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ABSTRACT: Possible links between the transmission of COVID-19 and meteorology have been investigated by comparing positive 
cases across geographical regions or seasons. Little is known, however, about the degree to which environmental conditions modulate 
the daily dynamics of COVID-19 spread at a given location. One reason for this is that individual waves of the disease are typically 
too abrupt, making it hard to isolate the contribution of meteorological cycles. To overcome this shortage, we here present a case 
study of the first wave of the outbreak in the city of Buenos Aires, which had a slow evolution of the case load extending along most 
of 2020. We found that humidity plays a prominent role in modulating the variation of COVID-19 positive cases through a negative-
slope linear relationship, with an optimal lag of 9 days between the meteorological observation and the positive case report. This 
relationship is specific to winter months, when relative humidity predicts up to half of the variance in positive cases. Our results 
provide a tool to anticipate local surges in COVID-19 cases after events of low humidity. More generally, they add to accumulating 
evidence pointing to dry air as a facilitator of COVID-19 transmission. 

INTRODUCTION 
Increasing evidence points to aerosols as a main mode of transmission of COVID-19, mostly occurring indoors1-3. Studies suggest 
that environmental conditions may affect airborne transmission of respiratory viruses through different processes4. First, temperature 
(T) and relative humidity (RH) can modulate through evaporation the size distribution of exhaled aerosol particles, determining the 
number of particles that does not settle due to gravity and can stay suspended in the air5, 6. Second, they can also influence the 
buoyancy of the exhaled respiratory plume (which is a mixture of gases and aerosols) determining if and how it rises7. Third, T and 
RH affect the decay rate of the virus inside aerosols and droplets6, 8. Fourth, humidity is known to affect the immune response of the 
respiratory system9. Fifth, ambient conditions including air flow and turbulence affect transport and dispersion of the respiratory 
plume, and therefore the aerosol concentration at a given distance from an infected person10. In addition, environmental conditions 
may influence human behavior, such as the amount of time spent outdoors or ventilation patterns affecting the accumulation of 
aerosols indoors. 
Massive monitoring of indoor air conditions would be ideal to understand which of these variables affects COVID-19 transmission 
at the population level. In the absence of this kind of data, however, widely available outdoor meteorology can be used as a proxy of 
indoor conditions, albeit mediated by levels of heating and ventilation6. Since the start of the pandemic, several studies have assessed 
the relationship between the number of daily confirmed COVID-19 cases (positive cases) and meteorological conditions in different 
regions of the world 11-17. Variables such as humidity, temperature, solar radiation, precipitation or wind speed have been found to 
co-vary with positive cases. Two approaches have been typically followed. The first is to compare the spread of the disease across 
geographical regions. In this kind of study, variability in meteorological conditions is achieved by including enough spatially distant 
locations, but differences other than meteorological between locations introduce heterogeneity. The second approach is to correlate 
the initial growth phase of the outbreak on a single location with a number of meteorological variables. The challenge in this kind of 
study relates to the fact that many meteorological variables have marked seasonal variations, and correlations with an abrupt increase 
in the number of positive cases might be spurious, simply reflecting two parallel but independent trends. In addition, the dynamic of 
local mitigation policies and the response of the population represent confounding or heterogeneity factors for both approaches. Due 
to these shortcomings, the question of whether or not meteorology can modulate COVID-19 spread is open, with sensible arguments 
on both sides18, 19.  
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Here we present a study of the influence of meteorological variables during the first wave of spread (8-months) of COVID-19 in the 
city of Buenos Aires (CBA), Argentina. CBA has a humid subtropical climate with four distinct seasons, and is a useful case study 
for several reasons. First, over 5% of its 2.9 million inhabitants have suffered from COVID-19 in 2020, as confirmed by PCR tests, 
during a single long wave of the spread starting at the beginning of May and reaching its peak by the end of August (Figure 1A). 
Second, although the area of the city is considerable (209 km2), it is located on a flat terrain, so that surface meteorological conditions 
can be assumed to be horizontally homogeneous20. Third, in 2020 the most disruptive policies were enforced when there were still 
fewer than 50 daily cases (lockdown: March 20th; facemasks mandatory in public spaces including shops, etc.: April 15th, 2020) in 
the hope of flattening the curve. These measures were renewed roughly every 15 days, effectively extending the lockdown until 
November 9th, 2020, a period that included the whole austral winter (June to September).  
Our work aims to identify meteorological variables that modulate day-to-day variations of the COVID-19 spread in CBA. We intro-
duce a simple conceptualization that allows filtering out the main driver of the spread to focus on such modulations. To disentangle 
the effect of highly inter-correlated meteorological variables we use cross-validation techniques. Finally, we show how these simple 
tools can be used to predict variations in the number of COVID-19 cases, which could be useful for health institutions to plan logistics 
around a week in advance. 
 
