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Materials and Methods 
Patients and samples 
Healthy volunteers were enrolled at the Translational Genomics Research Institute in Phoenix, 
AZ and blood samples were collected under protocol numbers 20142638, and 20181812, 
approved by Western Institutional Review Board (IRB). Blood and tissue samples from patients 
with melanoma were collected at Mayo Clinic in Scottsdale, AZ under protocol number 16-
001453 and within a multi-center clinical trial (NCT02094872) under protocol number 20140190 
approved by Western IRB(19). Blood samples from patients with breast cancer were collected at 
Mayo Clinic in Scottsdale, AZ under protocol number 14-006021, from patients with 
glioblastoma within a clinical trial (NCT02060890) at University of California in San Francisco, 
CA under protocol number 20141201 approved by Western IRB(20), and from patients with 
cholangiocarcinoma at Mayo Clinic in Scottsdale, AZ under protocol number 12-004713. All 
patients provided informed consent. For a subset of patients with cancer, multiple blood samples 
were collected including at presentation and during treatment.  
 
Sample processing, DNA extraction and sequencing 
Blood samples were collected in EDTA BD Vacutainer tubes. Plasma was separated within 3 
hours of venipuncture by centrifugation at 820g for 10 minutes, followed by a second 
centrifugation at 16000g for 10 minutes. One milliliter aliquots of plasma were stored at -80°C 
until DNA extraction. DNA was extracted using either MagMAX Cell-Free DNA Isolation Kit 
(ThermoFisher) or QIAamp Circulating Nucleic Acid Kit (Qiagen) from 1 ml to 4 ml plasma. 
Cell-free DNA was quantified prior to library preparation using Qubit dsDNA HS assay 
(ThermoFisher), Cell-free DNA ScreenTape on the TapeStation 4200 (Agilent), or using an in-
house digital PCR assay(21). Whole genome sequencing libraries were prepared from plasma 
DNA using ThruPLEX Plasma-Seq or Tag-seq (Takara). Libraries were sequenced on HiSeq 
4000, NextSeq 550, or NovaSeq 6000 (Illumina) to generate 75 bp to 150 bp paired-end reads. 
 
Sequencing data analysis 
Sequencing data was converted to fastq files using bcl2fastq v2.20.0.422. Sequencing reads were 
trimmed using fastp v0.20.0(22). Trimmed reads were aligned to human genome build hs37d5 
(hg19) using bwa-mem v0.7.16a(23) and converted to bam files using samtools 1.9-92-
gcb6b3b5(24). Tumor fraction was inferred using copy number analysis of plasma DNA using 
ichorCNA v0.3.2, together with hmmcopy for patients with melanoma and 
cholangiocarcinoma(25, 26). Reported limit of detection using ichorCNA is 3% tumor fraction. 
Any samples non-detectable using ichorCNA were incorporated as zeros in correlation analyses.  
 
External data 
Fragment end positions, and clinical annotation for patients with cancer and healthy individuals 
from three published studies(25, 27, 28) were obtained from FinaleDB(29). These data were 
processed similarly to fragment end positions identified from patients in this study.   
  
Analysis of fragment ends 
To analyze genomic positioning of fragment ends, a map of recurrently protected regions was 
inferred from 17 heathy individuals (sequenced to ~30x coverage each), using a peak-calling 
method based on window-protection scores(30). Using this map, cell-free fragments were 
identified as aberrant if one or both of ends were located within a protected region. Non-aberrant 



 
 

3 
 

fragments were identified as those that span the length of a protected region. Using the counts of 
these two types of fragments, fraction of aberrant fragments (FAF) was calculated as the ratio of 
aberrant fragments to the total number of aberrant and non-aberrant fragments. 
 
To analyze average nucleotide frequencies at fragment ends, positions from 10 bp upstream to 10 
bp downstream of each fragment end were considered. For each plasma sample, average 
frequency across all fragments was calculated for each combination of position and base, using 
the sequence represented in the hg19 reference genome. Mono-nucleotide frequency was 
calculated at each position using samtools(24), BEDTools v2.29.0(31) and homerTools 
v4.11(32). Each sample was represented by a vector of 168 length (2 fragment ends x 4 bases x 
21 positions). 
 
