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Abstract 
We apply a meta-clustering technique to discover age-gender unbiased COVID-19 patient subphenotypes 
based on phenotypical before admission, including pre-existing comorbidities, habits and demographic 
features, to study the potential early severity stratification capabilities of the discovered subgroups through 
characterizing their severity patterns including prognostic, ICU and morbimortality outcomes. We used the 
Mexican Government COVID-19 open data including 778,692 SARS-CoV-2 population-based patient-level 
data as of September 2020. The meta-clustering technique consists of a two-stage clustering approach 
combining dimensionality reduction and hierarchical clustering: 56 clusters from independent age-gender 
clustering analyses supported 11 clinically distinguishable meta-clusters (MCs). MCs 1-3 showed high 
recovery rates (90.27-95.22%), including healthy patients of all ages; children with comorbidities alongside 
priority in medical resources; and young obese smokers. MCs 4-5 showed moderate recovery rates (81.3-
82.81%): patients with hypertension or diabetes of all ages; and obese patients with pneumonia, 
hypertension and diabetes. MCs 6-11 showed low recovery rates (53.96-66.94%): immunosuppressed 
patients with high comorbidity rate; CKD patients with poor survival length and recovery; elderly smokers 
with COPD; severe diabetic elderly with hypertension; and oldest obese smokers with COPD and mild 
cardiovascular disease. Group outcomes conformed to the recent literature on dedicated age-gender 
groups. These results can potentially help in the clinical patient understanding and their stratification 
towards automated early triage, prior to further tests and laboratory results are available, or help decide 
priority in vaccination or resource allocation among vulnerable subgroups or locations where additional 
tests are not available. 

Code available at: https://github.com/bdslab-upv/covid19-metaclustering 
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Introduction 
In Mexico, mid-January 2020 reported the first cases of COVID-19. In early March 2020, the novel severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was declared by the World Health Organization as 
a pandemic1. As of August 13th, 2020, a total of 20,439,814 confirmed cases of coronavirus disease 2019 
(COVID-19) have been reported to the World Health Organization, and 744,385 lives have been lost2.  

The COVID-19 pandemic has led to an unprecedented global healthcare challenge for both medical 
institutions and researchers. They have been making a huge effort to describe specific COVID-19 risk factors 
association, severity outcomes, and also personalized therapeutic options for COVID-19 patients being yet 
under investigation3,4,5. Recognizing different COVID-19 subphenotypes and their severity characterization 
may assist clinicians during the clinical course and research efforts. However, the availability of information 
to investigate such subphenotypes and consequent decision making often varies both according to the 
stage at which patients are in the COVID-19 clinical workflow –e.g., before admission, at admission, or 
during hospitalization– and according to the hospital access possibilities –e.g., hospitalized versus 
ambulatory patients–, especially in locations where hospitalization is difficult. In addition, the patient age 
and gender entail a potential correlation between subgroup characterization and their severity 
characterization which requires prudent usage in ML models. 

Several studies have suggested potential COVID-19 subphenotypes, mainly within specific comorbidities 
such as pulmonary diseases or diabetes6,7 or related to distinct genetic variants8. However, the Mexican 
population has its particularity due to a high prevalence of comorbidities, like hypertension, diabetes –a 
leading cause of death in 20209– and obesity, which is leading the population to a undesirable risks for 
severe coronavirus outcomes than many other high-income countries10. Since distinct target population 
often present heterogeneous clinical characterization and severity outcomes, it remains crucial a 
transparent understanding regarding the characterization of COVID-19 subphenotypes in Mexican patients 
to help anticipate individuals' prognostic outcomes if one gets infected and evaluate subphenotypic 
severity presentations.  

We describe the results of an unsupervised Machine Learning (ML) meta-clustering approach to identify 
potential subphenotypes of COVID-19 patients in Mexico based on previously existing comorbidities, habits 
and demographic features (i.e., age and gender). Stratification on gender and age groups was included for 
three primary reasons: (1) to reduce potential  ML model’s biases in representing the best the majority (e.g. 
the young adults) but not underrepresented groups (e.g. children and elderly)11; (2) to reduce potential 
confounding factors from age and gender which are highly correlated with comorbidities, habits and 
mortality -i.e. age-gender clusters may help reveal more well-detailed patterns and phenotypical 
description-; and (3) to reduce interpretation biases, e.g. if one healthy cluster presents a mortality rate of 
98.5% but includes patients from all ages, this specific mortality rate may vary across two patients from the 
same cluster whose age differ significantly (e.g. children versus adults). See section 1 of supplementary 
material for further details.  

By using a population-based cohort of more than 700,000 patient-level cases, this is probably the largest 
cluster analysis about coronavirus patient-level cases to date. Other studies proposed unsupervised ML 
methods for aggregated population data12, CT image analyses13,14, molecular-level clustering15, or 
coronavirus-related scientific texts16. Several studies provided to date results from unsupervised ML on 
patient-level epidemiological data17,18,19,20,21,22,23,24. To our knowledge, however, none characterized age-
gender subphenotypes, nor aimed to a population-based study with solely the phenotypical information 
available at pre-admission towards automated risk stratification, and neither characterized the Mexican 
population that is generally more vulnerable due to its particularity in a high prevalence of comorbidities.  

