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Abbreviations List:  

PaO2= partial pressure of oxygen 

FIO2= fraction of oxygen 

PaO2/FIO2= PF ratio  

SpO2= peripheral saturation of oxygen 

PEEP= positive end expiratory pressure 

TV= tidal volume 

MAP= mean arterial pressure  
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Abstract 

Background: The partial pressure of oxygen (PaO2)/fraction of oxygen delivered (FIO2) ratio is 

the reference standard for assessment of hypoxemia in mechanically ventilated patients. Non-

invasive monitoring with the peripheral saturation of oxygen (SpO2) is increasingly utilized to 

estimate PaO2 because it does not require invasive sampling. Several equations have been 

reported to impute PaO2/FIO2 from SpO2 /FIO2. However, machine-learning algorithms to 

impute the PaO2 from the SpO2 has not been compared to published equations. 

Research Question: How do machine learning algorithms perform at predicting the PaO2 from 

SpO2 compared to previously published equations?  

Methods: Three machine learning algorithms (neural network, regression, and kernel-based 

methods) were developed using 7 clinical variable features (n=9,900 ICU events) and 

subsequently 3 features (n=20,198 ICU events) as input into the models from data available in 

mechanically ventilated patients from the Medical Information Mart for Intensive Care (MIMIC) 

III database. As a regression task, the machine learning models were used to impute PaO2 

values. As a classification task, the models were used to predict patients with moderate-to-severe 

hypoxemic respiratory failure based on a clinically relevant cut-off of PaO2/FIO2 < 150. The 

accuracy of the machine learning models was compared to published log-linear and non-linear 

equations. An online imputation calculator was created. 

Results: Compared to seven features, three features (SpO2, FiO2 and PEEP) were sufficient to 

impute PaO2/FIO2 ratio using a large dataset. Any of the tested machine learning models enabled 

imputation of PaO2/FIO2 from the SpO2/FIO2 with lower error and had greater accuracy in 

predicting PaO2/FIO2 < 150 compared to published equations. Using three features, the machine 

learning models showed superior performance in imputing PaO2 across the entire span of SpO2 

values, including those > 97%.  

Interpretation: The improved performance shown for the machine learning algorithms suggests 

a promising framework for future use in large datasets.  
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Introduction:  

The PaO2 as a ratio of the fraction of oxygen (FIO2) delivered, or the PaO2/ FIO2, is the reference 

standard measurement for assessment of hypoxemia in mechanically ventilated patients with 

respiratory failure. The PaO2/FIO2 ratio (PF ratio) has predictive value for mortality in patients 

with acute respiratory distress syndrome (ARDS)1 and is also part of a severity index scoring 

system called the Sequential Organ Failure Assessment (SOFA) score that is used to predict 

mortality in patients with critical illness2-4. Additionally, the PaO2/FIO2 ratio has become relevant 

in clinical decision-making including the decision to initiate prone positioning in ARDS patients 

with PF ratios less than 1505. Current measurement of the PaO2/FiO2 ratio requires invasive 

arterial blood gas sampling and does not provide a continuous measure of the patient’s oxygenation.  

Increasingly, non-invasive monitoring with pulse oximetry is utilized instead of ABGs6,7, 

particularly in low-resource settings where an ABG lab or invasive arterial blood monitoring are 

not readily available or required. In addition, several studies have evaluated the non-invasive SpO2 

(peripheral saturation of oxygen)/FIO2 ratio as a surrogate for PaO2/FIO2 ratio in children where 

non-invasive measurements are becoming more common8-10.  

 

A few studies have examined non-linear imputation of PaO2/FIO2 from SpO2/FIO2 

measurements recorded at the same time11,12. These studies have reported that the accuracy of non-

linear imputation is superior to log-linear or linear imputation, especially for moderate to severe 

hypoxemic respiratory failure with ARDS11,13. However, in patients with respiratory failure 

requiring mechanical ventilation, the optimal equation for imputation of PaO2/FIO2 from the 

SpO2/FIO2 remains unclear. An algorithm to accurately impute the PaO2 from the SpO2 in 

mechanically ventilated patients would be beneficial for clinical research to facilitate recruitment 

of patients for clinical trials if an ABG is not available. Ideally, this approach would involve only 

the introduction of variables that may contribute to the relationship between SpO2 and PaO2 but 

would not require the same invasive ABG measurement as the PaO2.  