MATERIALS AND METHODS 
Data gathering  
Two datasets of confirmed COVID-19 cases (SARS-CoV2 positive PCR tests) in CBA during the period March to November, 2020 
were used (Figure S1):  

(i) dataset #1 includes the date of report of all known positive cases, from the daily reports by Health Ministry of Argentina, 
compiled and curated by Sistemas Mapache (github.com/SistemasMapache/Covid19ar Data), and  

(ii) dataset #2 has the date in which symptoms began for only 60% of positive cases, from the Health Ministry of Argentina 
open data webpage (datos.salud.gob.ar/dataset) 

Most of the study was performed for the complete dataset #1, while dataset #2 was used to complement the analysis. All data were 
processed through custom scripts written in MATLAB (MathWorks, Natick, MA). 
Meteorological data corresponding to the station located at the domestic airport (AEP; World Meteorological Organization station 
number 87582) for the same period was obtained from public databases provided by the National Oceanic and Atmospheric Admin-
istration (NOAA, US)21 and OGIMET (www.ogimet.com). We included as meteorological variables for our study the surface daily 
mean values of relative humidity (RH), temperature (T), wind speed (WS), pressure (P), precipitation (PP) and sky cover (SC), as 
well as the surface daily minimum (Tmin) and maximum (Tmax) values of hourly temperature. In addition, absolute humidity (AH) was 
estimated from RH and T using the formula22: 
 
AH = (13.227	𝑅𝐻 (𝑇 + 273.15)⁄ )𝑒𝑥𝑝(17.625	T (𝑇 + 234.04)⁄ )	       (1) 
 
Isolating the mid-range dynamic  
The curve of daily new COVID-19 cases in CBA exhibits different scales of temporal variability (Figure 1A, dataset #1). As in many 
such datasets, fast and slow dynamics are observed. The slow dynamic reflects the main waves of spread of the pandemic, which in 
the particular case of CBA took during most of 2020 the form of a single, slowly modulated wave starting in May and reaching its 
peak in August. On the opposite extreme of the spectrum, the fast dynamic reflects day-of-week fluctuations (especially weekend vs. 
weekday differences). In addition, a third, intermediate dynamic range is apparent in this dataset, represented by fluctuations with an 
irregular periodicity in the range of 2-4 weeks. In the present work, we characterized these mid-range fluctuations following the 
hypothesis that they are at least in part rooted on meteorological conditions. This would not imply that meteorological conditions are 
the main driver of the spread, but rather that they can modulate transmission. To study these mid-range variations, filtering out the 
slow (main driver) and fast (day-of-week) dynamics, we defined the weekly difference of any given variable X(t) as the value taken 
by this variable on day t minus its value 7 days before: 
  
DX(t) = X(t) – X(t - 7 days).           (2) 
 