Performing an accurate triage upon admission, but especially in ambulatory settings, is often challenging, 
significantly depending on the patient information available to the physicians.  This work, therefore, aims 
to characterize age-gender COVID-19 subphenotypes that may potentially establish target groups for triage 
systems to assist clinicians in efficiently allocating limited resources and prioritize vaccination among 
subgroups that are more vulnerable when they get infected during the pandemic. As these subphenotypes 
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are based on easily available data, such as previous disease and lifestyle habits rather than COVID-19 
related symptoms (e.g., fever and nausea), vital signs and biomarkers that are not often available in the 
first days of COVID-19 infection or difficult to obtain due to limited resources, our work therefore could 
support early triage prior to further tests and laboratory results and even provide guidance in areas where 
such tests are not available. 

Results 
Age-gender cluster analysis 
After evaluating the stratified clustering results, we selected the following number of clusters (k) for each 
specific age-gender group: <18-Male: k=5, <18-Female: k=4, 18-49-Male: k=7, 18-49-Female: k=7, 50-64-
Male: k=9, 50-64-Female: k=8, >64-Male: k=8, >64-Female: k=8. This resulted in 56 age-gender clusters in 
total. Supplementary Table 5 describes the number of individuals for each age-gender cluster. By taking 
PCA scores, fed by the comorbidities and habits ratios of each group, we performed the second-stage meta-
clustering analysis and established 11 clinically distinguishable MCs. 

Figure 1 describes the relationships among different comorbidities and habits of the original 56 age-gender 
clusters through the first two principal components (Figure 1A), also provides the correspondence to their 
assigned MCs (Figure 1B) and their LOESS delineations for distinct severity outcomes (Figure 1C to 1H). 

The 56 clusters PCA analysis uncovered noticeable patterns and characterization among clusters of 
different ages in both genders. Young adults are prone to asthma and smoking habit; whereas the elderly 
was prone to many comorbidities such as hypertension, diabetes, obesity, COPD, pneumonia, and CKD. The 
results also show that obesity and smoking habit –both positively correlated– are strongly separated from 
immunosuppression and other diseases –both positively correlated–, implying these two pairs of features 
are negatively correlated in the studied data subgroups. 

The LOESS models show that children took fewer days from presenting symptoms to hospitalization, 
showing higher ICU, intubation, and hospitalization rates than adults with similar conditions (Figure 1D, E, 
G, H). In contrast, MC3 –young obese cluster with moderate asthma and smoke rates– behaved inversely, 
implying that children, under similar clinical conditions, may receive priority regarding medical attention. 

Inspecting the relationship between the PCA and LOESS models shows that CKD is significantly associated 
with a shorter survival length among deceased patients and an increase in intubation rates (Figure 1E, D). 
Mortality constantly increases from children to the elderly, but the most severe zones are inclined toward 
pneumonia, CKD, and COPD (Figure 1C) independently of the age groups. 
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Figure 1. Principal component analysis (PCA) of the 56 age-gender clusters, meta-clustering results and LOESS-based 
severity delineations. (A) PCA from 56 age-gender stratified clusters; (B) scatterplot of the eleven MCs defined from 
the 56 clusters. (C-H) LOESS scatterplots regarding the severity outcomes of the eleven MCs among the 56 computed 
clusters. The LOESS models delineate seven severity ranges for each outcome including (C) mortality, (D) ICU admission, 
(E) intubation, (F) survival at 15 days among deceased patients, (G) hospitalization, and (H) days from symptoms to 
hospitalization. All the scatter plots share coordinates. Each subgroup is denoted using the following abbreviation: 
[AgeGroup][Gender][ClusterID]. Mexico, January 13–September 30, 2020. 

 

 

Figure 2 describes and quantifies the features of the 56 age-gender clusters and relates them to their MC, 
and highlights relevant patterns through simultaneously ordering rows and columns through a biclustering 
technique25. Figure 2 reinforces that the children have a faster time from symptoms to hospitalization and 
are prone to ICU admission despite presenting similar clinical condition than adults (e.g., cluster <18M3 
versus 50-64F5). Regarding gender discrepancy, females showed a better Recovery Rate (RR) despite 
presenting similar clinical conditions than males (e.g., >64M1 versus >64F1). 

The phenotypes, demographic features and outcomes of each cluster group can be fully explored at 
http://covid19sdetool.upv.es/?tab=mexicoGov. 
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Figure 2. Heatmap showing the quantified characteristics among 56 of each age-gender specific cluster of the eleven 
MCs, the size of each cluster (n) was categorized into 6 ranges. Mexico, January 13–September 30, 2020. 
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Epidemiological description of the 11 meta-clusters 
Table 1 represents the quantified features of the 11 resultant MCs. Table 2 summarizes the 11 resultant 
MCs’ main features. Next, we describe the clinically distinguishable main epidemiological findings for each 
MC.  
 
Table 1. The distribution of age, features and comorbidity with the quantitative description of demographic features, 
treatment, and epidemiological characteristics among eleven MCs. In these results, we applied arithmetic mean 
presuming that each age-gender cluster is representative to its population. Thus, the size (n) of each age-gender cluster 
was ignored. Mexico, January 13–September 30, 2020. 
 

