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A Data

Imputation We impute missing temperature and mobility observations from Google’s
mobility trends using the Multivariate Imputation by Chained Equations (mice) R package
[1]. The MICE algorithm imputes missing values by iteratively fitting a conditional distri-
bution for each variable in a dataset and using it to fill in missing values. This procedure
is repeated a number of times until convergence is achieved. We impute values using the
predictive mean matching method in mice. We parameterize the conditional distribution for
each variable as a linear model, conditioned on the other observed variables. We also allow
for a temporal trend per variable (e.g. to allow there to be some trend for mobility) within
each US Census division and within each CSA, parameterized by natural cubic splines. This
allows each CSA and each division to have its own smoothly varying trend per variable. We
fit 25 multiply imputed datasets, and take the mean of these imputations to use for our
modeling.

County exclusion criteria We exclude counties with less than 250 total COVID-19
cases as of the last date considered, February 20, 2021, which removes 176 counties. Next,
we exclude counties with extreme growth patterns, where any weekly absolute growth rate
exceeds 2 (removing 8 counties), or absolute growth rates exceeds 1.5 and the county has
less than 50, 000 people (removing 8 counties). These restrictions remove outliers that arise
from difficult to model events, such as prison outbreaks in sparsely populated counties.

Feature selection In addition to mobility, mask adherence, temperature, and county
population, we also considered adjusting for county level demographic, socioeconomic, and
health related features. However, since these features are constant in time and our model
includes a random intercept by CSA, these additional variables only account for intra-CSA
variability. Empirically, inclusion of these variables did not improve performance and made
interpretation more difficult. As a result, we excluded these features from our final model.
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Mask featurization To construct a single measure of mask adherence over the course
of the pandemic, we combine survey responses from a few different sources. Pew Research
carried out two surveys on June 7, 2020 and August 8, 2020 and released aggregate survey
responses at the division level [2], and the New York Times and Dynata ran county-level
surveys from July 2, 2020–July 14, 2020 [3]. From September 8, 2020, CMU’s Delphi Epidata
group administered and reported state level daily mask adherence survey responses [4]. We
use the COVIDcast Epidata R package to download mask survey responses from CMU’s
Delphi Epidata repository.

We define our mask adherence feature piecewise: Between the two Pew survey dates, we
linearly interpolate such that the state mask value intersects the average survey response
of all counties in a state from the New York Times survey on July 7. The slope of the
interpolant is set to the trend between the state’s corresponding June and August Pew
division responses. From the value on August 8, we linearly interpolate to the CMU state
level value on September 8. If this results in a decrease in mask adherence between August
and September, we instead use a single interpolant from June 7–September 8 defined by two
points: the average state level response from the New York Times survey on July 7, and
the state level CMU value on September 8. This monotonicity constraint ensures that the
mask adherence level does not increase too quickly between survey dates over the summer.

We further assume zero mask wearing from the start of the pandemic until one week
after the CDC adjusted their mask wearing recommendation on April 4; prior to this date,
the CDC recommended not wearing masks. From April 11 until June 7, the state mask
value is equal to the June 7 value.

B Detailed model description

We model the expected log growth rate in county i at week t ∈ {1, . . . , N} as a linear function
of log county population Xi, average tth week temperature Ti,t, mask compliance Csi,t in
county i’s state si, and the three week moving average of the first principal component
of Google’s six mobility variables (constrained such that workplace mobility’s loading is
positive) Mi,t at week t through a multilevel Bayesian regression model:

yi,t = αci +Xiβ + [Ti,t;Csi,t]θ +Mi,tγci,t + εi,t (B1)

β ∼ 1

θ ∼ 

εi,t ∼ N (0, σ2
y),

where ci is a surjective mapping from county i to its CSA, temperature and mask use are
concatenated by column in the matrix [Ti,t;Csi,t], the notation “A ∼ ” defines an improper
flat prior over the reals for the random variable A. Log population estimates and weekly
temperature observations are each centered by their mean and normalized by twice their
sample standard deviation. γci,t is chosen to have a specified parametric form that accounts
for non-stationarity in the expected effect of mobility. We specify γci,t through a fixed weight
matrix W ∈ RN×R and a cluster-specific vector ρci of dimension R� N that parameterizes
the coefficients

γci,t = Wtρci ,

where Wt is the tth row of the weight matrix W . In practice, N = 52 as we model a full
year of data.

