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1 SARS-CoV-2 transmission model 

1.1 Synthetic population 

We adopted the algorithm used for modeling contact patterns in European populations (1) to build 

a synthetic population of about 500,000 individuals. The modelled population mimics the 

sociodemographic structure of the actual Italian population in terms of age structure, household 

size distribution and within household age composition, school attendance rates, school size 

distribution, class size distribution, and the number of teachers per students. 

 

Each single individual is explicitly represented in the model as an agent. The network of contacts 

between individuals can be described by three different layers accounting for contacts between 

household members, between schoolmates (and classmates within each school), and all other 

contacts occurring in the general community (i.e., contacts related to leisure activities, use of 

transportation means, and contacts occurring among work colleagues, etc.). Households are 

defined as nh disconnected components (i.e., the total number of households ) grouping a 

number of individuals sampled from the actual Italian household size distribution (2). In the 

model, individuals’ age is determined by an algorithm tailored to reproduce realistic age-gaps 

between household members for a given household size and to match the actual Italian age 

distribution (1, 2).  

 

Similar to the household layer, schools of different types (primary, middle, and high schools) are 

defined as ns (i.e., the total number of schools) disconnected components with size sampled from 

the Italian distribution of school size. Individuals are assigned to different schools taking into 

account age-specific school enrollment rates and the teacher-to-student ratio associated to each 

school type, as reported in the official statistics. Briefly, students are randomly assigned to one 

single class and one single school using a heuristic approach that allows us to mirror the 

average, minimum, and maximum class size reported in the official records, and the age 

composition within classes. Teachers of each school are randomly sampled from the individuals 

of the synthetic population based on age distribution of teachers in Italy. 

 

The general community layer is represented by one single fully connected component consisting 

of all individuals in the population and aims at representing the network of all contacts occurring 

outside households and schools. 

 

1.2 Transmission model 

In the synthetic population, SARS-CoV-2 transmission is simulated using a discrete-time 

stochastic Markov process. We consider that each individual can be characterized by one of five 
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mutually exclusive epidemiological states (corresponding to the states of the Markov process): 

susceptible (i.e., individuals who may acquire infection after exposure to SARS-CoV-2 infected 

individuals), infectious pre-symptomatic (i.e., individuals who are not showing any clinical sign or 

symptom but that are able to transmit the infection and will develop symptoms in the future), 

infectious symptomatic (i.e., individuals who developed symptoms are able to transmit the 

infection), infectious asymptomatic (i.e., individuals who are able to transmit the infection, but that 

will not developed symptoms), and removed (i.e., individuals who recovered from the infection 

gaining immunity against re-infection).  

 

In the model, SAR-CoV-2 transmission occurs upon contacts between susceptible and infectious 

individuals taking place in one of the four transmission settings (household h, school s, class c 

within schools s, and the general community r). At each time step t (corresponding to one day), 

the probability that a susceptible individual i is infected through a contact with an infectious 

individual j in setting 𝑙𝑙 is modeled as: 

 

p[j→i](t) = 𝛽𝛽𝑙𝑙𝛿𝛿(𝑎𝑎𝑖𝑖)χ(sj)𝜙𝜙(𝑡𝑡 − 𝜏𝜏𝑗𝑗)/𝑛𝑛𝑙𝑙(𝑗𝑗)                                                      1.1 

where: 

 𝛽𝛽𝑙𝑙 is the daily per contact transmission rate, shaping the risk of infection due to interactions 

with an infectious individual (day−1) in setting 𝑙𝑙, 𝑙𝑙 ∈ {ℎ, 𝑠𝑠, 𝑐𝑐, 𝑟𝑟}. 

 𝑛𝑛𝑙𝑙(𝑗𝑗) is the number individuals in the household (𝑙𝑙 = ℎ), school (𝑙𝑙 = 𝑠𝑠), class (𝑙𝑙 = 𝑐𝑐) where 

individual j belongs to. Since all individuals are potentially in contact in the community, for 𝑙𝑙=r, 

𝑛𝑛𝑙𝑙(𝑗𝑗) corresponds to the total number of individuals in the population. 