MC1 MC2 MC3 MC4 MC5 MC6 MC7 MC8 MC9 MC10 MC11 
No. of age-gender 
clusters (n total = 56) 8 6 8 8 3 7 4 3 5 3 1 

Demographics (%) 
           

    Age (x)̄ 43.4 18 39.8 44.8 46.4 56.3 65.3 68.7 66.8 68.2 76.4 

    Female 50 50 50 50 33.33 42.86 50 33.33 60 66.67 0 

Age range (%) 
           

    <18 25 66.67 12.5 25 0 0 0 0 0 0 0 

    18-49 25 33.33 50 25 66.67 28.57 0 0 0 0 0 

   50-64 25 0 37.5 25 33.33 42.86 50 33.33 40 33.33 0 

    >64 25 0 0 25 0 28.57 50 66.67 60 66.67 100 

Pregnancy (%) 0.49 1.28 0.3 0.8 0.33 0.26 0.01 0 0.01 0 0 
Habits (%)            

    Obesity 0.44 11.78 59.88 12.01 75.54 18.89 20.15 19.05 25.94 50.51 23.99 

    Smoke 0 9.67 34.09 0.8 10.77 8.1 4.38 38.03 0.22 42.02 76.85 

Comorbidities (%) 
           

    Diabetes 0 4.42 4.5 39.06 57.14 35.62 76.44 20.45 95 61.23 31.96 

    COPD 0 4.51 0 0.73 0 5.1 2.03 43.91 2.36 37.46 91.86 

    Asthma 0.37 3.2 18.17 1.15 2.03 2.69 0.49 25.72 0.08 19.79 19.63 

    INMUSUPR 0 13.03 0.1 1.4 0 40.38 0 0.91 0 0.03 0 

    Hypertension 0 9.13 7.59 41.15 68.79 46.79 83.71 34.38 96.33 77.86 52.94 

    Other Disease 0 38.32 0.3 1.22 0 48.63 1.85 1.73 0 0.82 0 

    Cardiovascular 0 17.52 0.1 2.46 2.17 14.25 21.64 4.73 5.52 26.51 27.77 

    CKD 0 4.27 0 3.87 0.22 31.84 81.67 1.04 1.92 1.28 1.01 

Treatment (%) 
           

    Hospitalized 19.87 46.08 14.15 42.22 44.91 58.56 70.72 57.17 60.8 60.11 70.47 

    ICU 1.59 9.82 1.23 4.48 5.06 4.01 4.87 4.81 5.56 5.24 5.62 

    INTUBATED 3.44 9.03 2.18 7.9 8.46 12.12 13.38 11.5 12.13 12.42 12.84 

Pneumonia (%) 12.36 37 9.08 37.18 41.52 42.44 52.14 43.55 48.1 46.8 53.61 

Recovery (%) 90.27 91.37 95.22 82.81 81.3 66.94 53.96 66.43 64.95 64.42 55.96 

Survival>15days (%) 93.46 93.73 97.01 88.39 87.27 76.34 65.37 77.1 75.26 75.34 67.28 

Survival>30days (%) 90.74 91.8 95.5 83.74 82.14 68.26 55.71 68.2 66.33 65.88 56.96 

Survival>15days, 
deceased (%) 

30.76 28.64 36.21 31.09 31.59 28.46 24.8 31.7 29.73 31.01 25.71 

 

Survival>30days, 
deceased (%) 6.61 4.64 5.93 5.79 4.52 4.2 3.82 5.26 4.04 4.24 2.29 

 

 
From Symptoms to 
Hospital days (x)̄ 3.78 3.2 4.87 4.37 5.21 4.48 4.3 4.85 4.92 4.94 4.82  

Other case contact (%) 45.84 40.23 51.18 36.6 36.04 27.39 20.9 27.88 27.56 28 20.89  
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Table 2. Main features of the 11 resultant meta-clusters, sorted by recovery. The thresholds for the different severity 
outcomes and input variable categories are displayed below. Mexico, January 13–September 30, 2020. 

 

Meta-
cluster ID 

Recovery ICU Intubation Age Group Habit Comorbidity Pneumonia 

1 Very high Low Low All Healthy Healthy No 

2 Very high Very high Moderate Children & 
Young 

Healthy 
Some w/ INMUSUPR, 

cardiovascular or 
other disease. 

Yes 

3 Very high Low Low 
Young 
adults 

Obesity 
Smoke Some w/ asthma No 

4 High Moderate Moderate All Healthy Diabetes 
Hypertension Yes 

5 High High Moderate Young 
adults 

Obesity Diabetes 
Hypertension 

Yes 

6 Moderate Moderate High Older adults Healthy 

Diabetes 
Hypertension 
INMUSUPR 

Other disease 
Some w/ CKD 

Yes 

8 Moderate Moderate High Elderly Smoke 

Hypertension 
COPD 

Some w/ diabetes or 
asthma 

Yes 

9 Moderate High High 
Older adults 

& Elderly Healthy 
All Diabetes 

All Hypertension Yes 

10 Moderate High High Elderly Obesity 
Smoke 

COPD 
Hypertension 

Diabetes 
Some w/ asthma or 

cardiovascular. 

Yes 

7 Low Moderate Very High 
Older adults 

& Elderly Healthy 

Diabetes 
Hypertension 

CKD 
Other disease 

Some w/ 
cardiovascular. 

Yes 

11 Low High High Elderly Smoke 

Hypertension 
All COPD 

Some w/ diabetes, 
asthma or 

cardiovascular. 