Equation (2) was applied to daily COVID-19 positive cases to obtain DCovid(t) and to its meteorological counterparts (e.g., DRH(t) 
for relative humidity). To study the relationship between these variables we used linear models and the Pearson correlation coefficient, 
including a range of lags between the day of the meteorological observation and that of the COVID-19 positive case report. Signifi-
cance for a linear relationship against the null hypothesis of no improvement over a constant model was obtained as a p-value through 
a t-test using the MATLAB function fitlim(). The optimal lag for a given variable was defined as the lag with both minimum p-value 
and maximum absolute correlation with DCovid(t).  
Note that the D transformation introduced in Equation 2, while convenient for isolating the mid-range dynamic, has a small disad-
vantage. Since a given value of RH(t) impacts on both DRH(t) and DRH(t+7), a strong correlation at a given lag is typically mirrored 
by moderately strong correlations of opposite signs at lags 7 days earlier or later. To avoid any ambiguity, in all cases the optimal lag 
was determined by the global maximum of absolute correlation, or equivalently (since degrees of freedom do not change) the global 
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minimum of p-value, regardless of other local extrema. Furthermore, while the D transformation is central to our results, an inde-
pendent analysis not utilizing it was applied to the same data to confirm the typical size of optimal lags. 
 
Testing day-of-week modulation 
Data of Covid(t) and DCovid(t) were normalized by the 7-day average of Covid(t) and divided into 7 groups, according to the day of 
the week of t (Figure S2). The Kruskal-Wallis test was used to assess potential differences between groups indicative of day-of week 
modulation.  
 
Optimization of the multivariate linear model 
Cross-validation allows for the fair comparison between models of different complexity23. We performed full 10-fold cross-validation 
including all possible combinations of the 8 meteorological variables included in the study. All linear models with a number of 
variables ranging from 0 (constant model) to 8 (all variables included) were compared. For each combination of variables, the data 
was divided into 10 random subgroups of equal size. Each subgroup was once set aside and used as a test set for the linear model 
trained with the remaining 9 groups. For a given number of variables (0 to 8), the best model was chosen as the one minimizing the 
test sum of squared residuals. To choose between models with different number of variables, the one-standard-error criterion was 
used23. This criterion defines the best model as the one with fewest variables that has a test sum of squared residuals not higher than 
the lowest one plus one standard error. All linear combinations of variables and interactions between variables were tested for two 
variations of the data: a) each variable with its own optimal lag and b) all variables using the optimal lag for DRH.  
 
To corroborate the results, we repeated all these analyses using the MATLAB lasso() function. The Lasso method implements the 
choice of the optimal model by minimizing squared residuals while penalizing non-zero linear coefficients (i.e., the effective number 
of terms in the model) under the one-standard-error criterion. This is achieved through a cost function defined as the sum of the 
absolute value of linear coefficients 23.  
 
Cross-validation and Lasso were also used to specifically disentangle the relative contribution of DAH, DRH and DT in explaining 
DCovid variability, given that laboratory experiments suggest that these variables modulate virus survival in aerosols6.  
  
Testing non-linear relationships 
Given that meteorological variables have been described to sometimes exhibit a non-linear relationship with positive COVID-19 
cases 24, we also tested non-linear correlations (Spearman) and non-linear models (up to 4 degree polynomials including all possible 
interactions between variables). However, Spearman correlations were very similar to Pearson correlations (Figure S3), with identical 
optimal lags for all variables exhibiting a significant correlation. In addition, the two cross-validation methods that we used indicated 
that non-linear terms offered no improvement over the linear model. For these reasons, our work mostly presents the results obtained 
within the linear framework. 
 
