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ABSTRACT: COVID-19 survival data presents a special situation where not only the time-to-event

period is short, but also the two events or outcome types, death and release from hospital, are mutually

exclusive, leading to two cause-specific hazard ratios (csHRd and csHRr). The eventual mortality/release

outcome can also be analyzed by logistic regression to obtain odds-ratio (OR). We have the following three

empirical observations concerning csHRd, csHRr and OR: (1) The magnitude of OR is an upper limit of the

csHRd: | log(OR) | ≥ | log(csHRd)|. This relationship between OR and HR might be understood from the

definition of the two quantities; (2) csHRd and csHRr point in opposite directions: log(csHRd)· log(csHRr) < 0;

This relation is a direct consequence of the nature of the two events; and (3) there is a tendency for a reciprocal

relation between csHRd and csHRr: csHRd ∼ 1/csHRr. Though an approximate reciprocal trend between the

two hazard ratios is in indication that the same factor causing faster death also lead to slow recovery by a

similar mechanism, and vice versa, a quantitative relation between csHRd and csHRr in this context is not

obvious. These resutls may help future analyses of COVID-19 data, in particular if the deceased samples are

lacking.
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Introduction

Survival analysis studies the longitudinal event data. Regression in survival analysis in-

vestigates whether a factor contributes to the hazard (rate of risks) of the event under study.

The hazard ratio (HR) is the ratio of two hazards, one with the factor taking the at-risk value

(e.g. smoking) and another without (e.g. not-smoking). Since hazard and HR describes the

instantaneous risk, or rate of event occurrence (e.g. death from a specific disease), it is a

different concept from the life-long risk of having that event (Sutradhar and Austin, 2018). As

a result, regression in survival analysis (e.g. Cox regression) is different from the static case-

versus-control regression analysis (e.g. logistic regression). Take the following two statements

as example: “smoking makes lung cancer patients die faster” and “smoking makes a person

more likely to die from lung caner than a non-smoker”; the first would be a conclusion from a

survival analysis, whereas the second from a case-control type of analysis.

The COVID-19 pandemic since 2020 (Huang et al., 2020; Xu et al., 2020) provides a unique

longitudinal event data. First of all, a COVID-19 patient admitted to a hospital sees his/her

outcome relatively quickly: either the patient survived or not in a matter of days. As a result,

there are very few right-censored data where the outcome is still unknown at the time of data

collection. Of course, there exist chronic or long COVID-19 survivors who are not completely

cured (Carfi et al., 2020; Rubin, 2020), but they are unlikely to die from COVID-19 in the

future.

The second feature of COVID-19 longitudinal event data is that the two events, death and

release from the hospital, are not the traditional “competing risk events” (Austin et al., 2016;

Austin and Fine, 2017). Although not strictly defined as such, competing risks events are

often two unfavorable events with one occurring before the occurrence of another. In COVID-

19 data, the event of being released from hospital is a favorite event, and a description of them

in principle should not be connected to words like “risk” or “hazard”. A higher HR for the

event of releasing from hospital implies a faster recover, thus a factor that contributes to this

higher HR actually provide protection.

Also, in the COVID-19 data, the event of death and the event of released from hospital

are mutually exclusive. Although organ transplant and death can be mutually exclusive when
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the organ involved is (e.g.) heart, transplant of many other types of organ is an event that

preceed, and may have an impact on, death. Even in the case of heart transplant, survival

after the operation is not completely guaranteed. Regardless of these detail, factors affecting

transplant timing are basically external, whereas those affecting mortality without a transplant

are mostly internal. Our COVID-19 death/release mutually exclusive event pair does not have

a correspondence in death/organ-transplant pairs.

As discussed in (Pintilie, 2007; Austin et al., 2016), given the the event time (T, k) where

T is the time to event (or to censoring), k=1,2 for two event types (we may understand that

k = 0 means right-censored), there are two ways to define hazard function: (1) cause-specific

hazard function,

hcs
k (t) = lim

∆t→0

Prob(t ≤ T < t+∆t,K = k|T ≥ t)

∆t
, k =1,2 (1)

and (2) subdistribution hazard function (or Fine-Grey model),

hsd
k (t) = lim

∆t→0

Prob(t ≤ T < t+∆t,K = k|(T ≥ t) ∪ (T < t ∩K 6= k))

∆t
, k =1,2 (2)

where K for event type (1 or 2), and conditioning T ≥ t means the function is defined before

the occurring of the event, and the added conditioning (T < t) ∩ (K 6= k) means event of

alternative type may be allowed to occur before. In the first approach (cause-specific), all

alternative events are converted to right-censored (i.e., k = 0).