Yes 

 
 

MC1 includes two healthiest clusters per each age-gender group, with a very high RR (90%). Most deceased 
patients in MC1 with pneumonia are older patients (Figure 2). MC2 includes children and young individuals 
(mean age 18) with healthy habits and little incidence of relevant diseases (13% immunosuppression, 17% 
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cardiovascular disease, 4% CKD), albeit RR is very high (91%). Besides, MC2 also holds the highest ICU 
admission rate (9%), driven by three children clusters whose ICU rate vary from 13.41% to 18.45%. MC3 
includes young adults (mean age 40) with significant obesity, smoking, a little incidence of other diseases 
and very high RR (95%). Despite the similarly high RRs in MC1 to 3, MC1 and MC3 show a low incidence of 
pneumonia, MC2 has 1/3 of pneumonia patients.  

MC4 includes individuals of all ages with healthy habits but, unlike MC1, most patients in MC4 have 
hypertension (41%) or diabetes (39%), but not both simultaneously. MC5 includes young adults with 
obesity (75%), diabetes (57%) and/or hypertension (69%). Despite of this dissimilarity, MC4 and 5 still have 
similarly high RRs, of approximately 80%. From MC4 onwards, all MCs have from 40 to 50% incidence of 
pneumonia as of case reporting; what does not exclude the possibility that some patients developed 
pneumonia days after. Noteworthy, in groups 4 to 11 more than 70% of deceased patients were diagnosed 
with pneumonia. 

The RRs from MC6 and 8-10 are similar (64-67%). MC6 includes older adults with no obesity nor smoking, 
but with frequent diseases including diabetes, hypertension, immunosuppression or other. MC8 includes 
elderly with smoking habit, plus hypertension (34%) and/or COPD (44%), two smoking-related diseases. 
Similarly, MC10 includes elderly with obesity (50%) or smoking habit (42%), who also suffer from COPD 
(37%), but with a much higher incidence of diabetes (61%) and hypertension (78%). MC9 contains older 
adults and elderly with both diabetes (95%) and hypertension (96%).  

MC7 and 11 hold the lowest RRs (54% and 56%). MC7 includes older adults and elderly with common 
diseases –diabetes, hypertension and cardiovascular disease– plus CKD (81%). CKD stands out as the 
differential factor with similar MCs with low RRs, such as 6 or 9. MC11 is similar to 8 and 10; the key 
differences are the higher prevalence of smoking (78%, which doubles the former) and COPD (almost all 
patients, 91%), and a mean age eight years older (76 vs. 68 years).  In addition, MCs that include older 
obese patients with smoking habits –MC8, 10, and 11– have significantly higher COPD and cardiovascular 
incidence, an association that does not occur with the young smokers –MC3. 
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Variability among states and types of clinical institution 
Regarding state variability, half of the Mexican states are prone to a higher probability in healthy clusters 
with better RR, lower hospitalization, ICU, and Intubation rates among each age-gender group (Figure 3A, 
e.g., 18F2, 18M1, 18-49F1, 18-49M1, 50-64F1) and MCs (Figure 3C), whereas another half behave inversely. 
Hidalgo, Baja California and Morelos represent healthiest groups as a contrast with Oaxaca, Coahuila de 
Zaragoza and Durango that represent the less healthy. Surprisingly, Mexico City showed significantly higher 
probability in healthier clusters than State of Mexico, albeit the population of their main urban areas are 
close, and both have similar resources and economic development level.  

Regarding TCI variability (Figure 3B, D), SSA, DIF, Private and Red Cross are prone to healthier young 
patients. This pattern occurred inversely in other TCIs, especially the Mexican Petroleum Institution, whose 
severe cluster probabilities are generally higher. The clinical institutions of the armed forces (SEMAR, 
SEDENA) were mostly healthy, intuitively with a higher probability of male patients. Noteworthy, among 
the three primary TCIs in Mexico, the public health system (SSA) is prone to mild-comorbidity and have 
relatively higher probabilities in healthy clusters among each age-gender groups, mostly in MC1 (57%) and 
3 (16%); whereas in the two main social security systems (IMSS, ISSSTE) the situation is just the opposite. 

Figure 3. Heatmaps of the probability distribution of the 56 age-gender specific clusters (A, B) and eleven MCs (C, D) 
for each Mexican state where patients received the treatment or medical attention (A, C) and each type of clinical 
institution (TCI) (B, D). Rows represent the clusters and columns represent the states and TCI. Columns are arranged 
according to a hierarchical clustering on their values. Note that we compared the clusters' distribution within each age 
range to circumvent any correlation or association with comorbidities and habits. Mexico, January 13–September 30, 
2020. Abbreviations: DIF, National System for Integral Family Development; IMSS, Mexican Institute of Social Security; 
ISSSTE, Institute for Social Security and Services for State Workers; PEMEX, Mexican Petroleum Institution; SEDENA, 
Secretariat of the National Defense; SEMAR, Secretariat of the Navy; SSA, Secretariat of Health. 
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Discussion 
To date, several reports used cluster analysis to describe heterogeneity or characterization in COVID-19 
patient-level epidemiological data17,18,19,20,21,22,23,24. To our knowledge, none characterized population-
based data (778,692 patients) and neither analyzed the Mexican population to find potential 
subphenotypes through cluster analysis on age-gender controlled patient strata. Age-gender unbiased 
COVID-19 characterization is crucial for a robust subphenotype description as well as a deeper 
understanding of the inter-patient disease patterns based on exclusively pre-existing comorbidities and 
lifestyle habits. Such characterization could assist clinicians in anticipating individuals’ risk if one gets 
infected, the poor outcomes, and morbimortality as well as providing bases to improve early triage systems 
with limited resources.   