 𝑎𝑎𝑖𝑖 is the age of individual i. 

 𝛿𝛿(𝑎𝑎𝑖𝑖) is relative susceptibility to SARS-CoV-2 infection at age 𝑎𝑎𝑖𝑖 (Tab. S1). 

 sj  is dummy variably identifying whether individual j is symptomatic or asymptomatic. To 

determine whether the infectious individual of age 𝑎𝑎𝑖𝑖 will develop clinical symptoms or not, we 

draw a random sample from a Bernoulli distribution with probability 𝑠𝑠(𝑎𝑎𝑖𝑖) at the time when i 

acquires the infection (Tab. S2). 

 χ(sj) is the relative infectiousness of asymptomatic to symptomatic individuals. 

 ϕ(𝑡𝑡 − 𝜏𝜏𝑗𝑗) is the infectiousness of individual j at time 𝑡𝑡 − 𝜏𝜏𝑗𝑗 , where 𝜏𝜏𝑗𝑗  is the time at which 

individual j was infected and t is the time step of the simulation (Tab. S1).  

 

As just mentioned, the model explicitly considers infectiousness over time in agreement with 

empirical epidemiological estimates (3, 4). Essentially, in the first days since the infection, an 

individual is capable of transmitting the infection, but the probability is extremely low. The 

infectiousness over time is chosen such that the generation time (𝑇𝑇𝑔𝑔 - the mean time interval 

between time of infection of a secondary infectee and the time of infection of its primary infector) 
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in the model mirrors the distribution estimated in (5). The incubation period is not related to the 

transmission process (which instead depends on the infectiousness over time), but defines the 

time interval between acquiring the infection and the development of symptoms. In the model, the 

incubation period is assumed to last 5 days on average (6). The incubation period is key in our 

analysis, as the syndromic surveillance is based on the detection of symptomatic individuals 

(either at school or in the community). 

  
According to the estimates reported in previous studies, we assume that the infectiousness of 

pre-symptomatic, symptomatic, and asymptomatic individuals is the same, χ = 1 (3). However, we 

performed a sensitivity to explore how model outcomes change when asymptomatic individuals 

are assumed to be half infectious compared to symptomatic and pre-symptomatic cases (i.e., 

χ=0.5). 

 
 
Table S1. Summary of model parameters. 

Param Description Value (or range) / Procedure Sensitivity 
analysis Reference  

Natural history 
- Incubation period (days) 5 days - Zhang et al. (6) 

Tg Generation time (days) 6.6 days [95%IQR: 0.7-19.0] - 

Cereda et al. 
(5) 
Lavezzo et al. 
(7) 

R Reproduction number 
(when schools are open) 1.3, 1.5, 1.7, 1.9 - ISS (8) 

- Initial immunity 5% 10%, 15%, 
20% 

Marziano et al. 
(9) 

Parameters related to the infection transmission process 

βh Transmission rate in 
household 

Set to obtain a household secondary attack 
rate of 51.5% according to Poletti et al. (10) - Derived 

βr 
Transmission rate in the 
community 

Set to obtain the desired value of R when 
schools are closed - Derived  

βs 
Transmission rate 
between schoolmates 

Set to obtain the desired value of R when 
schools are open - Derived  

βc 
Transmission rate 
between classmates  

βc = βs ∗
Nc

Ns
 where Nc = 6.3 (mean daily 

number of contacts by students with 
classmates) and Ns = 1.5 (mean daily 
number of contacts by students with 

schoolmates) according to Litvinova et al. 
(11) 

- Derived 
 

𝛿𝛿𝑎𝑎 Susceptibility to infection 
by age a 

𝛿𝛿𝑎𝑎 = 0.58, 𝑎𝑎 < 15;  
𝛿𝛿𝑎𝑎 = 1, 15 ≤ 𝑎𝑎 < 65; 
𝛿𝛿𝑎𝑎 = 1.65,  𝑎𝑎 ≥ 65 

𝛿𝛿𝑎𝑎=1 for all 
ages Hu et al. (3) 