2



In the piecewise constant model with R = 4 waves, W is specified with three fixed knot
dates d1, d2, and d3: the tth row ofW is defined asWt =

[
1(t≤d1), 1(d1<t≤d2), 1(d2<t≤d3), 1(t>d3)

]
.

Here 1A is an indicator function that equals one if A holds, and is zero otherwise. Cluster

ci’s ρ coefficients are defined as ρci =
[
ρ1ci , ρ

2
ci , ρ

3
ci , ρ

4
ci

]>
. In practice, we let d1 be May 23,

2020, d2 be August 22, 2020 and d3 be November 28, 2020, as this evenly splits the 4 waves
into groups of 13 weeks each.

We further specify a joint distribution over the coefficients αci and ρci ,[
αci ;ρ

>
ci

] ind.∼ N
([
α0,ρ

>
0

]
,Σ

)
,

where the covariance matrix Σ is defined through a scaled correlation matrix Ω which is
distributed according the LKJ distribution [5] with shape parameter equal to two,

Σ = diag(τ )Ωdiag(τ ).

The scales τ are half t-distributed with three degrees of freedom. The population-level
intercept α0 is t-distributed with three degrees of freedom and ρ0 ∼ 1.

We enforce a post-hoc positivity constraint that γci,t ≥ 0 by applying the function
f(x) = max(0, x) to all samples from the posterior distribution of γci,t. We found that such
post-thresholding generally led to similar estimates when compared to a model where the
coefficients γci,t were log-normally distributed (and thus satisfy γci,t ≥ 0), but convergence
and sampling time per MCMC iteration was much faster.

Model training and evaluation We use the R package brms to obtain posterior samples
from model (B1). Two chains are run for 7000 total iterations; 2000 samples are used for
calibration during warm-up. We set the adapt delta and max treedepth settings to 0.9995
and 25, respectively. Every fifth sample is retained for posterior inference. Final models
are assessed to ensure convergence: all estimated R̂ values are less than 1.05; tail and bulk
effective sample sizes are all greater than 1000.

Estimated coefficients from fitting model (B1) Posterior estimates for population-
level parameters are presented in Table 1. The mobility wave parameters (i.e. the ρ0) can
be interpreted as the mean effects over all CSAs; these point estimates are comparable to
what the effects would be in a model that forces the same association across space and does
not allow for differential effects by CSA.

C Ablation studies

Results are robust to choice of knot locations. In Figure S1, we examine the sen-
sitivity of our results to different knot locations. We consider 125 different models with
differing knot dates. In our final model in the main paper, we let d1 be May 23, 2020, d2 be
August 22, 2020 and d3 be November 28, 2020, as this evenly splits the 4 waves into groups
of 13 weeks each. We considered models where we jittered d1 by up to 2 weeks before or
after May 23, 2020 (i.e. we tested d1 ∈ {2020−05−09, 2020−05−16, 2020−05−23, 2020−
05− 30, 2020− 06− 06}. Similarly, we jittered d2 and d3 by up to 2 weeks before and after
their final dates as well, for a total of 125 different knot combinations.

For each model, we compute the overall R2, R2 by population, and R2 by region. As
shown in red the R2 of our final model is roughly centered in each histogram; our final model
is not overfit to knot locations.
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Estimate Lower 95% CI Upper 95% CI R̂ Bulk ESS Tail ESS
Intercept (α0) 0.19 0.18 0.20 1.00 1241 1530
Population (β) 0.04 0.03 0.04 1.00 1919 1776
Temperature (θ1) 0.03 0.03 0.03 1.00 1882 1604
Mask (θ2) -0.19 -0.20 -0.19 1.00 1978 1965
Mobility Wave 1 (ρ10) 0.00 0.00 0.01 1.00 1123 1495
Mobility Wave 2 (ρ20) 0.04 0.03 0.05 1.00 1132 1693
Mobility Wave 3 (ρ30) 0.09 0.07 0.10 1.00 1101 1542
Mobility Wave 4 (ρ40) 0.11 0.10 0.12 1.00 1703 1814
Error scale (σy) 0.13 0.13 0.13 1.00 1966 1965

Table 1: Posterior population level parameter estimates obtained from 2000 posterior sam-
ples (2000 for warm up, and 5000 remaining samples where thinned by saving every 5th
sample) in each of two MCMC chains from (B1).