For building the classification model, we used the nucleotide frequency vector and FAF for each 
sample. Samples were stratified by cancer type (single stratification for healthy) and split into 
80% train and 20% test data. Such stratified splits ensured that train and test data share similar 
representation of different types of data variations, leading to improved generalization on test 
data(33). A random forest classifier (using 100 decision trees) was trained and evaluated over 
100 runs and using 1000 activation thresholds uniformly distributed between 0 and 1. This 
binary classifier was trained using a label of 0 for healthy samples and 1 for samples from 
patients with cancer. The data used for building this model was limited to one sample per patient 
(the earliest time point available for each), to avoid potential signal leakage between train and 
test data. 
 
Down-sampling analysis 
To evaluate whether analysis of fragment ends was robust at lower read depths, the original 
datasets were subsampled using samtools(24). To calculate coefficient of variation for FAF, 
subsampling analysis was performed using earliest available plasma samples from 35 patients 
with melanoma. The full dataset was randomly subsampled 10 times with a maximum of 1 to 10 
million fragments. With FAF computed for each random sample, coefficient of variation was 
calculated per observation for a given number of reads. To assess how our robust classification 
model was at lower read depths, a random subsample of 1 to 10 million reads was obtained from 
each sample included in the model and including in training and evaluation.  
  
Comparison of FAF across copy number aberrations 
To compare differences in FAF between genomics regions affected copy number aberrations, 27 
plasma samples from patients with melanoma with tumor fractions of at least 20% were selected. 
FAF was calculated in non-overlapping 500 kb windows across the genome in each sample, 
along with 24 healthy control samples. For each plasma sample, we identified all windows that 
completely overlapped with copy number segments having less than, equal to, or greater than 2 
copies. For each window, we calculated the z-score of the patient sample versus healthy controls 
by subtracting the mean FAF value of the bin in the healthy samples from the patient sample and 
dividing by the standard deviation of the healthy sample FAF values. 
 
Comparison of FAF for mutated and non-mutated fragments 
To compare FAF between mutated and non-mutated fragments, tumor and germline exome 
sequencing data from two patients with metastatic melanoma were analyzed, as described in an 
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earlier study(19). Deep whole genome sequencing of the corresponding plasma samples was 
performed. Genomic loci where mutations were identified in the tumor DNA were interrogated 
in corresponding plasma WGS data. FAF was calculated for mutated and non-mutated 
fragments, in aggregate for all mutations. 
 
Targeted digital sequencing of plasma DNA 
Tumor fraction in plasma samples from patients with glioblastoma was measured using targeted 
digital sequencing as described earlier(34). Briefly, patient-specific somatic mutations were 
selected by analyzing exome sequencing data from tumor biopsies and germline DNA. Clonal 
mutations were identified, adjusting for copy number aberrations in the tumor genome and 
overall tumor purity. Target-specific multiplexed primers were designed and evaluated for in 
vitro performance using control DNA samples. TARDIS sequencing libraries were prepared and 
sequenced on an Illumina NovaSeq S4 flowcell. Sequencing data were analyzed to evaluate 
targeted genomic loci and determine confidence in ctDNA detection in each sample. ctDNA 
fraction was calculated as the mean of all measured variant allele fractions. 
 