 
RESULTS AND DISCUSSION 
  
Meteorology anticipates changes in COVID-19 transmission 
  
The time series of COVID-19 confirmed cases in dataset #1 exhibited, in addition to the main driver and the day-of-week modulations, 
a mid-range dynamic of variability, with an unstable period of around 2 to 4 weeks (Fig. 1A). To understand if meteorological factors 
explained this mid-range modulation, we applied Equation 2 to all variables, obtaining DCovid(t) and its meteorological counterparts 
(e.g., DRH(t) for relative humidity). As expected, there was no significant day-of-week modulation in DCovid(t) (Figure S2; Kruskal-
Wallis test for H0 defined by no difference between days of the week: c2(6) = 0.42, p = 0.99). We studied the Pearson correlation 
between DCovid(t) and its meteorological counterparts (Figure 1B; see also Figures S3 and S4). Since meteorology is not expected 
to affect the outcome of positive COVID-19 cases reported on the same day, but rather those reported some days later, lags ranging 
from 0 to 20 days were included in the analysis. We found that several variables significantly correlated with DCovid(t) at different 
lags, the most frequent of which was 9 days (Figure S3). It should be noted that in dataset #1 these lags aim to capture an average 
time window corresponding to the incubation period plus time for testing and bureaucratic processing of data. Correlations and lags 
were similar when the Spearman coefficient was used, suggesting that the linear framework, while simpler, correctly captures the 
individual relationships between DCovid(t) and meteorological counterparts.   
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Figure 1. (A) Daily cases in CBA taken from dataset #1 (grey bars), 7-day average (black) and an example of the fast day-of-week 
dynamic (colors). Enforcement of major policy changes indicated. (B) Top: Pearson correlation between DCovid(t) and meteorolog-
ical counterparts (color coded), for different lags expressed in days. Bottom: Corresponding p-values (log scale; same color code).  
 
Of all variables, DRH(t – 9 days) exhibited the most extreme correlation with DCovid(t) (Pearson correlation: -0.48; t(218): -8.1; p: 
10-13 ). The evolution of DCovid(t) was strikingly similar to that of negative DRH(t – 9 days) (Figure 2), especially so when considering 
the numerous confounders or sources of heterogeneity expected to obscure a relationship between meteorology and the reporting of 
COVID-19 positive cases (individual variability in symptomatic response, test processing time or RH indoor-outdoor relationship to 
cite only a few). 

 
Figure 2. Co-evolution of DCovid(t) (grey; left axis) and negative DRH(t – 9 days) (red; right axis). 
 
Variables other than RH play a negligible role  
    
Meteorological variables are tightly interrelated. To assess the relative importance of DRH compared to the other potential predictors 
of DCovid, we applied two cross-validation methods (full 10-fold cross-validation and Lasso). These methods yield as an output the 
linear combination of predictors that best model DCovid(t), avoiding contributions that are negligible or related to overfitting. Both 
methods led to an identical conclusion, pointing to  
 
DCovid(t) = bconstant +bRH DRH(t - 9 days)         (3) 
 
as the best model of DCovid(t), where bX stands for the linear coefficient for variable X.  
 
While evidence from laboratory experiments suggests an important role played by RH in modulating the efficacy of transmission of 
airborne viruses, AH has been pointed to be in some situations better than RH as a proxy for indoor RH6. The reason for this is that 
indoor and outdoor AH are in general similar, but potential differences between indoor and outdoor T due to heating can have a large 
impact on indoor RH (see Equation 1 for an approximate relationship between these variables). This might depend on the type of 
construction and heating systems prevalent at a given location, and has not been studied specifically in CBA. Although we did not 
have an independent measure of AH, we used Equation 1 to estimate it, and repeated the optimal lag search (Figure S5) and the cross-
validation procedures using exclusively DRH, DT and DAH. Again, both methods showed that Equation 3 represents the best model 
of DCovid. 
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RH anticipates variations in the triggering of symptoms 
 
In dataset #1, the optimal lag of 9 days includes the incubation period plus time for testing and bureaucratic processing of data. To 
dissect this time window, we analyzed dataset #2 in a similar way. This dataset included, for around 60% of confirmed positive cases, 
the date in which symptoms began. Defining CovidS(t) as the number of confirmed cases with symptoms triggered at a given day 
(Figure S1), we obtained DCovidS(t) through Equation 2 and found that its optimal lag relative to DRH was of 5 days (Pearson 
correlation: -0.44; t(218): -7.3; p: 5 x 10-12). Since 5 days is the average window for the development of COVID-19 symptoms25, this 
further supports a specific role played by humidity in early stages of the disease. The rest of this work uses dataset #1, which includes 
all confirmed cases. 
 