 

The objective of this study is to develop a machine learning algorithm to impute PaO2/FIO2 from 

SpO2/FIO2 among mechanically ventilated patients in the Medical Information Mart for Intensive 

Care (MIMIC) III database14 and compare it to the previously published non-linear and log-linear 

equations11,13. In this study, three common machine learning approaches (neural network15, 
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regression16, and kernel-based methods17,18) were tested for regression and classification of 

PaO2/FIO2 using data available in MIMIC III19 with 7 clinical variable features and a subsequent 

3 features model. We created models to perform a regression task to impute PaO2 from SpO2 

values and a classification task to predict patients with moderate to severe hypoxemic respiratory 

failure based on a cut-off of a predicted PF ratio < 15011. Our overall hypothesis was that a machine 

learning algorithm would perform better in predicting the PaO2 from SpO2 across the entire span 

of SpO2 values when compared to the published equations.   

 

Methods 

The MIMIC-III database v1.4 (https://mimic.physionet.org) is an openly available dataset 

developed by the Massachusetts Institute of Technology Lab for Computational Physiology14. It 

contains de-identified health data associated with approximately 60,000 intensive care unit 

admissions. MIMIC-III is a relational database that contains information on demographics, vital 

signs, mechanical ventilation status, laboratory tests, medications, and mortality. Our study was 

determined by the University of Pittsburgh Institutional Review Board to be exempt 

(STUDY19100068). 

 

Data processing 

We queried the MIMIC-III database to identify unique ICU encounters (icustay_id) with 

mechanical ventilation status. We next identified the lab event PaO2 and chart event SpO2 

occurring at the same time of the mechanical ventilation status. In order to minimize error between 

matched PaO2 and SpO2, we constrained the time gap between the lab event PaO2 and the chart 

event SpO2 to the closest time within 30 minutes. To minimize repeated sampling from the same 

subjects, we restricted the search of PaO2 measurements to within the first 24 hours of mechanical 

ventilation duration and obtained the first PaO2 recorded within this time frame. We constrained 

the time gap to within 2 hours of the selected SpO2 measurement for variables from chart events 

such as tidal volume (TV), positive end-expiratory pressure (PEEP), FiO2, temperature, and mean 

arterial pressure (MAP). We did the same for lab events such as SaO2. If a patient was treated with 

vasoactive infusions, it was recorded as a categorical variable. Data extraction and processing 

methods are available at https://github.com/renshuangxia/Predict-PaO2-with-SpO220.  

Machine learning methods for regression task  
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For the regression task we implemented 3 different models – a neural network model, a linear 

regression model, and support vector regression (SVR), a type of kernel-based modeling. For each 

model, we applied a 10-fold cross-validation21.  

 

For the neural network model, we tested different network structures and various numbers of 

features to arrive at two models used for comparison with the linear and support vector regression 

models. One model used seven input features and three hidden layers (16, 8, 5 neurons for layers 

1 to 3). The other model used only three input features and two hidden layers (6, 3 neurons for 

layers 1 and 2). Both final models used a tangent activation function for all layers except the output 

layer which used a linear function in both models. Also, both models were trained for 200 epochs 

with Adam optimizer using gradient descent. The learning rate was 0.001 and the batch sizes were 

50 for both models. 

 

For the linear regression model, the output variable can be computed by a linear combination of 

the input variables. We trained the linear regression equation by the Ordinary Least Squares 

approach. We used the linear_model.LinearRegression method from scikit-learn 0.22 

(https://scikit-learn.org/stable/) with default hyperparameters for predicting PaO2 values.  