Statistical analysis 
Statistical analyses were performed using Julia and Python. Significance values of differences 
between two FAF distributions were evaluated using the t test. Statistical significance between 
distribution of FAF in copy number loss, neutral, or gain regions was calculated using the Mann-
Whitney U test. To compute the statistical significance of correlation, the correlation values were 
first converted to a t statistic and then converted to a P value based on population size. 
Comparison of FAF between mutated and non-mutated DNA fragments within a plasma sample 
was performed using the two-proportions Z test. All P values reported are two-sided. P values 
smaller than 0.05 were considered statistically significant.  
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Fig. S1. 
Comparison of tumor fraction and FAF in plasma samples from patients with 
cholangiocarcinoma. Tumor fraction and FAF were correlated with Pearson’s r of 0.71 (P = 2.2 x 
10-8). On the x-axis, plasma samples with tumor fraction below the limit of detection using 
ichorCNA are indicated as zero. 
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Fig. S2. 
Comparison of longitudinal changes in tumor fraction and FAF in serial plasma samples from 
patients with metastatic melanoma, treated on a targeted therapy trial(19). 17 patients from 
whom at least 4 plasma samples were analyzed and at least one of them had circulating tumor 
DNA detectable by ichorCNA are included in this figure. For each patient, the top panel shows 
longitudinal changes in FAF and the bottom panel shows tumor fraction measured using 
ichorCNA. Days of follow-up are reported since the earliest available blood sample. Shaded 
areas indicate systemic therapy during the trial. When available, imaging results measured using 
RECIST are indicated with orange vertical lines for Stable Disease and with red vertical lines for 
Progressive Disease.  
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Fig. S3. 
Comparison of longitudinal changes in tumor fraction and FAF in serial plasma samples from 
patients with glioblastoma, treated on a genomics-enabled therapy trial(20). 3 patients from 
whom at least 4 plasma samples were analyzed are included in this figure. For each patient, the 
top panel shows longitudinal changes in FAF and the bottom panel shows tumor fraction 
measured using TARDIS, an assay of patient-specific mutations guided by the patient’s own 
tumor biopsy(34). Days of follow-up are reported since the earliest available blood sample, 
which was collected prior to surgical resection of the tumor. Subsequent samples were collected 
after surgical resection and during therapy. Vertical red line indicates clinical disease 
progression.  
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Fig. S4. 
Comparison of FAF between copy number gain, neutral and loss regions in patients with 
metastatic melanoma. Density plots for normalized FAF are presented for copy number loss 
(blue), neutral (purple) and gain regions (red) for 27 plasma samples with at least 20% tumor 
fraction measured using ichorCNA. Under each plot, p values for comparison of these 
distributions are presented. GvL: gain regions vs. loss regions. GvN: gain regions vs. neutral 
regions. LvN: loss regions vs. neutral regions. All 27 samples showed significantly higher FAF 
in gain regions compared to neutral regions, in gain regions compared to loss regions, or both (P 
< 0.05).  
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Fig. S5. 
Comparison of tumor fraction and FAF in plasma samples from patients with metastatic breast 
and prostate cancer. Whole genome sequencing data from Adalsteinsson et al. was analyzed for 
this figure(25). Tumor fraction and FAF were correlated with Pearson’s r of 0.66 (P = 1.9 x 10-
119) in plasma samples from patients with metastatic breast cancer (A) and with Pearson’s r of 
0.74 (p = 6.8 x 10-98) in plasma samples from patients with metastatic prostate cancer (B). On the 
x-axis, plasma samples with tumor fraction below the limit of detection using ichorCNA are 
indicated as zero. 
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Fig. S6. 
ROC curves for cancer detection by cancer type. Whole genome sequencing data from Cristiano 
et al. was used to evaluate performance of analysis of fragment ends(27). Each panel shows 
classifier performance in a cancer subtype. Numbers with brackets are areas under the ROC 
curves.  
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Fig. S7.  
Co-efficient of variation (CV) for FAF in down-sampled data sets. To calculate CV, multiple 
independent datasets with decreasing number of DNA fragments were generated and FAF was 
calculated from these replicates. CVs remained less 1% even for as low as 1 million reads per 
sample. 
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Fig. S8. 
Classifier performance with down-sampling in our multi-cancer cohort. Down-sampling was 
performed to limit maximum number of analyzed fragments, as indicated on each panel. Overall 
classifier performance for cancer detection is shown. Numbers in brackets are area under the 
ROC curve. Vertical dashed black line indicates 95% specificity.  
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Fig. S9. 
Classifier performance with down-sampling in Cristiano et al.’s published cohort(27). Down-
sampling was performed to limit maximum number of analyzed fragments, as indicated on each 
panel. Overall classifier performance for cancer detection is shown. Numbers in brackets are area 
under the ROC curve. Vertical dashed black line indicates 95% specificity.  
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Study Diagnosis 