Because the event of dead and release are mutually exclusive, we cannot use subdistribution

hazard function. We can indeed study the two cause-specific hazard functions or HRs, one for

time-to-death (treating release event as right-censored) and another for time-to-release (then

treating death event as right-censored):

HRk=death =
hcs
k=death(x = 1)

hcs
k=death(x = 0)

HRk=rel =
hcs
k=rel(x = 1)

hcs
k=rel(x = 0)

(3)

where x is the independent binary factor (for continuous factor, the definition is similar, with

two hazards evaluated at x-levels differing by 1), and the time dependency is supposedly

canceled. The question we ask: what is the relationship between the two cause-specific hazard

ratios, csHRk=death and csHRk=rel? Intuitively, if a factor value leads to faster death, the same
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factor may lead to slow recovery, and vice versa. In other words, a larger csHRk=death may

imply a smaller csHRk=rel. Our working hypothesis is that csHRk=death= 1/csHRk=rel, which

is also hypothesized to be equal to the odds-ratio from a logistic regression analysis. We will

use a survival data of n = 450 COVID-19 test our working hypothesis. Previously we asked

the question on whether the two survival analyses and one logistic regression can all identify

a risk factor (Cetin et al., 2021). Here we are asking more quantitative questions concerning

the three analyses.

Data

The COVID-19 patients dataset (n=450) used in this study was collected from the Tokat

State Hospital. Electronic medical records, including patient demographics, clinical mani-

festation, comorbidities, laboratory tests results were collected. According to the severity

and outcomes of the patients, they were divided into two groups: deceased/nonsurviving, re-

leased/survived severe groups. Clinical and laboratory data were comparable among the two

groups. Ministry of Health permission and the ethics committee of Tokat GaziOsmanPasa Uni-

versity Ethics committee permission was obtained with the number 83116987/360 on March

4, 2021.

Besides age and gender, we selected these 18 laboratory testing measurements at the time

of hospital admission in the survival analysis n value is the number of samples with measure-

ment value): (from the complete blood count panel) white blood cell (WBC) count (n=432),

neutrophil (NEU) count (n=383), lymphocyte (LYM) count (n=382), hemoglobin (HGB)

(n=432), platelet (PLT) (n=432), mean corpuscle volume (MCV) (n=432), mean platelet

volume (MPV) (n=430); (from metabolic panel) glucose (n=449), alanine adinotransferase

(ALT) (n=435), aspartate aminotrasferase (AST) (n=429), blood urea nitrogen (urea or BUN)

(n=436), creatine (n=436), calcium (n=393), potassium (n=433), sodium (n=435); (others)

ferritin-1 (FER1) (n=407), d-dimer (n=390), and lactate dehydrogenase (LDH) (n=316). The

NLR (neutrophil/lymphocyte ratio) and PLR (platelet/lymphocyte ratio) are derived quanti-

ties. There are other test measurements, either only available for fewer number of patients, or

due to other reasons, that are not included in the analysis.
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The following variables seem to follow a normal distribution after the log transformation

better than the original values: ferritin-1, d-dimer, glucose, ALT, AST, urea, creatine, LDH,

WBC, NEU, and perhaps LYM and PLT.

Method

The alternative use of Cox regression for cause-specific hazard is applied:

log
hcs
k (t)

hcs
k,base(t)

= β0 +
∑

i

βixi, k = 1(death), 2(release) (4)

where hcs
k (t) is the cause-specific hazard function defined in Eq.1, hcs

k,base(t) is an undefined

baseline hazard function. The left-hand side of Eq.4 contains time t whereas the right-hand

side does not, which is the proportional hazard assumption, that the time-dependent part is

cancelled. {xi} is a list of factors. The single-variate Cox regression limits index i to only

one variable. In practice, cause-specific Cox regression is carried out by labeling event=2 as

right-censored event=0 when focusing on event=1, and vice versa when focusing on event=2.