 

For the SVR model, we tested multiple kernels including linear kernel, polynomial kernel, and 

radical basis function kernel (RBF). Based on the performance in the training data, the RBF kernel 

was selected. 

 

Machine learning methods for classification task  

In patients meeting criteria for ARDS, the PaO2/FIO2 < 150 has been used to capture those patients 

with moderate to severe disease11,13. We utilized this cut-off to test machine learning methods to 

predict this diagnostic threshold PaO2/FIO2 < 150 for the different imputation techniques. We 

implemented 3 classification models including Neural Network, Logistic Regression and Support 

Vector Machine (SVM).  

 

For each of machine learning model we applied a 10-fold cross-validation and calculated the 

sensitivity, specificity, likelihood ratios, diagnostic odds ratio (OR), Area under receiver operating 
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characteristic curve (AUROC), F1 score and Bayesian information Criterion (BIC) to compare 

across models. The two neural network models for classification were similar to the neural 

networks used in regression, except the output layer used the sigmoid function. As with the 

regression models, various topologies were tested to arrive at the final two multi-layer perceptron 

(MLP) classifiers, one with an input size of 7 features and the other with an input size of 3 features.  

The hidden layer size is (12, 8, 6, 4, 4) for the model with 7 input features. For the other model 

which utilizes only 3 input features, we used two hidden layers of size 6 and 3. All hidden layers 

used the tangent activation function. We trained both models for 200 iterations with Adam 

optimizer, setting 7 feature classifier momentum value as 0.8 and 3 feature classifier momentum 

value as 0.6. The learning rate was 0.001 and the batch sizes was 200 for both models. 

 

In addition, we implemented a basic logistic regression model for classification purposes as well 

as the SVM model which classifies examples with an optimal hyperplane. For the logistic 

regression, it uses logistic function to model a binary dependent variable. We utilized the 

linear_model.LogisticRegression method provided in the scikit-learn library without 

regularization, and other arguments were set as default. For the SVM model, we compared the 

results by applying different kernels and the RBF kernel outperformed other kernels. Methods 

were similar to those used in the regression task.  

 

Comparison of machine-learning based algorithm to published non-linear and log-linear 

equations 

We compared the performance of our machine learning algorithms to the previously published 

equations. For the non-linear equation from Brown et al11  the PaO2 was imputed from the SpO2, 

where PO2 = PaO2, S = SpO2 and F=FiO2. For situations where the recorded SpO2 was 100% (or, 

1.0), the SpO2 was substituted with 0.996 given that the equation would not permit the calculation 

of S=1.0. 

 

 

𝑃𝑂2 = {
11,700

(1
𝑆⁄ − 1)

+ [503 + (
11,700

1
𝑆⁄ − 1

)
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For the log-linear equation from Pandharipande, et al11,13, the PaO2:FIO2 was imputed from 

SpO2:FIO2 utilizing the equation:  

𝑃𝑂2  = 𝐹 ∙ 10
(0.48+0.78 ∙ 𝑙𝑜𝑔10(

𝑆
𝐹

))
 

 

 

Results  

A parsimonious three features model is sufficient to impute PaO2/FIO2 ratio using a large dataset  

An overview of the machine learning tasks are outlined in Figure 1. We initially chose 7 relevant 

features from the chart events (SpO2, FiO2, TV, MAP, temperature, PEEP and vasopressor 

administration) representing recorded bedside measurements that were independent from an 

invasive arterial blood gas measurement. When applying the 7 features to impute PaO2/FiO2, the 

final data set contained 9,900 unique ICU encounters from 9,302 mechanically ventilated patients 

(Supplementary Table e1). The relationship between SpO2/FiO2 (S/F) and the PaO2/FiO2 (P/F) 

was examined in dataset 1 containing 9,900 unique ICU events from the MIMIC-III database and 

was best described by a log-linear relationship between the transformed logarithmic value of the 

SF and PF ratios as previously described by Pandharipande, et al13 (Supplementary Figure e1). 

