infections as a result of lockdown and αv for 

vaccination. Each of these processes depends on many factors, some of them can 

be regulated, and others cannot. The K parameter, which depends on the virus 

strain, population size and climatic conditions, cannot be controlled. The other two 

parameters depend on the effectiveness of lockdown and vaccination, i.e. can and 

should be administratively regulated. 

On the basis of these data, as well as the data presented in previous studies, it is 

clear that, although the model was originally developed for the initial stages of an 

epidemic, its high efficiency is still valid for analysing subsequent stages of infection. 

This important conclusion provides grounds for further research into the development 

of a promising predictive model for epidemic analysis. On the basis of this model, an 

operational as well as long-term management system can be developed, aimed at 

minimizing the infection rate of the population. 

To further improve and refine the model, it is advisable to use it for individual age or 

socio-demographic groups of the population. Benchmark calculations performed for 

Berlin have shown that no modification of the model is required to account for age 

groups. The optimal vaccination plan for different age groups can be justified on the 

basis of epidemic growth analysis.  The influence of demographic characteristics has 

been analysed in [4]. In particular, it was found that a higher percentage of Berlin 

districts with roots in countries of the Islamic Commonwealth increased the intensity 

of the epidemic compared to other districts. Moreover, the intensity of vaccination is 

also related to demographic characteristics of the population. For example, according 

to [16] in the United Kingdom “the lowest vaccination rates    were observed among 

people identifying as Black African (58.8%), Black Caribbean (68.7%), Bangladeshi 

(72.7%) and Pakistani (74.0 %). The vaccination rate among people from an Indian 

background was lower than that of the White British group but remains high at 86.2%. 

The rate of vaccination depends not only on the availability of sufficient vaccines but 

also on the willingness of citizens to be vaccinated, which is related both to the level 

of public awareness and to the psychological state of people.  Psychological factors 

should also be taken into account when further refining the methods used to predict 

the growth of the epidemic.  

 For the proposed model to be able to forecast the spread of infection more reliably in 

the long term, the parameter characterising the intensity of epidemic growth and the 

probability of mutation should be linked to the characteristics of the virus strains. For 

this purpose, the intensity of the epidemic and the sequencing of virus strains under 

different conditions should be investigated in parallel.  

At the same time, in the form already proposed, the model developed could be an 

additional important tool for analysing, controlling and short-term forecasting of 

epidemics, depending on administrative decisions to reduce infection rates. 
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Conclusions 

  

1. A modified model of the epidemic under conditions of mass vaccination was 

developed. A comparison of the model results with statistical observations in Israel 

shows good agreement.  

2. We show that the intensity of coronavirus epidemics depends on climatic 

characteristics, in particular air temperature and UV index. A relationship is given to 

estimate the impact of these factors on infection growth. 

3. Three dimensionless complexes composed of transmission, vaccination and 

contact restriction intensities are found to determine the epidemic development. 

4. Model simulations of the efficacy of limiting the epidemic by lockdown and 

vaccination are performed. Mass vaccination of the population is the most radical 

method for limiting the growth of the epidemic. Lockdown cannot completely prevent 

the expansion of the epidemic. 

5. The probability of occurrence of new virus strains without vaccination is estimated; 

the probability of more than two new virus strains a year influencing the growth of the 

epidemic is about 60%. 

6. A controlled calculation of the effect of timing of changes in lockdown conditions 

during the period of vaccination on the development of the epidemic. It was shown, in 

particular, that the cancellation of lockdown simultaneously with the start of 

vaccination did not reduce the maximum number of virus infections.  

7. Calculations have been made on the effects of gradual lockdown cancellation. 

Based on these calculations, it is possible to estimate how the epidemic develops 

under different variants of partial lockdown cancellation. 

8. The way forward for further development of the model is outlined. The immediate 

goal of modifying the model is to use it for each age group in the population and to 

find out the relationship between vaccination rate and the psychological state of the 

population, i.e. people's readiness for mass vaccination. 
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