Northeast South West

25k − 100k all Midwest

< 25k > 250k 100k − 250k

0.39 0.40 0.41 0.42 0.152 0.156 0.160 0.23 0.24 0.25 0.26 0.27

0.255 0.260 0.265 0.270 0.275 0.255 0.260 0.265 0.270 0.36 0.37

0.220 0.225 0.230 0.235 0.36 0.38 0.40 0.42 0.28 0.29 0.30 0.31
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Figure S1: Distribution of R2 values across 125 different models with slightly different lo-
cations for the knots defining the 4 waves. Each facet displays a histogram of R2 across all
models on that subset of data (either all of the data, one region, or counties of a certain
population size). The red line in each pane shows our final model’s R2. Although per-
formance could be slightly improved, quantitative performance is not very sensitive to the
precise choice of knots.
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Averaging over many training and testing splits, our model does not overfit.
In order to confirm that our models are not overfit, we ran the final model 100 times each
using two different strategies for constructing training and held-out testing sets. First, we
created splits by holding out a random 20% of weeks (“random-times”), ignoring geography
(i.e. some weeks in a given county will appear randomly in the training set, and some in
testing). This specific type of split is less likely to exhibit overfitting, as there will generally
be at least some data from every county. Second, we created splits by holding out all data
from a random 20% of counties (“random-counties”), fitting the model on the remaining
80%. Figure S2 displays the R2 for each data splitting strategy by week for train and test
splits.

When averaging across 100 splits of randomly held-out times, the mean overall R2

performance is 20.4% (95% CI: (20.2%, 20.6%)) in-sample and 20.3% (95% CI: (19.8%,
20.9%)) out-of-sample. Region-specific R2 values are: Midwest, 29.1% (28.6%, 29.4%) in-
sample, 29.0% (27.9%, 30.1%) out-of-sample; Northeast, 30.1% (29.5%, 30.8%) in-sample,
29.9% (27.7%, 31.9%) out-of-sample; South, 12.2% (12.0%, 12.4%) in-sample, 12.1% (11.5%,
12.6%) out-of-sample; West, 17.7% (17.3%, 18.2%) in-sample, 17.5% (16.5%, 18.6%) out-of-
sample.

When averaging across 100 splits of randomly held-out counties, the mean overall R2

performance is 26.2% (95% CI: (25.7%, 26.9%)) in-sample and 26.7% (95% CI: (24.9%,
29.2%)) out-of-sample. Region-specific R2 values are: Midwest, 36.6% (35.7%, 37.5%) in-
sample, 36.5% (33.2%, 40.9%) out-of-sample; Northeast, 40.7% (38.9%, 42.4%) in-sample,
40.4% (33.9%, 46.8%) out-of-sample; South, 15.2% (14.6%, 16.0%) in-sample, 15.7% (13.4%,
18.1%) out-of-sample; West, 25.4% (24.4%, 26.7%) in-sample, 25.4% (20.0%, 31.4%) out-of-
sample.
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Figure S2: Train/test results, when disaggregating by week. Median (solid lines) and 95%
quantiles (shaded) are shown.
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Adjusting for mask use leads to increased R2. To assess the effect of mask use, we
compare two versions of our final model that differ only in whether or not they include or
exclude the mask feature as a global fixed effect. Figure S3 shows that the model with
masks included leads to substantial increases in R2 in the first wave (approximately 10%)
and moderate increases in the third wave (approximately 4%) over the model with masks
excluded. Overall, the R2 of 27.2% in the final model including masks is about 2% higher
than the R2 of 25.2% in the model excluding masks.

0.10

0.15

0.20

0.25

Apr
May

Jun Jul
Aug

Sep Oct
Nov

Dec
Jan Feb Mar

R
2 

(9
5%

 C
I)

Mask excluded

Mask included

R2 by date and model

Figure S3: R2 across time for base model with and without mask variable. Median (solid
lines) and 95% quantiles (shaded) are shown.
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