The relationship between S/F and P/F ratios showed high variance across the distribution of 

mechanically ventilated subjects (R2 = 0.21).   

 

For the regression task, we derived the RMSE and BIC for each of the different 7 feature machine 

learning models (neural network, linear regression, support vector regression) to assess the 

performance of the imputation techniques. The RMSE and BIC of the three machine learning 

methods are shown in Supplementary Table e2. All the machine learning models outperformed the 

previously published non-linear and log-linear equations as shown by lower RMSE scores. For the 
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classification task, the three machine learning methods achieved similar classification performance 

according to F1 scores, as shown in Supplementary Table e3.   

 

To improve practicality of the method at the bedside, we attempted to use the smallest number of 

features possible to predict PaO2 or PaO2/FiO2 ratio from the regression and classification tasks, 

respectively. Compared to the other measured variables, PEEP had the strongest correlation with 

PaO2/FiO2 (r = -0.31) outside of the SF ratio (SpO2/FiO2) (Table 1). Using this information, we 

created a 3-features model using SpO2, FIO2 and PEEP. As compared to seven features, three 

features were sufficient to impute PaO2/FIO2 ratio with a similar degree of accuracy in part due 

to the ability to include significantly more subjects. The 3 features model was therefore utilized in 

the remainder of the analysis. The final 3 features data set (dataset 2) contained 20,198 ICU 

encounters from 17,818 unique patients (Table 2). Forty percent of subjects were of female sex 

and the mean age was 64 years. The degree of hypoxemic respiratory failure, as measured by the 

PaO2/FIO2 ratio1, showed a distribution in which 26% had mild respiratory failure (PaO2/FIO2 = 

201-300), 22% had moderate respiratory failure (PaO2/FIO2 = 101-200), and 8% had severe 

respiratory failure (PaO2/FIO2 < 100).  

 

Machine learning models show improved performance when compared to the prior published 

equations for regression  

We quantitatively derived the RMSE for all the machine learning and previously published models 

and the BIC for each of the three machine learning models to assess the performance of the 

different imputation techniques (Table 3). The RMSE of the neural network, linear regression and 

support vector regression machine learning models were 84.7, 88.8 and 85.9, respectively, 

compared to 117.7 and 91.8 for the log-linear and non-linear equations. The lower RMSE values 

indicate that the 3 machine learning models outperformed the previously published equations. Of 

the machine learning models, the neural network method showed the lowest RMSE as well as the 

lowest BIC in both the whole dataset (dataset 2) and for Sp02 <97% (subset 2), and thus was 

chosen as the “best” overall model for the regression task. A Bland-Altman Plot suggests that the 

neural network model is comparable to the published equations. There was decreasing accuracy at 

higher PaO2/FIO2 ratios for all the methods examined (Supplementary Figure e2).    
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Machine learning models show improved performance for the classification task  

We compared the performance of the machine learning models with the log-linear and non-linear 

equations using F1 scores. Similar to the findings for the regression task, all three machine learning 

models performed better in the whole dataset than log-linear and non-linear equations (Table 4). 

When the dataset was limited to SpO2 < 97% (subset 2), the machine-learning methods performed 

slightly better than log-linear and better than non-linear equations, respectively (Table 4). The F1 

scores for all three machine learning methods were similar when using the whole dataset (dataset 

2) and for subset 2 where SpO2 < 97%. As shown in Figure 2, when comparing the 3 machine 

learning models to one another, the neural network preformed slightly better in the whole dataset 

(area under the precision recall curve = 0.94 for the neural network compared to 0.93 and 0.91 for 

the logistic regression and support vector machine model, respectively). The 3 models had similar 

performance in subset 2.  

 

Discussion  

We used the publicly available MIMIC-III database to develop and evaluate machine-learning 

algorithms to impute PaO2/FIO2 from the SpO2/FIO2 in patients who are mechanically ventilated. 