Previous literature have reported isolated risk factors and association of several severe disease progression. 
However, such information has a potential limitation in clinical decision-making progress. In this work, no 
single clinical variable or lifestyle habit was enough to characterize the COVID-19 subphenotypes; a typical 
phenomenon when the data has many categorical variables. This reflects the reality of clinical practice: 
patients do not usually fall into subgroups of "all good" or “all bad” outcomes, neither the patient outcomes 
are conclusive by one single variable. However, when considering the variables together, our study 
uncovered 11 clinically distinguishable MCs among 56 plausible age-gender clusters; these MC-defined 
subphenotypes alongside age-gender stratification may represent different disease mechanisms and 
outcome.  

Each of the 11 MCs shows clinical consistency: their group outcomes can be potentially predicted from the 
proposed input variables, according to the literature published up to date. From an outcome perspective, 
a dividing line can be clearly drawn between MCs 1-5 and 6-11. While the former's have RRs always over 
80%, the latter's overall survival never exceeds 70%. Several factors can explain these findings, mainly the 
age, habits, comorbidities. Since all MCs contain 30-60% of women within their input age-gender clusters, 
the association between gender and mortality is hard to see based only on MCs. However, age-gender 
cluster analysis showed clearly better outcomes in females despite presenting similar conditions than males; 
a phenomenon that also occurs between patients that have similar conditions from different age groups. 
Therefore, considering both age-gender clusters and meta-clusters is essential for a better characterization 
that reveals more relevant detailed information in COVID-19 subphenotypes.  

Hereinafter, we discuss our results in accordance with both MCs and age-gender clusters and relate them 
with supporting literature to discuss clusters’ clinical consistency through the associated risk factors, 
including age, habits and comorbidities, as well as on patient provenance and types of clinical institution. 

Age 
Two groups with very high RRs are MC2 and MC3, which contain children and young adults. Age may play 
a protective role against the disease for two reasons. First, as proven by MC3 versus all single-aged groups 
(MCs 6-11), pneumonia incidence is lower in young healthy groups; hence, good RR could be attributable 
to mild SARS-CoV-2 disease. Second, as shown by good RRs in MC2 –children with severe disease, response 
to treatment is probably also better at younger ages.  

Besides, children –MC2– showed to receive priority regarding medical attention than adults with similar 
clinical conditions in Mexico. After discussion with Mexican clinicians, one explanation seems to be that in 
early ages, the decompensation or deterioration caused by a pulmonary disease is faster than adults and 
with a higher risk of death. While in adults, there is often some time margin to evaluate the patient 
condition’s evolution before intubation or ICU admission, but not for children. Furthermore, if besides the 
presence of pneumonia, the groups are defined by conditions such as CKD and cardiovascular issues, a child 
who already has those issues could be perceived as much higher risk/more vulnerable than an elderly. 
These results are supported by recent literature, a study with a small cohort from Madrid26 found 10% of 
41 children with SARS-CoV-2 required ICU admission. Another study27 showed that severe COVID-19 can 
also happen in small children and adolescents, where risk factors for ICU admission included age younger 
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than one-month, male sex, presence of lower respiratory tract infection signs and presence of a pre-existing 
medical condition.  

Regarding the association between older age and outcomes, MC6 to 11 are exclusively composed of older 
adults and elderly with poor outcomes; except MC6 that includes 28.57% of young adults. However, overall 
survival cannot be explained only by age but along with the presence of comorbidities and habits: while 
MC11 shows the highest mortality and mean age, MC7 shows a similar RR with a mean age approximately 
ten years younger, similarly to those groups with better RRs. Besides, as widely described in literature28, 
older chronological age is not necessarily linked to higher mortality but physiological age. MC1 and 4 
support this fact since, despite containing the same number of groups of each age, they show similar RRs 
(MC1 90.27%, MC4 82.81%) to those RRs of groups composed only of young adults with little incidence of 
previous disease (MC2 91.37%, MC3 95.22%) and those groups made of young adults with some frequent 
diseases, such as diabetes and hypertension (MC5 81.30%).  

These findings support that, while a young age predisposes to mild disease28,29, habits and comorbidities 
may play a key role in predicting mortality in older patients with SARS-CoV-2 infection rather than 
considering only the chronological age itself. Noteworthy, the clustering for the individual age-gender 
groups with age >64 years, revealed that centenarians –individuals of over 100 years of age– repeatedly 
fell in the age-gender clusters with better outcomes. This fact conforms with the well-studied good health 
and low frailty scores30 of this subpopulation. Therefore, age along with presence of habits and 
comorbidities are key factors to explain the dividing line between “high”, “moderate” as well as the “low” 
RRs.  

Habits 
The role of obesity and smoking as risk factors for severe disease are complex, since they are both 
associated with the development of many conditions (e.g. COPD31 or cardiovascular32).  In our study, the 
influence of obesity seems to be clear by comparing MC4 and 5: albeit both show diabetes, hypertension 
and moderate RRs (81-82%), they differentiate in that MC4 includes patients of all ages (25%) without 
obesity and MC5 contains mostly young adults (66.7%) who suffer from obesity. This seems to suggest that 
obese young adults may behave as “older”, implying higher mortality28,33. However, we found just the 
opposite in young individuals without pre-existing comorbidities: MC1 and 3 have similar RRs albeit MC3 
contains a significant number (59.27%) of obese patients or smokers.  