Results

Overview of the survival analysis and logistic regression analysis results: Large

number of analysis run results are included in Tables 1,2,3. Table 2 contains factors in a

metabolic panel, Table 3 are factors in a complete blood count panel, and Table 1 lists the

rest. The first column is the result from single-factor Cox regression survival analysis using

death as event of interest and release as right-censored event. The second column is the Cox

regression results by switching the two events. The listed results include the cause-specific

hazard ratio (csHR) and its 95% confident interval (CI), and the p-value for testing csHR

equal to 1. The third column is the logistic regression result comparing the dead and release

samples, where the results include odds-ratio (OR) and its 95% CI, and p-value for testing

OR=1.

We also run the same group of analysis on log-transformed factor values, if that factor better

follows a normal distribution after log transformation. Then, we run the same set of analysis,

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.22.21255955doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.22.21255955
http://creativecommons.org/licenses/by-nc-nd/4.0/


when the factor value is continuous, for binarized factors with optimally chosen threshold

values. Both these runs will be discussed in detail later. The reason for running large number

of analyses is not for “fishing expedition” in order to have a better chance to find statistically

significant results, but to test the robustness of the results. Therefore, it is not necessary to

do a multiple testing correction.

We mark those p-values that are smaller the 0.005 in Tables 1,2,3. The reason to use 0.005

instead of 0.01 or 0.05 is explained in (Ioannidis, 2018; Colquhoun, 2017), and the practice

of always adding a level when using the word “significant” is proposed in (Wasserstein et al.,

2019); see also (Li et al., 2021)). Strikingly, almost all factors significantly (at 0.005 level)

influence the rate of event of COVID-19 patients, and are significantly different between the

deceased and survived group.

Relationship between HRd and HRr for continuous factors: Another striking ob-

servation is the relationship between the two cause-specific hazard ratios. Denote csHRd for

csHR of the event of death from COVID-19 and csHRr for csHR of the event of COVID-19

patient releasing from hospital. it can be easily seen from Table 1,2,3 that if csHRd > 1, the

corresponding csHRr < 1, and vice versa. A simple mathematical expression of this fact is:

log(csHRd) · log(csHRr) < 0 (5)

The only exception is the factor of gender. But the 95%CI is so large to have both < 1 and

> 1 values, it should not really be considered as an exception. The opposite direction of csHRd

and csHRr is understandable: a risk factor for faster death in a deceased patient would also

make a surviving patient recover longer.

Table 1,2,3 seem to also show that the larger csHRd, and smaller csHRr, and vice versa. In

order to check if there is a numerical relationship between csHRd and csHRr, we plot 1/HRr

as function of csHRd in Fig.1. The line csHRd × csHRr = 1 is marked by the slope=1 line in

Fig.1. There are many factors clustered near the csHRd=csHRr=1 point and a close-up plot

is shown separately. A factor is labeled in red if p-values for both csHR is significantly (at

level 0.005) different from 1, and in blue if one or both csHR is not significant. Our working

hypothesis can be written as a reciprocal relation between csHRd and csHRr:

csHRd · csHRr ≈ 1 (6)
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Relationship between hazard (rate) ratio and odds (risk) ratio: As emphasized in

(Sutradhar and Austin, 2018), survival analysis estimates the relative rates (of risk) whereas

case-control type of analysis such as logistic regression estimates the relative (static or cu-

mulative) risks. Table 1,2,3 show that OR seems to have a larger magnitude than csHRd.

Fig.2 shows y=OR as a function of x= csHRd. Unlike Fig.1 where dots are scattered near the

slope=1 line, in Fig.2, dots systematically deviates from the diagonal line. In fact, if a factor

is a risk (OR > 1 and csHRd > 1), we have OR > csHRd, and if a factor is a protection (OR

< 1 and csHRd < 1), then OR < csHRd. We can summarize these into a working hypothesis:

| log(OR)| ≥ |log(csHRd)| (7)

Eq.7 might be proved in a simple approximation as follows: the risk function F (t) is known

to be related to hazard rate function h(t):

F (t) = 1− e−
∫
t

0 h(t′)dt′ . (8)

Therefore, the odds-ratio is (the subscript 1,2 refers to two states in a binary variable or a

two numerical level of a continuous factor with one unit difference, and not refers to the two

competing-risks):

OR =

F1(t)
1−F1(t)

F2(t)
1−F2(t)