RH modulates transmission only during winter 
 
Given that in CBA a single wave of the pandemic extended across seasons, we next assessed whether or not a seasonal effect modu-
lated the DCovid - DRH relationship. We classified the data by month of the COVID-19 report date (t) from March to October, 2020. 
For each month, we plotted DCovid(t) vs. DRH(t – 9 days) and obtained the individual slopes (linear coefficient bRH  in Equation 3) 
and correlation coefficients (Figure 3). We observed that the modulation of DCovid by DRH was only highly significant during the 
winter months (June to August), with similar values of bRH (Figure 3A). For transition months (May and September) the relationship 
weakened toward not significant, regardless of whether the overall number of COVID-19 positive cases was low (as in April) or high 
(as in October). Given that cross-validation procedures showed no significant interactions, this seasonal effect cannot be explained 
by the meteorological variables considered here. Mean monthly temperature, however, correlated with bRH across months (Pearson 
correlation: 0.88; t(6): 4.6; p: 4 x 10-3). We speculate that rather than causality, this correlation could reflect indirect mechanisms such 
as seasonal changes in people behavior (e.g., habits regarding ventilation, the use of heating or outdoor vs. indoor gathering).  

 
Figure 3. (A) Plot of DCovid(t) vs DRH(t – 9 days) (grey; one circle per day) across individual months (one month per sub-panel) 
together with linear fits (green). (B) Slope (left), Pearson correlation coefficient (center) and corresponding p-value (right) across 
months, obtained from plots in (A). 
 
RH as a tool to anticipate an increase in positive cases 
 
Our results could provide a tool to anticipate local surges in COVID-19 due to low RH. To demonstrate this, we first studied the 
average evolution of RH in anticipation of events of an extreme increase in the number of positive cases (Figure 4A). We identified 
7 peaks in DCovid that were higher than 200 positive cases and studied the evolution of RH during the 20 days prior to them. A trough 
in RH extending roughly from days 15 to 5 prior to the peak in DCovid, and reaching an average value of 55% at its minimum, was 
observed. This confirms that a low value of humidity precedes an increase in the number of positive cases with a lag similar to the 
one found using Pearson correlations. 
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Figure 4. (A) Distribution (mean ± s.d.) of RH during the 20 days prior to peaks of DCovid higher than 200 cases (7 events). Dashed 
lines: mean ± s.d. of RH for the whole dataset (March to October, 2020). (B) Mean evolution of the 7-day average of COVID-19 
cases relative to the value at minima of RH (lower than color coded threshold; number of events indicated).  
 
Inversely, we asked what was the evolution of COVID-19 positive cases around extreme low values of RH (Figure 4B). For a given 
humidity threshold (a range going from 40% to 80% was studied), we identified the throughs in RH that went below threshold. We 
then studied the percentage of change in the 7-day average of COVID-19 positive cases relative to the value observed on the day of 
the RH through (zero lag). We observed an average increase in COVID-19 cases starting 5 to 7 days after troughs of RH of different 
magnitude and peaking around day 11. For the 5 lowest humidity events (< 40%) that took place during the period under study, this 
implied an average increase of more than 20% in reported COVID-19 cases. This result corroborates our main findings without 
making use of the transformation of the data introduced in Equation 2, suggesting that widely available meteorological observations 
of RH can be informative to anticipate surges in the number of COVID-19 cases. 
 