χ 
Transmissibility of 
asymptomatic relative to 
symptomatic individuals 

100% 50% Hu et al. (3) 

Reactive school closure 
 Number of days of class 

closure 14 days - ISS (12) 

PCR test 
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𝛼𝛼𝑠𝑠 
Probability of being tested 
if symptomatic for 
students 

95% 80% Assumed  

𝛼𝛼𝑝𝑝 
Probability of being tested 
if symptomatic for non-
students (passive 
surveillance) 

50% 25%, 75% Assumed  

𝜙𝜙𝑝𝑝 Sensitivity of PCR test 0.979 - Xiao et al. (13) 

TST Delay from symptom 
onset to sample collection 2 1, 4 ISS (14) 

TTR Delay from sample 
collection to PCR results 2 1, 4 ISS (14) 

Rapid test 

T All students are tested 
every T days 3, 7, 14 - Assumed 

𝜙𝜙𝑎𝑎 Sensitivity of antigen test# 0.69 - 
Meta-analysis 
of sensitivity 
(Fig. S1) 

Routine quarantine 

q 
Probability of quarantine 
the household if one 
member tested as positive 

0.95 - Assumed 

# The result of the test is available on the same day the test is performed. 

 
Table S2. Age-specific parameters regulating COVID-19 disease burden. 

Age 
group  
(years) 

Probability that an 
infected individual will 

develop respiratory 
symptoms and/or fever 

(10)  
(mean, 95% CI) 

Probability that an 
infected individual 

will require 
hospitalization (15) 

(mean, 95% CI) 

Probability that an 
infected individual 

will require ICU 
treatment (10) 

 (mean, 95% CI) 

Infection fatality 
risk (16) 

(mean, 95% CI) 

0-14 17.3% 
(13.1-22.3%) 

2.5% 
(1.0-5.1%) 

0.0% 
(0.0-1.3%) 

0.0% 
(0.0-1.3%) 

15-19 22.2% 
(8.6-42.3%) 

7.4% 
(0.9-24.3%) 

0.0% 
(0.0-12.8%) 

0.0% 
(0.0-12.8%) 

20-39 23.7% 
(20.2-27.6%) 

5.3% 
(3.5 -7.5%) 

0.4% 
(0.0-1.4%) 

0.0% 
(0.0-0.7%) 

40-59 30.9% 
(28.1-33.9%) 

13.0% 
(11.0-15.2%) 

0.9% 
(0.4-1.7%) 

0.3% 
(0.1-0.9%) 

60-69 31.8% 
(27.7-36.1%) 

17.2% 
(14.0-20.8%) 

2.6% 
(1.4-4.5%) 

1.4% 
(0.6-2.9%) 

70-79 41.5% 
(36.2-47.0%) 

27.5% 
(22.8-32.6%) 

7.2% 
(4.6-10.5%) 

6.9% 
(4.4-10.1%) 

≥ 80 63.9% 
(55.9-71.4%) 

43.0% 
(35.2-51.1%) 

18.4% 
(12.7-25.3%) 

18.4% 
(12.7-25.3%) 

 
 

1.3 Reproduction number  

A fundamental epidemiological parameter measuring the potential spread of infection is 

represented by the reproduction number R, which is defined as the number of secondary cases 

generated by a typical infector in a partially immune population. In our simulations, we explore 



 
 

7 
 

scenarios of R ranging from1.3 to 1.9, therefore encompassing estimates of R associated to 

SARS-CoV-2 transmission dynamics observed in fall of 2020 in Italy. 