=

1−e−
∫
t
0 h1(t

′)dt′

e
−

∫
t
0 h1(t

′)dt′

1−e
−

∫
t
0 h(t

′)dt′

e
−

∫
t
0 h2(t

′)dt′

(9)

In the proportional hazard assumption, h1(t) = α1h0(t), h2(t) = α2h0(t), where h0(t) is a

baseline hazard function, and denote
∫ t

0
h0(t

′)dt as H0(t), Eq.9 becomes

OR = e(α1−α2)H0(t)
1− e−α1H0(t)

1− e−α2H0(t)
≈ e(α1−α2)H0(t)

α1

α2







≥ HR if HR = α1/α2 ≥ 1

≤ HR if HR = α1/α2 ≤ 1
(10)

One approach in getting the approximation in Eq.10 is the Taylor expansion assuming small

H0(t) (Stare, 2016).

Relationship between csHRd and csHRr for binarized continuous factors: The

HR for continuous factors measures the ratio of two hazard rates when the unit of the factor

increases by one. Therefore, when one unit change is negligible compared to the possible range,

HR can be very close to 1. In order to see the true impact of a continuous variable, we discretize
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continuous factors into levels. Although one can choose three levels for below-normal, normal,

and above-normal, the normal range of a factor may not be universally accepted.

We use binary levels (higher and lower than a threshold) where the threshold value is a

compromise between two selections: the first threshold is chosen to maximize the Youden

index (Youden, 1950), which is simply the sum of sensitivity and specificity (minus 1). The

second threshold is chosen by providing the population prevalence of cases (which is set at 10%),

which in turn gives weight to samples in the dataset. Both thresholds are obtained from the

medcalc.org program. The final threshold is a geometric mean of the Youden-based threshold

and that after considering the 10% population case prevalence. The resulting threshold values

for all factor (except for age, neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, where

the thresholds are more intuitively selected) are given in Tables 1,2, 3. The resulting csHRd

and csHRr have larger magnitude than the corresponding continuous value, because the “unit

change” is much larger.

In order to study the numerical relationship between csHRd and csHRr for binarized factors,

we examine all possible threshold values and plot csHRd (red) and 1/csHRd (blue) as a function

of threshold value, for 18 test measurements, in Fig.3. The 95% confidence interval (CI) of

csHRd or 1/csHRr is marked with dash vertical lines. If the discretized factor is not significant

at a corresponding threshold, red dots turn pink and blue dots turn light-blue. We also mark

normal ranges of blood tests from two different sources (as grey horizontal lines) and the

threshold used in Table 1 (as downward arrow in grey). We consistently found the 95% CI of

csHRd and 1/csHRr overlap with each other at the chosen (optimal) threshold value. In other

words, when a reasonable threshold value is used to convert a continuous factor to a binary

factor, and running two survival analyses results in a roughly reciprocal relationship between

the two cause-specific hazard ratios.

Relationship between csHRd and OR for binarized continuous factors: Similar

to Fig.2 where we show the scatter plot for cause-specific hazard ratio for time-to-death (x-

axis) and logistic regression odds-ratio (y-axis), Fig.4 shows the similar scatter plot for the

discretized factors. The 95% CI for both are shown by horizontal and vertical segments. All

points in the first quadrant are above the diagonal line, and those in the third quadrant below

the diagonal line. Therefore, | log(OR)| ≥ | log(csHRd)| is true for all binarized factors.
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Effect of log-transformation of factor values: Remember the meaning of HR for

continuous variable is the ratio of two hazards evaluated at two factor values differing by one

unit: x1 = c, x2 = c + 1. The dependence on c is supposed to be averaged out. If the factor

is log-transformed, the two evaluation points are log(x1) = c′, log(x2) = c′ + 1, or x2 is x1

multipled by a constant 2.718. Not only this one-unit change is much larger, but also, the

change in the original scale x2 − x1 = ec
′+1 − ec

′

= 1.718 · ec
′

depends on c′. Table 1,2,3 show

that csHRd or csHRr are dramatically larger (in magnitude) than the un-logged factors. The

effect of log-transformation on p-value is unclear, though in our examples, the test becomes

more significant after the factor being log-transformed.