We tested three machine learning models (neural network, linear regression and SVR) first using 

seven available clinical variables SpO2, FIO2, PEEP, TV, MAP, temperature, and vasopressor 

administration to impute the PaO2 and subsequently using only three clinical variables SpO2, FiO2 

and PEEP. The imputation of PaO2 from the SpO2 from the regression tasks enabled us to derive 

the PaO2/FIO2, a clinically meaningful ratio with predictive value1,22. Additionally, we performed 

a classification task to predict PaO2/FiO2 < 150, a cut off that has been used to capture those 

patients with moderate to severe respiratory failure in ARDS cohorts11,13 and to guide patient 

management5. 

 

To develop the machine learning algorithms, we evaluated clinical variables such as PEEP, TV, 

MAP, temperature, and vasopressor administration that are easily obtained at the bedside. We 

considered other clinical variables such as skin pigmentation, pulse oximeter location, oximeter 

manufacturer, vasopressor infusion, and laboratory variables such as serum bicarbonate, serum 

chloride, serum creatinine, serum sodium but these variables added negligible improvement in the 

accuracy of imputation in a prospective study11. Therefore, these additional clinical variables were 
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not added to the model. Except for PEEP, other variables examined showed a stochastic 

distribution. Removing these unrelated features (VT, MAP, Temperature and vasopressor use) to 

create the 3 features model did not significantly alter the accuracy of the machine-learning based 

algorithms and provides a framework for the generalizability of the model for large datasets of 

mechanically ventilated patients.  

 

Our study shows that a machine-learning based method for both the regression and classification 

task, when applied to the MIMIC-III critical care database, improved the accuracy when compared 

with the prior published non-linear, and log-linear imputation methods. As is evidenced by 

comparing the F1 and discrimination measures in Table 4, the performance improvement was more 

modest for the classification task in subset 2 where SpO2 <97%. A possible explanation is that 

there were fewer ICU events (smaller N) per group in the subset.  

 

Prior studies have examined the relationship between SpO2/FIO2 (SF) and PaO2/FIO2 (PF) ratios 

for patients with ARDS to determine whether the non-invasive SF ratio can be substituted for the 

invasively obtained PF ratio11,13,23. Panharipande, et al studied matched measurements of SpO2 

and PaO2 of a more heterogenous population to determine the association between SF and PF 

ratios in order to calculate the respiratory parameter of the SOFA score13. In their study, matched 

SpO2 and PaO2 values were obtained from two groups of patients: Group 1 comprised of the 

derivation set and was obtained from patients undergoing general anesthesia from a single center, 

and Group 2 comprised of a validation set and was obtained from patients enrolled in the multi-

center randomized clinical trial examining low versus high tidal volume for acute respiratory 

management of ARDS (ARMA)24. All SpO2 values > 97% were also excluded from analysis in 

order to maximize matched data to those values likely to be within the linear range of the 

oxyhemoglobin dissociation curve. Data from 4,728 matched SpO2 and PaO2 measurements 

showed that the relationship was best described by a log-linear equation with slight variation based 

upon the level of PEEP. In the setting of a more heterogenous population, a poorer correlation was 

noted between SF and PF ratios. The regression equation of Log(PF) = 0.48+0.78 x Log(SF) 

yielded an R-square of 0.3113. 
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A retrospective analysis of enrollment arterial blood gas measurements from three ARDS Network 

studies compared the performance of non-linear, log-linear and linear imputation methods to 

derive PaO2 from the SpO212. In all patients (N=1,184), the nonlinear imputation was equivalent 

to log-linear imputation. However, in those patients with SpO2 < 97% (N=707), the nonlinear 

imputation showed lower error than either linear or log-linear equations. A prospective study was 

subsequently conducted in patients enrolled in the Prevention and Early Treatment of Acute Lung 

Injury network11 to assess the performance of the non-linear equation to impute PaO2 from the 

SpO2 and compare it to the prior log-linear and linear equations11,13,23. This study included 1034 

arterial blood gases from 703 patients, of which 650 arterial blood gases had matched SpO2 < 97%. 