 

We use a well-known relation (17) between the reproduction number, the distribution of the 

generation time, and the exponential epidemic growth rate r to estimate the reproduction number 

in model simulation:   

𝑅𝑅 =
𝒓𝒓

∑ 𝒚𝒚𝒊𝒊(𝒆𝒆−𝒓𝒓𝒂𝒂𝒊𝒊−𝟏𝟏 − 𝒆𝒆−𝒓𝒓𝒂𝒂𝒊𝒊)/(𝒂𝒂𝒊𝒊 − 𝒂𝒂𝒊𝒊−𝟏𝟏)𝒏𝒏
𝒊𝒊=𝟏𝟏

 

 

where 𝑎𝑎0, 𝑎𝑎1,…, 𝑎𝑎𝑛𝑛, are the category bounds of the histogram of the generation time, 𝑦𝑦1, 𝑦𝑦2, …, 

𝑦𝑦𝑛𝑛 are the corresponding relative frequencies where the observed generation time are within 

these bounds, and r is the exponential growth rate derived from the analysis of the number of 

new cases over time in the simulated epidemics. 

 

1.4 Simulated intervention strategies 

Reactive class closure based on syndromic surveillance  
In this study, we explicitly model the case isolation, contacts quarantine, and reactive class-

closure policy as implemented in Italy since mid-September 2020. The strategy is based on 

identification of infections among symptomatic individuals in the population using reverse 

transcription polymerase chain reaction (RT-PCR) testing. The simulated strategy entails the 

following steps: 

 

- If an individual shows respiratory symptoms and/or fever, they are tested with RT-PCR 

with probability 𝛼𝛼𝑝𝑝 = 0.5 if they are a non-student population or 𝛼𝛼𝑠𝑠 = 0.95 if they are a 

student. The larger probability of being tested used for students stems from the routine 

temperature screening adopted in most Italian schools at the time. Other values of 𝛼𝛼𝑠𝑠 and 

𝛼𝛼𝑝𝑝 are explored in the sensitivity analyses.  

- While waiting for sample collection (TST days after symptom onset, see Tab. S1) and test 

result (TTR days after sample collection, see Tab. S1), the symptomatic individual is 

precautionary quarantined in their place of residence, while the other members of their 

households are allowed to continue their normal activities.  

- If the result of the test is negative, the tested individual goes back to their normal 

activities. 

- If the result of the test is positive, then: 

o If they are a student, teaching activities for their class are suspended (while the 

other classes of their school remain open). Note that although their class is closed 

and thus their classmates cannot attend school, they are not quarantined and thus 
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could potentially infect their household members and other individuals in the 

general population (should they be infectious). 

o Regardless of whether the positive individual is a student or not, they are isolated 

at home for 14 days starting with the date of laboratory confirmation. 

o Considering a compliance rate q=95%, the household members of a positive 

individual are tested with RT-PCR and are quarantined at home for 2 weeks 

starting from the date of laboratory confirmation. 

 If any of their household members is confirmed to be positive with RT-

PCR: 

• They are isolated for 14 days (starting from the date of laboratory 

confirmation). 

• Moreover, if they are a student, the teaching activities in their 

class are suspended (starting from the date of confirmation), 

while the other classes in their school remain open. Note that 

although their class is closed and thus their classmates cannot 

attend school, they are not quarantined and thus could 

potentially infect their household members and other individuals 

in the general population (should they be infectious). 

 

It is important to stress that other (not individually targeted) social distancing measures were 

implemented in Italy (e.g., closure of gyms, limited size of gatherings, use of masks). All those 

interventions are taken into account in the model as an ensemble, by considering different values 

of the reproduction number (as estimated in the absence of the test-based interventions 

mentioned above).  

 

Reactive class closure based on rapid antigen screening  
Antigen-based tests are commonly used in the diagnosis of respiratory pathogens, including 

influenza viruses and respiratory syncytial virus. The U.S. Food and Drug Administration (FDA) 

has granted emergency use authorization (EUA) for antigen tests to identify SARS-CoV-2 (18). 

Antigen tests are immunoassays that detect the presence of a specific viral antigen, which implies 

current viral infection. Most of the currently authorized tests can be used at the point of care, 

return results in approximately 15 minutes, and are relatively inexpensive compared to RT-PCR 

tests. Antigen tests for SARS-CoV-2 are generally less sensitive than RT-PCR for detecting the 

presence of viral nucleic acid.  