These findings suggest the role of habits cannot be considered alone, but always along with age, 
comorbidities and duration of unhealthy habits. Our results found that smoking is risk factors for severe 
COPD and cardiovascular, primarily in older patients –MC8, 10, 11. Therefore, it results reasonable that the 
longer the time as a smoker, the greater the incidence of severe disease. In young patients, however, the 
evidence of smoking’s negative influence is not so straightforward. Some reviews have presented current 
smoking as a protective factor versus former smoking, while it is clearly a risk factor versus never smoking34. 
Our results show that groups gathering young smokers have RRs which are not inferior to age-matched 
non-smoking groups, as proven by the RR of MC3 (95.22%, 34% smokers) versus MC2 (91.37%, 9.7% 
smokers).  

Regarding obesity, its influence is not so clear in older groups since all have a high ratio in certain 
comorbidity. Still, in young obese patients without comorbidity (18-49M5 and 18-49F2), obesity seems 
unrelated to mortality. In conclusion, when evaluating habits, considering the patient’s age and the 
unhealthy duration may help establish more useful prognostics and correlations.  

Comorbidities 
Diabetes and hypertension showed the highest prevalence among the recorded comorbidities. Their 
prevalence seems to explain the decrease in RRs from over 90% in MC1, 3 to 81% in MCs 4-5, all of which 
are young adult groups. In older MCs (6-11) it results harder to evaluate independently since both diseases 
are present in nearly every group, not specifically characterizing any cluster except MC9 that represents 
older patients with both diseases simultaneously (>95%) alongside a low RR (66.43%). These accord with 
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current literature that reported both diabetes and hypertension are independent risk factors for severe 
disease28,35,36.  

Immunosuppressed patients fall mostly on MC6 –older adults with diabetes, hypertension, 
immunosuppression and other diseases. Noteworthy, immunosuppressed patients were not in the clusters 
with the lowest RRs. This conforms with some reports that described immunosuppression has not been 
confirmed as a relevant factor for disease severity, except for cancer patients37,38.  MC6 also holds few CKD 
patients, a factor which has been studied as a key factor for disease progression39,40 and it may be the cause 
for the immunosuppression in this group (Odds Ratio: 9.65 95%CI [9.05-10.28]) according to the prevalence 
of immunosuppression of CKD patients versus non-CKD patients.  

MC7 is characterised by the high prevalence of CKD and other diseases. Here, RR decreases roughly 10% 
compared with other severe subgroups. We found CKD highly associated with mortality and a shorter 
survival length. This accords with a report that revealed CKD was the factor that best explains mortality41, 
implying CKD patient could be vulnerable. 

MC8 is similar to 10 and 11 to some extent since they all have COPD, where MC 11 gathering the most 
COPD patients (>90%). Most COPD patients are elderly with comorbidities with poor outcomes which 
conforms to several reviews that reported COPD patients with an increased risk of severe pneumonia and 
poor outcomes when they develop COVID-1942,43. 

Cardiovascular disease is homogeneously distributed among groups, particularly on MC7, 10 and 11. 
Nowadays, cardiovascular disease may be a double-edged factor, since it is a proven risk factor for COVID-
19 severity, but some of the treatments used, such as ACE inhibitors, have also proved to protect against 
severe infections from SARS-CoV-244,45.  

State and Types of Clinical Institution 
Reliable subphenotype characterization that reflects the geographical and healthcare settings from which 
they are ascertained is crucial46. To date, variability between Mexican states and TCIs regarding severity 
are rarely reported47,48,49, nor assessed for variability independently from age and gender. As an example, 
one state (e.g., Morelos) may show higher severity if it includes more elderly and male patients, but when 
we compare age-gender groups the results show that no severity difference exists in terms of probability 
within age-gender groups of the same age range.  

The inter-state and TCI variability we found may be influenced by many factors such as the number and 
type –urban/rural– of population, sociocultural context, healthcare policy, the quantity of medical 
institutions and availability of resources, virus transmission level. Some states are more industrialized and 
more economical resources (e.g., Mexico City, Jalisco, the State of Mexico) than others (e.g., Oaxaca, 
Chiapas, Guerrero). The differences found between Mexico City and State of Mexico regarding healthy 
clusters distribution are hard to explain due to their proximity and similarities in the type of population and 
availability of medical resources. 

One possible explanation for the differences in severity between social security institutions (IMSS and 
ISSSTE) and local public hospitals (SSA) is that SSA are administrated by the local states, and the resources 
among states often differ. This phenomenon could influence these institutions' quality and resources to 
attend their populations. Another supportive explanation is that when SSA receives severe patients and 
have insufficient medical resources, these patients can be transferred to the IMSS COVID-19 facilities. 
Consequently, this may saturate IMSS and deplete the limited resources due to an increasing number of 
patients, making the distribution of resources harder. These results conform with previous studies showing 
that the risk of death for an average patient attending IMSS and ISSSTE is twice the national average and 3 
times higher relative to the private clinical institution47. 

