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Two subpopulation SEIR model 
 
The two-subpopulation SEIR model structure is diagrammed in Figure S1 and described in the 
equations below.  
 
The model contains two compartments, children (assumed here to be synonymous with schools) 
and adults (assumed here to be synonymous with the community). While real-world school 
populations contain adult school staff, they comprise 5-10% of a typical school population and 
have been neglected here as a first approximation. As numerous studies have reported adult-to-
adult transmission in the in-school setting [1–4], the adults working in schools can be considered 
in our model to be part of the “community”. The issue of whether adults working in schools are 
at a higher risk of infection is beyond the scope of this work. Real-world populations also 
contain a small percentage of children who are not of school age, but these children would either 
be at home (and hence part of the community) or in daycares (which can be considered as 
functionally equivalent to schools). Thus, in the interests of parsimony, we have represented the 
four-compartment structure (children in schools, adults in schools, adults in the community, 
children in the community) as a two-compartment structure here, focusing on the interaction 
between children in schools and adults in the community. 
 
The model assumes that the school-age children (or kids, K) and adults (A) have the ability to 
infect susceptibles both within their subpopulation and to some degree in the other 
subpopulation. To incorporate school transmission, we assume that all contacts between school-
age children (denoted  for child-to-child) occur in the school setting and have a 
probability, ps, of infection given contact with an infected child. All other contacts (between 
adults , from children to adults , from adults to children ) are assumed to 
occur in the “community” and have a probability, pc, of infection given contact with an infected 
individual. If schools are open and schools have higher transmission rates than communities, 
then pS>pc. If schools are closed, we set pS = pc, thereby assuming that children to children 
contacts occur in a risk-mitigated setting equivalent to the risk of other community interactions. 
The number of contacts within and between children and adults as described above were set for 
the baseline scenario based on the total POLYMOD matrices estimated for the United States [5]. 
Individuals transition between the states: susceptible (S), exposed (E), infected (I), and recovered 
(R). The K and A subscripts refer to the individual’s status as a school-aged child (K) or an adult 
(A). The symbols SA, SK, EA, EK, IA, IK, RA, and RK denote the number of people in that state. 
The model equations are given by: 

 



 

 

 

 

 
 

 

 

 

 
 
Where  and  are the number of adults and children in the community respectively,  is the 
exposed rate, and  is the recovery rate. 

 
Figure S1. Diagram of the two-population COVID-19 transmission model. Upon exposure from either an 
infected adult or child, susceptible (SA or SK) individuals progress to exposed (EA or EK), from which they move to 
infected (IA or IK), and eventually recover (RA or RK).  These individuals are no longer susceptible. The  
terms dictates the rate at which infected individuals from one subpopulation, k, infect another subpopulation, j,  in a 
certain environment i.  
 
 
The probability of transmission in the school and community are calculated based on the desired 
basic reproductive number, R0i, within a group: 

 
 
Detected cases in both adults and school-aged children were assumed to be symptom-based only, 
as the cited studies report that no surveillance screening was performed in schools and 



 

communities [6,7], and were simply a multiple of the number of true infections within each 
subpopulation.  

 
 
Model parameters and initial conditions are presented in Table S1. Parameters for the two 
scenarios displayed in Figure 1 are in Table S2.  
 
Table S1: Model Parameters 

Parameters Value 

: transition rate from exposed to infectious ⅓ [8] 

: recovery rate 1/10 [9] 

R0,S: school reproduction number 2.5 

R0,C: community reproduction number 1.1 

pc: probability of transmission in community 0.0122 

pS: probability of transmission in school 0.0258 

psym,S: symptomatic proportion in school-age children 0.21 [10] 

psym,C: symptomatic proportion in community 0.70 [10] 

Initial number infected in the school 3 per 1000 

Initial number infected in the community 3 per 1000 

: number of contacts children have with adults 5.3 [5] 

: number of contacts adults have with children 2.5 [5] 

: number of contacts children have with kids 9.7 [5] 

: number of contacts adults have with children 9.0 [5] 

 
 
Table S2: Scenario parameters 

Parameters School low risk School high risk 

R0,S: school reproduction number 1.1 (equal to R0,C) 2.5  

ps : probability of transmission in 
school 

ps = pc = 0.0122 (equal to pc, 
all children-children contacts 
occur in the community) 

ps  =0.0258, 
pc =0.0122 

 



 

Expected percent of index cases with detected forward transmission 
 
To assess the probability that an index case would have a detected onward transmission event, 
we developed a statistical model using a Markov process of symptom-based forward tracing that 
follows a series of steps each with its own probability.  
 
Starting with an infected index case, the first step is to determine whether the index case 
transmitted, and if so, to how many other individuals. If the index case is transmitted onwards, 
the next step is whether or not each of the secondary infections arising from it are symptomatic. 
We assume that if a secondary case is symptomatic, they have a 100% probability of being 
detected and reported. Of note, this is an optimistic assumption as not all symptomatic contacts 
are willing to test [11]. If the index case both transmitted onwards and one or more of those 
transmission is symptomatic and detected, the index case is counted as having a symptom-gated 
forward transmission (Figure S2). This process is repeated for 1000 index cases to find the 
probability of detecting a forward transmission starting from an index case for different levels of 
overdispersion and symptomatic rates.  
 