 
To estimate the sensitivity and specificity of antigen tests for SARS-CoV-2 through a meta-

analysis, we conducted a literature review in PubMed and Web of Science. Seven studies 



 
 

9 
 

reporting the sensitivity and specificity of nine rapid SARS-CoV-2 antigen-detection tests were 

included: Chaimayo 2020 (19); Diao 2020 (20); Lambert‐Niclot 2020 (21); Mertens 2020 (22); 

Nalumansi 2020 (23); Porte 2020 (24); Weitzel 2020 (25). The study by Weitzel et al. compared 

three antigen tests. The original sensitivity and specificity estimates extracted from the identified 

studies are summarized in Tab. S3. We estimated the overall sensitivity and specificity through 

our meta-analysis. A random-effect model was used to estimate the pooled sensitivity and 

specificity, which resulted to be 69% (95%CI: 41%-97%) and 99% (95%CI: 97%-100%), 

respectively (Figure S1). For simplicity, in the model we consider 100% specificity. 

 
Table S3. Summary of the original sensitivity and specificity used in the meta-analysis. 

Study Sensitivity (mean, 95% CI) Specificity (mean, 95% CI) 

Chaimayo 2020 98% (91%, 100%) 99% (97%, 100%) 

Diao 2020 76% (69%, 81%) 100% (91%, 100%) 

Lambert-Niclot 2020 50% (40%, 61%) 100% (92%, 100%) 

Mertens 2020* 58% 100% 

Nalumansi 2020 70 % (60%, 79%) 92% (87%, 96%) 

Porte 2020 94% (87%, 97%) 100% (92%, 100%) 

Weitzel 2020 [A] 62% (51%, 72%) 100% (89%, 100%) 

Weitzel 2020 [B] 17% (10%, 17%) 100% (89%, 100%) 

Weitzel 2020 [C] 85 % (76%, 91%) 100% (89%, 100%) 

Note: *95% CI of the sensitivity and specificity is not available in this study. 
 

 
Fig. S1. Results of the meta-analysis about the sensitivity and specificity of antigen tests. A 

Sensitivity of antigen tests. B Specificity of antigen tests. 
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Taking the advantage of the timeliness and cost of antigen tests, we propose a reactive class 

closure based on the periodic antigen screening on all students irrespectively of their symptoms 

or clinical signs. Note that the regular testing via PCR of symptomatic individuals in the population 

is considered to remain in place. According to this strategy, as soon as a student result positive 

either to a RT-PCR test performed within the syndromic surveillance or to an antigen test 

regularly applied to all students, the closure of the class of the infected student is imposed, 

following the same procedure already in place for reactive class closure (see previous section). 

  

In our analysis, we explored three different frequencies for antigen screening: every 3 days, every 

7 days, and every 14 days. As rapid antigen tests give very timely results, we assume that 

laboratory diagnosis from these tests are obtained in the same day of the sample collection. 

 

1.5 Model parametrization 

 
Initialization. We initialized the population to reflect the epidemiological conditions characterizing 

Italy in September 2020. We therefore assume that, at the beginning of our simulations, 5% of the 

Italian population is immune against SARS-CoV-2 infection. This percentage represents the 

proportion of the Italian population who experienced the SARS-CoV-2 infection during the first-

wave of COVID-19, in spring 2020 (26). The same immunity level was assumed across different 

age groups. Alternative values of the initial fraction of immune population are explored as 

sensitivity analysis as well as to simulate an epidemiological situation closer to that of spring 

2021. Since we are interested only in assessing the effect of the strategy in suppressing SARS-

CoV-2 spread and/or reducing COVID-19 burden, we initialized the simulations with one 

infectious individual randomly chosen among the susceptible population and no further 

introductions are considered. A sensitivity analysis was performed to explore how model 

outcomes changes when considering an initial prevalence of 0.1%, 0.2%, 0.5%, and 1% infected 

individuals (instead of one single index case). The sensitivity analysis shows little/no impact of the 

initial number of seeds to the outcome of interest in this study (see Sec. 2.2). Nonetheless, it is 

important to remark that the number of seeds and the dynamics of the imported cases are 

expected to play a role should the modeling work aim at reconstructing the observed (transient) 

dynamics of the epidemic (which is outside the scope of this work). 
 