The non-linear equation showed lower error and better identified moderate to severe ARDS 

patients (defined in the study as PaO2/FIO2 < 150) when compared to log-linear or linear 

imputation methods. 

 

In our study, we similarly found a high degree of variance across SpO2 values and corresponding 

measured PaO2 values which was noted when we formally examined the relationship between 

SpO2/FIO2 and PaO2/FIO2. This may be attributed to the retrospective nature of the data 

collection and the numerous variables that may confound the reliability of a recorded SpO2 

measured non-invasively to reflect the arterial SaO28,10,12. Despite this limitation, the machine 

learning algorithms performed better on both regression and classification tasks when compared 

to the log-linear and non-linear published equations. 

 

One strength of our study is the evaluation of all mechanically ventilated patients with available 

data rather than narrowing the analysis to a specific population such as those with ARDS. Given 

the inclusion of all mechanically ventilated patients, a significant number of SpO2 values were > 

97% (N=8,510 for 7 features and N=16,918 for 3 features). While this reduced the accuracy of the 

imputed PF ratio, particularly above a certain threshold, the machine learning models were applied 

to the data without a pre-defined restriction placed upon the range of SpO2 values and showed 

better performance than both the log-linear and non-linear equations on both the regression and 

classification tasks. These results have not been tested on data other than MIMIC-III. Future work 

will need to test if the model is robust given potential variations in how the data for input features 

is collected and stored.    
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In summary, any of the tested machine learning models applied to MIMIC-III enabled imputation 

of PaO2/FIO2 ratio from the SpO2/FIO2 with lower error and greater accuracy in predicting 

PaO2/FIO2 < 150 than when compared to that of published equations across the entire range of 

SpO2 examined. When compared to one another, all machine learning methods performed 

similarly. Given our goal of utilizing this type of modeling to allow for inclusion of mechanically 

ventilated patients from large datasets in the electronic health record, we opted to create a 

calculator for the neural network machine learning algorithm based on ease of utilization 

https://drive.google.com/drive/folders/1AoieWO0w3BXvEpw6c0-

OomjeQHzFJXY_?usp=sharing. Future studies will need to assess the generalizability of and 

improve upon the machine learning methods in mechanically ventilated patients to impute 

PaO2/FIO2 measurements from SpO2 values.  
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Tables:  

 

 

  

 

 

 

 

 

Table 1. Correlation coefficients between PF ratios and variables. Correlation coefficients 

between measured PF ratios (PaO2/FiO2) and the 6 other measured variables (SpO2/FiO2 = SF 

ratio, PEEP, MAP, Temperature, Vasopressor Administration and VT) were performed. The 

variable with the strongest correlation coefficient (r) was chosen for the 3 features model. 

  

 SF 

ratio 

PEEP MAP Temperature Vasopressor 

Administration 

VT 

PF ratio 0.44 

 

-0.31 

 

0.06 -0.06 -0.04 0.02 
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Total ICU events, N  20,198 

Female sex, n (%) 8,084 (40.0) 

Age in years, mean (+ SD)* 64.0 (+ 16.2) 

PaO2/FIO2, mean (+ SD) 310.4 (+184.4) 

  

Available mean PaO2/FIO2, N  20,198 

PaO2/FIO2 >300, n 8996 

PaO2/FIO2 = 201-300, n 5226 

PaO2/FIO2 = 101-200, n  4448 

PaO2/FIO2 < 100, n 1528 

    

Available SpO2 measurements per unique patient, N 17,818 

1 measurement, n 16,065 

2 measurements, n 1,367 

3 measurements, n 262 

4 measurements, n 77 

5 measurements, n 29 

6 measurements, n 14 

7 measurements, n 4 

 

Table 2. Subject characteristics based on 3 features. The 3 features models captured 20,198 

ICU events from 17,818 unique patients. Variables included in the 3 features machine learning 

models are SpO2, FiO2, and PEEP. *For subjects older than 89 years, the age was assigned as 90 

years of age. 