The concept of harzard ratio has been cautioned in (Hernán, 2010). In particular, the

instantaneous incident rate for an event to occur may depend on the time, and HR is only an

average over the potential time dependence. Our attempt to binarize a continuous factor or

log-transform a factor illustrates a similar problem. If HR not only depends on the one-unit-

change step, but also depends on which level this step is made, and depends on whether the

step is in additive scale or multiplicative scale, then the average may not capture the whole

spectrum of the behavior of hazard in its full range.

Discussion

The COVID-19 time-to-event data is unique not only the two events, mortality and dis-

charge, are mutually exclusive, but also a susceptible factor might be behind faster death and

slower release at the same time. If we consider heart transplant and other open-heart opera-

tions as events that may have saved a patient’s life, thus are mutually exclusive with mortality,

we can not say that the factors causing a longer waiting time until operation are the same

ones causing a faster death without these operation. For this reason, we have the basis for

the reciprocal cause-specific hazard (csHR) ratios hypothesis which can only be examined in

data similar to COVID-19, but not in other survival data just because two events are mutually

exclusive.

The possible links between the two csHR’s have at least two consequences. The first is

on hospitalization stay time. If a patient has certain condition (e.g., high glucose or hyper-
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glycemia), the larger-than-1 csHRd implies that the patient has a higher death-rate than those

with normal glucose level; on the other hand, the smaller-than-1 csHRr value indicates the

patients should survive longer. Therefore, whether hyperglycemia increases the hospital stay

time or not depends on whether the patient survives or not. The hospital stay time is of inter-

est because of the number of hospital beds is limited, and there is a need for bed management

(Roimi et al., 2021).

If a factor/condition causes the severity of a COVID-19 patient, intuitively we would con-

clude that patients with the condition will stay in hospital longer. In reality, if the disease is

too severe, the patient will stay in hospital shorter, because the patient succumbed to death

faster. Among the deceased patients, we would expect the co-existence of short and long stays,

while less diverging in stay time for discharged patients. Indeed, though mean of log(stay time)

between the deceased and released groups is not significantly different (t-test p-value= 0.15,

though Wilcoxon test p-value is 0.00034), the variances are very different (F-test p-value=

1.1E-8).

The second consequence that two csHRs might be related is that if we focus on time-

to-release events, we could collect much more samples simply because more patients being

recovered/released than deceased. In a sense, this strategy examines which factor delays the

recovering time in surviving patients. Larger sample sizes would help to detect more subtle

causing factors. This strategy will become more relevant if life-saving drugs for COVID-19 are

developed and nobody or almost nobody die from the disease. Even in that future event, we

still have surviving patients in our possession for a survival analysis.

The fact that OR > csHRd if OR > 1 (and OR < csHRd if OR < 1) for both continuous

factors and their discretized version, seem to be a consequence of the definition of the two

quantities. Although one may use this result to obtain an upper limit of csHRd, the result in

Table 1,2,3 seems to indicate that the bound is not tight. In that case, if OR ≫ csHRd, OR

will not be very useful in estimating the csHRd value.

As discussed thoroughly in the literature that we can not always assume csHR (unlike

subdistribution HR) is in the same direction as OR (Lau et al., 2009; Austin et al., 2016).

In other words, csHR > 1 does not universally imply OR > 1. Individual csHR also can

not determine the cumulative incidence function caused by multiple risks (Latouche et al.,
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2013). However, our results in Tables 1,2,3 show that OR and csHRd are always in the same

direction (both larger than 1, or, both smaller than 1), indicating the difference between a

theoretical possibility and the reality. Drawing cumulative incidence function is also not a goal

in our analysis. Considering all these, we consider the use of csHR better fitted for COVID-19

death/release survival data, than the subdistribution HR. In fact, we doubt subdistribution

HR can be applied to this situation at all, because of the exclusive nature of the two events.

In conclusion, we draw attention to the connection between the two types of mutually

exclusive events, mortality and discharge, in COVID-19 survival data. We also made three

observations from COVID-19 data: the opposite direction between the two csHRs: log(HRd) ·

log(HRr) < 0, approximately reciprocal link between them HRd ·HRr ≈ 1, and odds-ratio as

an upper limit of HRd: | log(csHRd) | ≤ | log(OR) |.
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factor csHRd (95% CI) pvd csHRr (95% CI) pvr OR (95% CI) pv(LR)

age 1.052 (1.033, 1.072) 9e-8 0.973 (0.968, 0.978 ) 3.5e-26 1.076 (1.054, 1.099) 9.4e-12