Model calibration. In Italy, after the first COVID-19 case was identified in February 2020, all 

teaching activities were completely suspended. All schools in the entire country remained closed 

until September 2020. In order to be consistent with epidemiological evidences characterizing the 

first epidemic wave in Italy, model parameters shaping the transmission potential of SARS-CoV-2 
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(Equation 1.1) and the relative contribution of households in the transmission of the infection were 

assumed in such a way to reproduce a reproduction number (R) of 1.1 (8) and a household 

second attack rate (hSAR) of 51.5% (10). In our simulation, we consider that after the school 

reopening, R increases to values in the range of 1.3 to 1.9, as estimated in Italian regions (8). 

 

As direct quantitative estimates of the contribution of school (or school-related) activities to the 

increase in the overall transmissibility are unavailable, we consider three scenarios. In the first 

one we assumed that the increased transmission observed in Italy during September can be 

entirely ascribed to transmission in schools (F100). The other two scenarios (F50 and F25) 

account for the increase in the number of contacts in the general community related to the 

reactivation of teaching activities, such as contacts made on transportation means, extracurricular 

activities, etc.  

 

In scenario F100, we kept the transmission rates in household and the community as estimated 

for the summer period and set the transmission in school to obtain the target value of the 

reproduction number, which corresponds to attributing 100% of the observed increase of the 

reproduction number in September/October to school transmission. We run the calibrated model 

and estimated the fraction of infections generated in schools, which we denote as FS. In 

scenarios F50 and F25, we assume that the fraction of infections is 0.5*FS and 0.25*FS, 

respectively. To do so, we fixed the transmission rate in household as in F100, and we re-

estimate the transmission rates in school and in the community to obtain the target value of the 

reproduction number and of the fraction of infections occurring in schools. The total school 

contribution to infections estimated by the model for the three scenarios (F25, F50, and F100) 

and different values of the reproduction number is shown in Fig. S2. 

 

 
Fig. S2. Estimated fraction of infections by setting. A Fraction of infections linked to household 
transmission for different values of R and in the three school transmission contribution scenarios. B As A, 
but for school. C As A, but for Community. 
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2 Reactive class-closure strategy based on syndromic surveillance 

2.1 Additional results for the baseline analysis 

In addition to the primary results related to COVID-19-related burden reported in in Fig. 1A and 

1B, here we show other metrics (Fig. S3). In particular, we estimate that the relative change in the 

number of symptomatic infections, hospitalized patients, and patients requiring admission to an 

ICU are similar to those estimated for infections and deaths.  

 

 

 

Fig. S3. Impact of the reactive class-closure policy based on syndromic surveillance. A Relative 
change in the cumulative number of symptomatic infections after one year as a function of the reproduction 
number and for different scenarios about school transmission contribution. The bars correspond to the mean 
value, while the vertical lines represent 95% quantile intervals; colors refer to the three scenarios F25, F50, 
F100. Parameters are as the baseline values reported in Tab. S1 and S2. Note that, to exclude spontaneous 
extinctions from the analysis, only simulations leading to a final infection attack rate of 5% or higher after 1 
simulated year are considered. B As A, but for the number of hospitalized patients. C As A, but for the 
number of ICU admissions.  