CONCLUSIONS 
 
This study provides a fresh perspective on the day-to-day dynamic of the COVID-19 pandemic. The methodology that we introduce 
for the first time in this kind of study (Equation 2) allowed us to inspect, with minimal intervention over the raw data, mid-range 
modulations in the dynamic of positive COVID-19 cases, filtering out at the same time the main driver of the spread and the day-of-
week effect. Several variables that are critical to understand the dynamics of the main driver, such as testing capacity, positivity or 
response of the population to guidelines, were not considered here. However, they are unlikely to significantly affect our results since 
they reflect slow variations that are filtered out by Equation 2. In addition, the only situation in which these variables could explain 
the observed correlation between DCovid and DRH is if they were themselves related to humidity, which is highly unlikely.   
Our main result is that changes in daily RH anticipate changes of opposite sign in the number of COVID-19 positive cases observed 
9 days later in CBA. An analysis of a subset of the data indicates that this 9-day window can be divided into a 5-day incubation period 
plus a 4-day testing and data processing period. Although other meteorological variables exhibited similar (weaker) relationships, our 
cross-validation procedures indicated that this was due to the complex set of interactions between meteorological variables. RH alone 
was as good in describing variations in positive cases as the whole set of variables. When considering potential seasonal effects, we 
observed that the linear relationship between variations of RH and positive COVID-19 cases was only significant during winter 
months. During this period, sustained monthly levels of correlation and slope were found, smoothly varying toward zero slope in the 
transition months. This rules out anecdotal correlations, and rather makes it likely that some behavioral pattern consistently occurring 
during winter, for example reduced levels of ventilation or the use of heating, is necessary for the modulation of COVID-19 trans-
mission by RH. Our findings provide a practical tool to predict a raise of up to 20% in positive cases following extreme low values 
of RH during winter months, which could be useful for the planification of logistics in health institutions of CBA. 
Further efforts should be directed to understand which of our results can be replicated in other locations of the world and which are 
specific to the CBA outbreak (and why). In addition, information regarding the type of transmission in each case (close proximity vs 
shared-room scale), if available, could shed light on the mechanisms behind our results. Evaporation and buoyancy act within the 
first seconds of release of exhaled aerosols, while viral decay typically requires longer timescales26. Hence, a modulation of COVID-
19 transmission by RH found exclusively in cases of shared-room scale would indicate that the main mechanism behind it is viral 
decay. In contrast, if other mechanisms contributed significantly to the effect, both types of transmission would exhibit similar levels 
of modulation. Given that airborne transmission mechanisms are shared by different respiratory viruses, developments in this area 
would improve our understanding not only of the current pandemic, but possibly of other diseases that pose a threat to human health 
and welfare. 
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Figure S1. Top panel: Time series (grey) and 7-day average (color) of RH (top) Covid(t) (middle; dataset #1) and CovidS(t) 
(bottom; dataset #2). Bottom panel: 7-day average of Covid(t) (left axis, grey) and negative RH (right axis, red).  

 

 

 

 

Figure S2. Distribution (mean ± s.e.m.) of Covid(t) (purple) and DCovid(t) (green) according to the day of the week of t. Both 
series were normalized by the 7-day average of Covid(t) to account for the variability across months, which otherwise masked 
the day of week variability.  The Kruskal Wallis test showed a significant day-of-week effect only for Covid(t) (Covid: c2(6) = 43.9, 
p = 10-7; DCovid: c2(6) = 0.42, p = 0.99)  
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Figure S3. For all meteorological variables, optimal lag and corresponding correlation using either the Pearson or Spearman 
coefficients. For each type of correlation columns show, from left to right, optimal lag expressed in days, correlation coefficient 
at the optimal lag and associated p-value. 

 

 

 

Figure S4. As Figure 1B but for the remaining meteorological variables, not shown there to allow for visual clarity. 

 

 

 

 

Figure S5. As Figure 1B but showing DT (orange), DRH (red) and the estimation of DAH obtained with Equation 1 (grey). 
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