 

Abbreviations: PEEP= Positive end- expiratory pressure.   
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Entire Dataset 2 

(20,198 events) 

Subset 2 (SpO2 < 97%) 

(3,280 events) 

 RMSE BIC RMSE BIC 

Neural Network 84.7 17952.7 67.5 2778.9 

Linear Regression 88.8 18144.3 68.0 2783.5 

Support Vector Regression 85.9 18013.6 70.3 2805.0 

Log-linear 117.7 NA 72.2 NA 

Non-linear 91.8 NA 81.2 NA 

 

Table 3.  RMSE and BIC of the 3 features machine learning models regression tasks 

compared to published methods. The RMSE and BIC for the 3 features machine learning 

models were calculated for the entire dataset (20,198 ICU events) and a subset of the dataset 

with SpO2 < 97% (3,280 ICU events) and compared to the published log-linear and non-linear 

models. 

 

Abbreviations: RMSE = Root Mean Square Error; BIC = Bayesian Information Criterion; NA = 

not applicable.   
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Entire Dataset 2 

(20,198 events) 

Subset 2 (SpO2 < 97%) 

(3,280 events)  
Neural 

Network 

Logistic 

Regression 

SVM Log-

linear 

Non-

linear 

Neural 

Network 

Logistic 

regression 

SVM Log-

linear 

Non-

linear 

Total, No. 20198 20198 20198 20198 20198 3280 3280 3280 3280 3280 

Sensitivity 0.96 0.97 0.98 0.84 0.93 0.80 0.87 0.83 0.85 0.58 

Specificity 0.39 0.26 0.33 0.56 0.49 0.76 0.59 0.69 0.59 0.89 

Positive 

LR 
1.59 1.32 1.46 1.90 1.83 3.37 2.13 2.75 2.09 5.16 

Negative 

LR 
0.09 0.10 0.07 0.29 0.15 0.27 0.23 0.25 0.25 0.47 

Diagnostic 

OR 
17.12 13.16 19.68 6.49 12.61 12.53 9.46 10.96 8.44 10.94 

AUROC 0.83 0.81 0.74 NA NA 0.85 0.83 0.84 NA NA 

F1 0.92 0.92 0.92 0.87 0.91 0.81 0.80 0.81 0.79 0.70 

BIC -4612.60 -4440.70 -4446.00 NA NA -591.80 -567.00 -580.00 NA NA 

 

Table 4. Prediction performance of machine learning classification models based on 3 

features. Prediction performance statistics were calculated for the machine learning models 

based on 3 features and compared to the Log-linear and Non-linear methods for the entire dataset 

(20,198 ICU events; entire dataset 2) and for a subset of the events where SpO2 <97% (3,280 

events; subset 2). Variables included in the 3 features machine learning models are SpO2, FiO2, 

and PEEP. 

 

 

Abbreviations: SVM = Support Vector Machine; Positive LR = Positive Likelihood Ratio: 

Negative LR = Negative Likelihood Ratio; Diagnostic OR = Diagnostic Odds Ratio (Ratio of 

Positive Likelihood Ratio/ Negative Likelihood Ratio); AUROC = Area Under Receiver 

Operating Characteristic Curve; F1= F1 score; BIC = Bayesian Information Criterion; NA = Not 

applicable. 
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Figures:  

 

 
 

Figure 1. Overview of the experimental study design. 
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Figure 2: Precision-recall curves of machine learning models in Dataset 2 and Subset 2 

using 3 features. The precision recall curves, where improved performance is demonstrated if 

the curve is closer to the upper right-hand corner or has the highest area under the curve (AUC), 

are shown for the 3 machine learning models for A) the entire Dataset 2 (N = 20,198) ICU 

events) and B) Subset 2 where SpO2 <97% (N = 3,280 ICU events).   

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 25, 2021. ; https://doi.org/10.1101/2021.04.21.21255877doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.21.21255877