≥70 3.705 (2.259, 6.078) 2.1e-7 0.461 (0.368, 0.577) 1.4e-11 7.69 (4.51, 13.09) 6e-14

gender 1.048 (0.689, 1.594) 0.83 1.381 (1.118, 1.706) 0.0028 0.754 (0.475, 1.197) 0.23

FER1 1.0007 (1.0004, 1.001) 3.1e-7 0.9987 (0.9984, 0.999) 3.1e-18 1.002 (1.001, 1.002) 4.3e-19

log(FER1) 1.703 (1.395, 2.077) 1.6e-7 0.645 (0.6, 0.693) 2.6e-33 3.108 (2.402, 4.022) 6.5e-18

>782.9 2.66 (1.751, 4.039) 4.5e-6 0.26 (0.182, 0.371) 1.1e-13 10.88 (6.35, 18.64) 3.5e-18

d-dimer 1.558 (1.356, 1.789) 3.6e-10 0.561 (0.486, 0.647) 2.1e-15 2.501 (2.051, 3.049) 1.3e-19

log(dd) 1.938 (1.552, 2.419) 5.2e-9 0.571 (0.517, 0.632) 1e-27 3.347 (2.545, 4.402) 5.4e-18

> 1.36 3.259 (2.11, 5.034) 1e-7 0.319 (0.232, 0.439) 2.2e-12 10.17 (6.007, 17.220) 6e-18

LDH 1.0001 (1, 1.0002) 0.03 0.997 (0.996, 0.998) 8.6e-10 1.008 (1.006, 1.01) 4.4e-13

log(LDH) 1.884 (1.574, 2.254) 4.7e-12 0.298 (0.214, 0.415) 7.1e-13 35.22 (14.89, 83.30) 5.1e-16

> 406.5 4.975 ( 3.152, 7.852 ) 5.5e-12 0.235 ( 0.154, 0.36 ) 2.3e-11 21.15 (11.37, 39.35) 5.6e-22

Table 1: Results from two cause-specific survival analyses and logistic regression analysis with a single factor:

gender, age, FER1, d-dimer, and LDH. The csHRd (95%CI) is the cause-specific hazard-ratio for time-to-death

event and its 95% confidence interval; pvd is the corresponding p-value; csHRr and pvr are hazard ratio and

p-value for time-to-release event; OR(95% CI) and pv(LR) are odds-ratio (and its 95% confidence interval)

and p-value from logistic regression. P -values smaller than 0.005 are shown in boldface. All similar results for

log-transformed factor value and discretized (binarized) factors are also shown, where the threshold used to

discretization are given in the first column.
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factor HRd(95%CI) pvd HRr(95%CI) pvr OR(95%CI) pv(LR)

glucose 1.004 (1.002,1.005) 1.3e-06 0.994 (0.992,0.996) 2.5e-08 1.013 (1.009,1.016) 1.8e-12

(log)glucose 2.976 (2.027,4.371) 2.7e-08 0.44 (0.335,0.577) 3.1e-09 11.34 (6.13,20.98) 1e-14

>167.9 3.49 (2.327,5.237) 1.5e-09 0.385 (0.277,0.535) 1.3e-08 9.25 (5.5,15.54) 4.5e-17

ALT 1.0004 (1, 1.0008) 0.044 0.997 (0.995, 0.999) 0.0018 1.007 (1.003, 1.01) 3.8e-05

log(ALT) 1.27 (1.09, 1.479) 0.0021 0.895 (0.809, 0.989) 0.03 1.444 (1.161, 1.797) 0.00099

> 157.6 3.7 (2.23, 6.15) 4.4e-07 0.222 (0.092, 0.537) 0.00084 16.22 (5.88, 44.79) 7.5e-08

AST 1.0002 (1, 1.0004) 0.016 0.994 (0.99, 0.998) 0.0024 1.02 (1.011, 1.028) 2.5e-06

log(AST) 1.418 (1.265, 1.589) 1.8e-09 0.705 (0.604, 0.823) 1e-05 3.26 (2.29, 4.65) 6.9e-11

> 88.59 3.63 (2.3, 5.728) 3.1e-08 0.371 (0.213, 0.646) 0.00046 8.99 (4.4, 18.35) 1.6e-09

urea 1.008 (1.006, 1.01) 6.6e-21 0.985 (0.981, 0.989) 6.9e-14 1.043 (1.034, 1.053) 1.5e-20

log(urea) 3.398 (2.671, 4.323) 2.3e-23 0.505 (0.431, 0.591) 2.6e-17 22.35 (12.3, 40.6) 2.1e-24