Number 
of 

Samples 
Mean 
FAF 

Standard 
Deviation 

of FAF  P value Cohen’s d 

This study 

Healthy Individuals 40 0.287 0.004 - - 
Breast Cancer 47 0.299 0.012 4.5x10-8 1.3 
Cholangiocarcinoma 46 0.307 0.016 9.4x10-11 1.6 
Glioblastoma 45 0.301 0.013 9.3x10-9 1.4 
Melanoma 261 0.299 0.016 3.3x10-6 0.8 

Cristiano et 
al.(27) 

Healthy Individuals 262 0.285 0.005 - - 
Breast Cancer 54 0.290 0.008 6.9x10-9 1.1 
Cholangiocarcinoma 25 0.293 0.006 4.7x10-11 1.9 
Colorectal Cancer 27 0.298 0.014 4.7x10-21 2.4 
Gastric Cancer 27 0.288 0.012 8.2x10-3 0.7 
Lung Cancer 79 0.293 0.009 1.5x10-21 3.0 
Ovarian Cancer 28 0.292 0.009 1.4x10-10 1.7 
Pancreatic Cancer 35 0.290 0.007 8.0x10-8 1.4 

Jiang et 
al.(28) 

Healthy Individuals 32 0.281 0.003 - - 
Liver Cirrhosis 36 0.281 0.004 0.65 - 
Hepatitis B 67 0.280 0.004 0.52 - 
Hepatocellular 
Carcinoma 90 0.288 0.010 1.5x10-4 0.8 

Adalsteinsson 
et al.(25) 

Breast Cancer 950 0.304 0.019 1.5x10-8 0.9 
Prostate Cancer 558 0.301 0.017 9.7x10-7 0.8 

Table S1. 
Comparison of FAF between analyzed samples and cohorts. For each study, groups of patients 
were compared with data from the study’s corresponding healthy individual samples. For 
Adalsteinsson et al., no healthy individual sample data was available and patient groups were 
compared with healthy individuals in our study. Two-tailed p values are reported from Student’s 
t-test. No significant elevation in FAF was observed for patients with liver cirrhosis or hepatitis 
B.  
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Diagnosis 
Patient 
ID Sample ID 

Number of 
non-mutated 

fragments 

FAF in non-
mutated 

fragments 

Number of 
mutated 

fragments 

FAF in 
mutated 

fragments P value 
Melanoma SM0008 SM0008_T02 248405 0.334 79737 0.364 <2.2x10-16 
Melanoma SM0022 SM0022_T01 297031 0.307 76809 0.328 1.5x10-11 
 
Table S2. 
Comparison of aberrant positioning between mutated and non-mutated fragments. Two-tailed p-
values are reported from two proportions Z test.  
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Nucleotide frequencies at 

fragment ends 

Dimension 1 Dimension 2 

Correlation 
with tumor 

fraction 

This study 
CCA -0.169 0.551 
Melanoma 0.085 0.551 

Adalsteinsson et al. 
Breast Cancer 0.002 -0.571 
Prostate Cancer 0.099 -0.447 

Correlation 
with FAF 

This study 
CCA 0.108 0.735 
Melanoma 0.183 0.700 

Adalsteinsson et al. 
Breast Cancer 0.004 -0.712 
Prostate Cancer 0.106 -0.476 

 
Table S3. 
Correlation of nucleotide frequencies at fragment ends with tumor fraction and FAF in plasma 
DNA. Correlation between dimension 2 of nucleotide frequencies at fragment ends with tumor 
fraction and with FAF were all statistically significant (P < 0.05). 
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