The complex correlation between severity and state/TCI implies a crucial socioeconomic and healthcare 
resource level inequality. Thus, both considering state and TCI combined with MCs and age-gender clusters 
may help lead to a better subphenotype characterization. 
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Limitations 
As a possible limitation, we excluded patients confirmed after September 30 to avoid possible analysis 
disturbance on survival outcomes, which impeded us using the most recent data whose epidemiological 
characteristics could have changed to some degree. Furthermore, the dataset did not include additional 
relevant information about the patients who were discharged, readmitted, vaccinated and neither the 
duration of comorbidities and unhealthy habits. Further studies with population-based data regarding 
subphenotypes characterization among discharged patients who received post-surveillance or were 
readmitted or vaccinated population are highly needed. 

In summary, the analysis of COVID-19 subphenotypes from the proposed two-stage cluster analysis 
produced clinically coherent models with discriminative characterization and explainability over age and 
gender. The resultant eleven MCs provide bases for a deep understanding of the epidemiological and 
subphenotypic characterization of COVID-19 patients based on pre-existing comorbidities, habits, 
demographic characteristics, and on patient provenance and types of clinical institution, as well as revealing 
the correlations between the above characteristics to anticipate the possible clinical outcomes of each 
patient with a specific profile. These unbiased subphenotypes may help establish target groups for 
automated stratification or triage systems to support clinicians with the early triage prior to further tests 
and laboratory results, especially in those areas where such tests are not available, and prioritize 
vaccination among the general population as well as provide bases in planning personalized therapies or 
treatments. For example, a CKD patient could be classified into subgroups –MC6, 7– distinguished by 
pervasive differences in severity and comorbid patterns, and then compared with their inner age-gender 
groups whose profile coincide the most with our patient, enabling a personalized evaluation of the patient’s 
prognostic outcomes and severity presentation.  

Combining age-gender stratification and meta-clustering technique successfully revealed well-detailed 
informative findings and are potential for designing a novel data-driven model for the stratification of 
COVID-19 patients with the information available at pre-admission, or even to anticipate outcomes on the 
general population.  Besides, the results shed light on robust conclusions about association and causality 
between subphenotypic presentation and clinical outcomes. Future study can explore the treatment and 
vaccination implications toward providing guidance on clinical triage and customize therapy, and also 
develop clinically robust subphenotype classification methodologies combined with the proposed two-
stage cluster analysis. As the concern paid to efficient triage and personalized treatment increases, we 
facilitate further replicability of the study and generalization to other countries data by making available 
our experiment codes.  
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Methods 
Data collection and processing 
We used the publicly available COVID-19 Open Data by the Mexican Government50. As of 2 November 2020, 
the dataset comprises a total of 2,414,882 cases including demographic, comorbidities, habits, and 
prognosis patient-level data, for both positive and non-positive cases.  

Figure 4 describes the study inclusion and exclusion criteria, and the data quality assessment process 
outcomes in a CONSORT-like flowchart. The final sample included 778,692 positive cases. 

Figure 4. Dataset preprocessing flowchart. 

 

We derived five outcome variables related with the prospective patient’s severity. First, the patient 
outcome, as deceased or not, from the date of death record. Second, the survival days since the date of 
symptoms. Third, the days from presenting symptoms to hospital admission. Lastly, we categorized the 
overall survival at 15 and 30 days after presenting symptoms.  

After an assessment of potential temporal biases using temporal variability statistical methods51, and 
considering not significant temporal changes, we decided keeping the data from all the period of the study.  

Table 3 shows the list of studied variables. The supplementary material, in sections 3 to 6, describes 
additional information on the data quality and variability analysis, the original dataset description, baseline 
characteristics of the COVID-19 patients alongside descriptive statistics in age-gender groups of the study 
sample, and pregnancy association in outcomes. 
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Table 3. List of variables contained in the study case. Originally coded in Spanish, translated into English by the authors 
for this work. Abbreviations: COPD, chronic obstructive pulmonary disease; INMUSUPR, immunosuppression; CKD, 
chronic kidney disease; ICU, intensive care unit; TCI, type of clinical institution. Supplementary Table 2 describes the 
original dataset description. 

Variable Description Type (value/format) 
Sex Sex of the person Discrete (Male, Female) 
Age Age in years at the time of the admission Numerical Integer 

Pregnant Presence of pregnancy Discrete (Yes, No) 
Obesity Presence of obesity Discrete (Yes, No) 
Smoke Presence of smoking habit Discrete (Yes, No) 

Pneumonia Presence of pneumonia Discrete (Yes, No) 
Diabetes Presence of diabetes Discrete (Yes, No) 

COPD 
 

Presence of chronic obstructive pulmonary 
disease 

Discrete (Yes, No) 

Asthma Presence of asthma Discrete (Yes, No) 
INMUSUPR Presence of immunosuppression Discrete (Yes, No) 

Hypertension Presence of hypertension Discrete (Yes, No) 
CKD Presence of chronic kidney disease Discrete (Yes, No) 

Cardiovascular Presence of cardiovascular Discrete (Yes, No) 
Other disease Presence of other diseases Discrete (Yes, No) 
Hospitalized Whether a patient was hospitalized or 

ambulant 
Discrete (Yes, No) 

Intubated Whether a patient was intubated Discrete (Yes, No) 
ICU 

 
Whether a patient had been in an intensive 

care unit 
Discrete (Yes, No) 

Other case contact Whether a patient was detected to have 
contacted with other coronavirus cases 

Discrete (Yes, No) 

Result_lab Coronavirus test result  Discrete (Positive SARS-
CoV-2, Non-Positive SARS-
CoV-2, Pending, Inadequate 
result, Not Applied) 

Admission_date The date when a patient was attended by 
the care unit (not necessarily hospitalized) 