> 64.8 9.82 (5.93, 16.26) 7.2e-19 0.205 (0.138, 0.304) 3.5e-15 47.44 (25.08, 89.72) 1.7e-32

calcium 0.501 (0.412, 0.608) 3.1e-12 1.875 (1.637, 2.147) 1.1e-19 0.107 (0.066, 0.173) 6.3e-20

> 7.9 0.231 (0.151, 0.352) 9.6e-12 4.816 (3.143, 7.38) 5.2e-13 0.049 (0.027, 0.089) 2.8e-23

creatine 1.34 (1.242, 1.446) 5.3e-14 0.675 (0.585, 0.779) 6.7e-08 2.663 (2.078, 3.414) 1.1e-14

log(CRE) 2.679 (2.143, 3.349) 5e-18 0.622 (0.527, 0.735) 2e-08 8.65 (5.51, 13.61) 8.9e-21

> 1.38 6.051 (3.987, 9.184) 2.7e-17 0.236 (0.153, 0.364) 6.3e-11 25.53 (14.03, 46.45) 2.8e-26

potassium 1.457 (1.204, 1.763) 0.00011 0.73 (0.631, 0.843) 1.9e-05 2.499 (1.808, 3.455) 3e-08

> 5.03 2.756 (1.813, 4.191) 2.1e-06 0.326 (0.215, 0.495) 1.4e-07 8.02 (4.47, 14.37) 2.7e-12

sodium 1.111 (1.075, 1.149) 5.8e-10 0.957 (0.936, 0.978) 8.7e-05 1.2 (1.14, 1.27) 1.3e-10

> 145.5 3.327 (2.194, 5.045) 1.5e-08 0.266 (0.161, 0.44) 2.4e-07 12.41 (6.49, 23.73) 2.6e-14

Table 2: Similar to Table 1 but for factors measured by a metabolic panel blood test.
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factor csHRd (95% CI) pvd csHRr (95% CI) pvr OR (95% CI) pv(LR)

WBC 1.08 (1.06, 1.1) 3.2e-15 0.869 (0.841, 0.897) 4.7e-18 1.368 (1.279, 1.464) 6.7e-20

log(WBC) 3.996 (2.827, 5.648) 4.3e-15 0.352 (0.284, 0.437) 3.4e-21 28.2 (14.24, 55.84) 9.6e-22

>11.99 5.056 (3.306, 7.732) 7.7e-14 0.217 (0.145, 0.324) 8.8e-14 22.02 (12.35, 39.25) 1e-25

NEU 1.085 (1.064, 1.105) 5.2e-17 0.85 (0.819, 0.882) 1.3e-17 1.421 (1.316, 1.533) 1.9e-19

log(NEU) 3.77 (2.775, 5.131) 2.5e-17 0.402 (0.337, 0.48) 5.9e-24 21.52 (11.31, 40.92) 8.2e-21

>9.07 6.35 (3.975, 10.15) 1.1e-14 0.238 (0.162, 0.35) 2.7e-13 24.21 (13.31, 44.05) 1.7e-25

LYM 0.243 (0.157, 0.375) 1.8e-10 1.18 (1.082, 1.286) 0.00017 0.124 (0.0709, 0.2167) 2.3e-13

log(LYM) 0.35 (0.276, 0.442) 2.1e-18 1.73 (1.461, 2.05) 2.1e-10 0.095 (0.0555, 0.1626) 9.3e-18

>0.636 0.232 (0.152, 0.354) 1.2e-11 4.669 (2.895, 7.529) 2.6e-10 0.052 (0.0275, 0.0972) 3.8e-20

HGB 0.856 (0.781, 0.938) 0.00085 1.253 (1.192, 1.318) 1.5e-18 0.615 (0.542, 0.697) 3.6e-14

>9.67 0.605 (0.397, 0.923) 0.02 3.698 (2.544, 5.374) 7.1e-12 0.145 (0.084, 0.251) 5.1e-12