 

 

In the main text, we showed the results of four sensitivity analyses considering changes in 

parameters regulating the implementation of the reactive class-closure strategy. In particular, we 

varied (i) the probability to test a symptomatic student at school, (ii) the probability to test a 

symptomatic (non-student) individual in the community, (iii) the time from symptom onset to 

sample collection, and (iv) the time from sample collection to laboratory diagnosis. Fig. S4 shows 

the impact of these parameters on the number of infections in the student population at the time 

when the class closure is triggered. For all scenarios, we estimate the number of infected 

students to be always larger than 10 at the time of class closure, meaning that even a quicker or 

more intense syndromic surveillance would not be able to readily identify enough infected 

students to prevent widespread school transmission before classes are closed.   
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Fig. S4. Sensitivity of the class-closure strategy based on syndromic surveillance to changes in 
parameters regulating its implementation. A Number of infectious students in a school at the time when 
the class closure is triggered as a function of the reproduction number and for different values of the 
probability to test a symptomatic student at school. In the boxplot, the middle line corresponds to the 
median, the lower and upper hinges correspond to the first and third quartiles, the upper whisker extends 
from the hinge to the largest value no further than 1.5IQR from the hinge (where IQR is the inter-quartile 
range) and the lower whisker extends from the hinge to the smallest value at most 1.5IQR of the hinge. The 
same definition of the boxplot is used throughout the manuscript. Parameters are as the baseline and 
explored values reported in Tab. S1. Note also that R is estimated in the absence of the class-closure 
strategy and the scenario considered is F50. Additionally, to exclude spontaneous extinctions from the 
analysis, only simulations leading to a final infection attack rate of 5% or higher after 1 simulated year are 
considered. B As A, but for the probability to test a symptomatic (non-student) individual in the community. C 
As A, but for the time from symptom onset to sample collection. D As A, but for the time from sample 
collection to laboratory diagnosis.   
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2.2 Initial number of seeds 

In the baseline analysis, we use 1 seed to initialize the epidemic. To explore the robustness of the 

results to this choice, we varied the initial number of seeds by assuming four scenarios: 0.1%, 

0.2%, 0.5%, and 1.0% of population is considered to be infectious at the start of the simulation. 

We simulate the impact of the reactive class-closure strategy and found very consistent estimates 

of the relative change in COVID-19 burden in these 5 scenarios (Fig. S5).  

 

 

Fig. S5. Sensitivity of the class-closure strategy based on syndromic surveillance to changes in 
initial number of seeds used to initialize the epidemic. Relative change in the cumulative number of 
infections after one year as a function of the reproduction number and for different initial number of seeds. 
The bars correspond to the mean value, while the vertical lines represent 95% quantile intervals; colors refer 
to the baseline value (i.e., 1 seed) and four explored values (i.e., 0.1%, 0.2%, 0.5%, and 1.0% of the 
simulated population). Note that R is estimated in the absence of the class-closure strategy and the scenario 
considered is F50. Additionally, to exclude spontaneous extinctions from the analysis, only simulations 
leading to a final infection attack rate of 5% or higher after 1 simulated year are considered. 
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2.3 Homogeneous susceptibility to infection by age  

In the main analysis, we considered age-specific susceptibility to infection (as estimated in the 

literature (3, 27, 28)). Here we proposed additional sensitivity analyses where we assume a 

homogenous susceptibility to infection by age (i.e., 𝛿𝛿𝑎𝑎=1 for all ages). All the obtained results are 

very consistent with those obtained in the main analysis (Fig. S6).  

 

Fig. S6. Sensitivity of the class-closure strategy based on syndromic surveillance to changes in 
susceptibility to infection by age. A Relative change in the cumulative number of infections after one year 
as a function of the reproduction number and for two scenarios about susceptibility to infection. The bars 
correspond to the mean value, while the vertical lines represent 95% quantile intervals; colors refer to the 
age-specific susceptibility (i.e., baseline) and homogeneous susceptibility to infection by age. Note that R is 
estimated in the absence of the class-closure strategy and the scenario considered is F100. Additionally, to 
exclude spontaneous extinctions from the analysis, only simulations leading to a final infection attack rate of 
5% or higher after 1 simulated year are considered. B As A, but for the number of deaths. C Number of 
missed school days per student due to the reactive class-closure strategy. D As A, but for scenario F50. E 
As B, but for scenario F50. F As C, but for scenario F50. 
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2.4 Infectiousness of asymptomatic vs. symptomatic individuals 

In the main analysis, we considered the infectiousness of asymptomatic infected individuals 

relative to symptomatic one to be equal to 1 (as estimated in the literature (3)). Here we proposed 

a sensitivity analysis on infectiousness, where we assume that the infectiousness of 

asymptomatic infected individuals transmit ½ of symptomatic ones. All the obtained results are 

very consistent with those obtained in the main analysis (Fig. S7).  