Date (dd/mm/yyyy) 

Symptoms_date The date when a patient presented 
symptoms 

Date (dd/mm/yyyy) 

Death_date The date of death Date (dd/mm/yyyy) 
   

Entity_um The state where a patient received 
attention from medical unit 

Discrete 

TCI The type of institution of National Health 
System that provided medical care 

Discretea 

Outcomeb 

 
Death result of the patient (we used this to 

calculate mortality and recovery rate) 
Discrete (Deceased, Non-

Deceased) 
Survival daysb 

 
The survival period for a patient from 
presenting symptoms to his/her death 

Numerical Integer 

Survival>15daysb 

 
Whether a patient survived more than 15 

days from presenting symptoms. 
Discrete (Yes, No) 

Survival>30days b 

 
Whether a patient survived more than 30 

days from presenting symptoms. 
Discrete (Yes, No) 

Survival>15days_deceasedb 

 
Whether a deceased patient survived more 

than 15 days from presenting symptoms. 
Discrete (Yes, No) 

Survival>30days_deceasedb 

 
Whether a deceased patient survived more 

than 30 days from presenting symptoms. 
Discrete (Yes, No) 

From Symptom to Hospital daysb 

 
The days that took for a patient from 

presenting symptoms to the hospitalization 
Numerical Integer 
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aIMSS, SSA, ISSSTE, PRIVATE, PEMEX, STATE, SEMAR, SEDENA, IMSS-BIENESTAR, UNIVERSITARY, MUNICIPAL, RED CROSS, DIF. 
bVariables that were created by combining or transform other variables in the original dataset. See explanations in the “materials 
and method” section.  

Meta-clustering methodology 
We applied a two-stage subgroup discovery approach. In both stages, we used Ward’s minimum variance 
method with Euclidean squared distance52 to performed hierarchical clustering fed by a dimensionality 
reduction algorithm –Principal Component Analysis (PCA)53 or Multiple Correspondence Analysis (MCA)54– 
that took as input eleven variables including nine comorbidities –pneumonia, diabetes, COPD, asthma, 
INMUSUPR, hypertension, CKD, cardiovascular, and other diseases– alongside two unhealthy habits, 
namely obesity and smoking. In order to select the most representative PCA and MCA components to feed 
hierarchical clustering, we considered values with an eigenvalue higher than the average. Dimensionality 
reduction is known to help in the process of clustering by compressing information into a smaller number 
of variables, making unsupervised learning less prone to overfitting55, as well as to facilitate further visual 
analytics to prevent the potential ML black-box issue56.  

In the first-stage, we applied individually hierarchical clustering analyses taking as input the MCA scores fed 
by comorbidities and habits at stratified groups according to gender and age (<18, 18-49, 50-64, and >64 
years) to reduce potential biases and confounding factors, since age and gender are highly correlated with 
comorbidity, habits and mortality. Afterwards, we applied PCA and locally estimated scatterplot 
smoothing57 (LOESS) model on the resultant age-gender clusters’ features to visually explain their 
correlations and severity relationships. We created the cluster heatmap to help understand the 
characteristics of each age-gender cluster.  

In the second-stage, in a wider perspective description of the population, we performed a hierarchical 
clustering again fed by PCA scores obtained via the resultant age-gender clusters taking as input their 
comorbidities and habits ratios. Then, we quantified the features of the resultant meta-clusters (MCs) 
representing via a table and also summarized these quantified features into a qualitative table to help 
interpret the main features of the resultant MCs.  

For each subgroup analysis, we implemented cluster analyses from 2 through 12 clusters. The proper 
number of subgroups were obtained by combining a quantitative approach using Silhouette Coefficient58 
–which measures the tightness and separation of the objects within clusters, reflecting how similar an 
object is to its own cluster compared to other clusters– and a qualitative cluster analysis audited by the 
authors of this work, including medical, health informatics and ML experts from Spain and Mexico. We first 
selected the group of clusters that showed relatively better Silhouette Coefficient values, then adjusted the 
number for the most reasonable and clinically distinguishable groups regarding clinical phenotypes. This 
process was supported by the pipelines and exploratory tool we developed in previous work59.  

Finally, we performed source variability assessment60 using heatmaps to analyze the severity tendency 
among different data sources based on the clusters’ probability distribution between Mexican states and 
several types of clinical institution (TCIs) where patients received medical attention. 

The data processing and analyses were performed using RStudio (version 3.6) and Python (version 3.8). 
Temporal and source variability –data quality analyses– were performed using the 
EHRtemporalVariability51 and EHRsourceVariability60,61,62 packages. Figure 5 summarizes the full 
methodology. The methods developed in this work are available in our GitHub repository 
https://github.com/bdslab-upv/covid19-metaclustering. 

Figure 5. Research methodology flowchart. 
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Data availability 
The data of epidemiological and clinical patient-level open-source database in Mexico is publicly available 
at https://www.gob.mx/salud/documentos/datos-abiertos-152127 in Spanish. The English version and the 
studied sample of this dataset are available in our GitHub Repository https://github.com/bdslab-
upv/covid19-metaclustering.  

Code availability 
The codes that support the findings of this study are available at: https://github.com/bdslab-
upv/covid19-metaclustering.The results from 2 through 12 clusters for both gender and age subgroups are 
available at http://covid19sdetool.upv.es/?tab=mexicoGov.   
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