PLT 0.9968 (0.995, 0.9986) 0.00064 1.0004 (0.9996, 1.0012) 0.33 0.994 (0.991, 0.996) 1.9e-6

log(PLT) 0.74 (0.5908, 0.927) 0.0088 1.336 (1.109, 1.609) 0.0023 0.27 (0.168, 0.434) 6.1e-8

>99.58 0.695 (0.411, 1.175) 0.17 3.341 (1.915, 5.831) 2.2e-5 0.166 (0.0785, 0.35) 2.5e-6

MCV 1.048 (1.012, 1.085) 0.0093 0.96 (0.943, 0.976) 2e-6 1.085 (1.044, 1.128) 3.8e-5

>92.52 2.179 (1.433, 3.313) 0.00027 0.582 (0.426, 0.795) 0.00066 3.547 (2.112, 5.955) 1.7e-6

MPV 1.322 (1.181, 1.48) 1.2e-6 0.764 (0.701, 0.832) 8.8e-10 2.326 (1.876, 2.884) 1.5e-14

>11.22 2.45 (1.629, 3.685) 1.7e-5 0.381 (0.272, 0.533) 1.8e-8 6.959 (4.131, 11.722) 3e-13

NEU/LYM 1.023 (1.0179, 1.028) 5.7e-20 0.908 (0.886, 0.931) 3.4e-14 1.219 (1.166, 1.274) 1.6e-18

log(NLR) 2.721 (2.234, 3.315) 2.5e-23 0.556 (0.496, 0.624) 1.4e-23 10.471 (6.406, 17.115) 7.4e-21

> 9 10.54 (5.95, 18.69) 7.3e-16 0.182 (0.121, 0.272) 1.3e-16 51.64 (26.04, 102.42) 1.5e-29

PLT/LYM 1.0003 (1.0002, 1.0004) 1.8e-5 0.998 (0.997, 0.999) 3.6e-6 1.004 (1.0026, 1.0054) 1.5e-8

log(PLR) 1.871 (1.472, 2.377) 3.1e-7 0.82 (0.721, 0.934) 0.0027 2.41 (1.70, 3.42) 7.9e-7

>330 3.698 (2.417, 5.656) 1.6e-9 0.43 (0.3, 0.616) 4.1e-6 6.77 (3.93, 11.68) 6.2e-12

Table 3: Similar to Table 1 but for factors measured by a complete blood count panel test.
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Figure 1: The x-axis is the cause-specific hazard ratio csHRd for death event, and y-axis is reciprocal of the

hazard ratio for the release event (1/HRr), for the 18 blood test measurements as well as age and gender. The

diagonal line indicates the exact relationship csHRd=1/csHRr. A factor is in red if its p-values (for testing

csHRd and csHRr=1) are both smaller than 0.005; in blue if both p-values are larger than 0.005; and light-blue

if one of the two p-values is smaller than 0.005. Because there are many factors having HR close to 1, the right

subplot presents a close-up near csHRd=csHRr=1.

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.22.21255955doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.22.21255955
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

compare HR(rate) and OR(risk)

HR_d

O
R

sex

age
FER1

D−dimer

glucoseALTASTBUN

Ca

Cl

creatine

LDH

Po

Na

WBC
NEU

LYM

HGB

MCV
PLT

MPV

0.98 1.00 1.02 1.04 1.06 1.08 1.10

1.
00

1.
05

1.
10

compare HR(rate) and OR(risk)

HR_d

age

FER1

glucose
ALT

AST

BUN

Cl

LDH

MCV

PLT

Figure 2: The x-axis is the cause-specific hazard ratio csHRd for death event, and the y-axis the odds-ratio

(OR) from logistic regression, for 20 factors. The right subplot presents a close-up near csHRd=OR=1.
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Figure 3: The csHRd (red) and 1/csHRr (blue) for binarized 18 blood test measurements as a function of the

threshold used to discretize these factors. The 95% CI of csHRd or 1/csHRr are shown in dashed vertical lines.

If the discretized factor’s csHR is not significant (at 0.01 level) by the survival analysis, its color turns from red

(blue) to pink(light-blue). The threshold used in Table 1 is shown as a downward arrow. The two horizontal

lines represent the normal range of these blood test results (from two different sources), and horizontal dash

line is csHR=1.
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Figure 4: Similar to Fig.2, but for discretized/binarized factors: the x-axis is the cause-specific hazard ratio

csHRd for death event, and the y-axis the odds-ratio (OR) from logistic regression.
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