Figure S2. Schematic diagram of Markov process to model evaluation of efficacy of forward contact-tracing. 
We use a Markov process conditioned on having a symptomatic index case, which first assesses whether the index 
case transmitted onwards, with the number of individuals each index case transmits to following a negative binomial 
distribution with dispersion parameter k and mean of R0. If the index case transmitted to other individuals, we ask 
how many of them would be expected to show symptoms, with the number symptomatic following a binomial 
distribution with a psym chance of being symptomatic. If an index case is expected to have infected any individuals 
who would go on to show symptoms, they are reported as having driven a secondary transmission.  
 
The distribution of the number of secondary infections stemming from each index case is 
dictated by a dispersion parameter, k. SARS-CoV-2 is unusual compared to other respiratory 
diseases like flu in that it has this phenomena called overdispersion, which means that a high 
proportion of infected individuals transmit to very few individuals, while a small proportion of 



 

individuals infect a high number of individuals. The overdispersion parameter k of COVID-19 is 
estimated to have a median value of k = 0.1, with a 95% credible interval between 0.05 and 0.2 
[12].A higher dispersion factor (k) corresponds to a more even distribution of cases. At k = 0.1, 
20% of infected individuals account for about 80% of secondary transmissions, consistent with 
observed “super-spreader” phenomena of COVID-19. Crucially, this overdispersion means that it 
is expected that most people do not actually transmit to anyone else, making negative results 
about onward transmission difficult to draw conclusions from.  
 
Using previously reported estimates of individual level variation of COVID-19 transmission 
dynamics [12], we assumed that the number of individuals that an individual went on to infect, 

 (for number of secondary transmission), follows a negative binomial distribution with an 
overdispersion parameter k and an average number of secondary transmissions, given by the 
reproduction number, R0.  
 

 
 
We assume an R0 of 2.5 to be consistent with our transmission model simulations.  
For each index case, the number of secondary transmissions, N2nd, is assumed to have a 
probability psym of later developing symptoms, such that the number of symptomatic secondary 
cases corresponding to an index case, Nsym,  is a random variable that follows a binomial 
distribution. 
 

 
 
This sampling process was repeated 1000 times for the 191 index cases to simulate the forward-
tracing process of cases identified in the school in Wood County Wisconsin [6]. To identify the 
probability that an index case has any detected secondary cases, pdetected, we count the number of 
index cases for which Nsym is greater than one relative to the total number of index cases.   

  
 
In Figure 2B, we display results for the k = 0.1, 0.05, and 0.2 corresponding to the median and 
lower and upper bound estimates, respectively, of dispersion for SARS-CoV-2 [12].  The percent 
symptomatic was varied from 0 to 100%, with dashed and solid lines indicating the symptomatic 
rates of children and adults respectively [10]. The results shown in Figure 2 indicate that, as 
overdispersion decreases (high k), the percent of index cases detected to transmit will be dictated 
purely by the percent symptomatic (Figure 2B, blue line). In contrast, when overdispersion is 
high (low k), the percent of index cases detected to transmit is expected to decline for all 
symptomatic rates, as fewer individuals go on to transmit to others (Figure 2B, green line), and 
the superspreader that does transmit will transmit to many, making it likely that one of them is 
detected. At the median estimated level of overdispersion of k=0.1, the percent of index cases 
that transmit is expected to be low (28% [21.5%-34.0%])and relying on symptomatic detections 
only will render the observed rate even lower, making forward transmission events an ineffective 
means of quantifying the degree of transmission happening in an environment.  
 
Our results show that forward contact-tracing for SARS-CoV-2 as currently implemented by 
schools is intrinsically unlikely to detect onwards transmission from a given index case, even if 



 

transmission were in fact occurring at a high level. It has been previously shown that forward 
contact-tracing for SARS-CoV-2 is minimally effective at mitigating transmission [13], and our 
results demonstrate that it is also minimally effective at estimating the degree of transmission.  

 
Sensitivity analysis on interactions between adults and children 
 
In the main text, we examined the scenarios in which adults and children’s contacts remained 
constant but child-child contacts had a higher probability of leading to a transmission if schools 
were opened. We were interested in how the true infection rate (cumulative percent infected) and 
the discrepancy between true infection rates for adults and children varied as a function of these 
interactions. We performed a sensitivity analysis to evaluate the effect of increasing the adult-to-
child and child-to-adult contacts by a certain factor on the total true infection rate (in both the 
adult and child populations combined) and the ratio of child to adult true infection rates.  

 
 
Figure S3. As school and community interaction increases, the true infection rate goes up, while the ratio of 
detected case rates looks more similar. The left figure displays the true infection rate of the adult and child 
populations combined (cumulative percent infected)  as a function of the relative increase in contacts between adults 
and children (where 1 is the baseline). The right figure displays the ratio of true infection rates in children vs adults 
as a function of the factor increase in adult-children contacts. Both are for the scenario where within-school R0,S = 
2.5 and between-adult R0,C = 1.1.   
 
The sensitivity analysis demonstrates that, as expected, as more mixing between the (faster-
spreading) children and the (slower-spreading) adults takes place, more individuals become 
infected. As a result of the increased potential for cross-over infections from children to adults, 
greater mixing results in a rapid equilibration of infection rates between school and community. 
Thus, increased mixing leads at once to a greater total number of infections within the population 
as a whole, as well as a smaller difference in infection rates between the two populations. 
Comparing the two rates side by side highlights how comparing infection rates among schools 
and communities is not an accurate way of assessing the extent of school amplification. If 
detected cases are estimated by symptom-gated testing, then the higher asymptomatic rates in 
children can be expected to compound this effect, making it appear that detected case rates in 
schools are lower than those of the community, even if - as in this scenario- schools are actually 
driving transmission in the population as a whole.  
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