 

 

Fig. S7. Sensitivity of the class-closure strategy based on syndromic surveillance to changes in 
infectiousness of asymptomatic vs. symptomatic individuals. A Relative change in the cumulative 
number of infections after one year as a function of the reproduction number and for two scenarios about 
relative infectiousness. The bars correspond to the mean value, while the vertical lines represent 95% 
quantile intervals; colors refer to two assumptions where the same infectiousness between asymptomatic 
and symptomatic individuals is assumed (i.e., baseline) and asymptomatic individuals are assumed to be 
50% less infectious compare to symptomatic cases, respectively. Note that R is estimated in the absence of 
the class-closure strategy and the scenario considered is F100. Additionally, to exclude spontaneous 
extinctions from the analysis, only simulations leading to a final infection attack rate of 5% or higher after 1 
simulated year are considered. B As A, but for the number of deaths. C Number of missed school days per 
student due to the reactive class-closure strategy. D As A, but for scenario F50. E As B, but for scenario 
F50. F As C, but for scenario F50. 
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2.5 Initial fraction of immune population 

In the baseline analysis, we consider 5% of the population to be immune at the beginning of the 

simulation, according to modeling estimates for the Italian population in September 2020 (26). We 

performed a sensitivity analysis on the initial immunity of the population by increasing this fraction 

to 10% and 20%. The obtained results show that the relative change with respect to the 

simulations without school closure is not affected much by the initial fraction of immune 

population (Fig. S8 A, B, D, and E). However, with the infection attack rate decreasing as the 

initial fraction of immune population increases, the number of missed school days due to the 

class-closure strategy remarkably decreases (Fig. S8 C and F).  

 

 

Fig. S8. Sensitivity of the class-closure strategy based on syndromic surveillance to changes in 
initial fraction of immune population. A Relative change in the cumulative number of infections after one 
year as a function of the reproduction number and for two scenarios about relative infectiousness. The bars 
correspond to the mean value, while the vertical lines represent 95% quantile intervals; colors refer to three 
assumptions of the initial fraction of immune population, including 5% (i.e., the baseline), 10%, and 20%. 
Note that R is estimated in the absence of the class-closure strategy and the scenario considered is F50. 
Note also that for R=1.3 and F50, the relative change cannot be computed as no simulation without school 
closure leads to an outbreak when the initial fraction of immune population is 20%. Additionally, to exclude 
spontaneous extinctions from the analysis, only simulations leading to a final infection attack rate of 5% or 
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higher after 1 simulated year are considered. B As A, but for the number of deaths. C Number of missed 
school days per student due to the reactive class-closure strategy. D As A, but for scenario F100. E As B, 
but for scenario F100. F As C, but for scenario F100. 
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3 Reactive school-closure strategy based on syndromic surveillance 

We implemented and tested a reactive school-closure strategy that mirrors exactly the reactive 

class closure strategy used in the main analysis; the only difference is that once a closure is 

triggered, the entire school is closed (instead of the single class where a PCR positive student is 

confirmed).  

 

Fig. S9 shows the impact of reactive school-closure policy on the COVID-19 burden and the 

number of missed school days per student due to the strategy. In the baseline analysis, 10% of 

initially immune population is used. As compared to the class-closure strategy (Fig. 1 of the main 

text), the school-closure strategy leads to a remarkably higher reduction of COVID-19 burden 

(Fig. S9 A and B). However, this strategy entails more than 100 missed school days per student 

(i.e., half of the school year) in most cases (Fig. S9C).  

 

 
Fig. S9. Impact of the reactive school-closure strategy based on syndromic surveillance. A Relative 
change in the cumulative number of infections after one year as a function of the reproduction number and 
for different scenarios about school transmission contribution. The bars correspond to the mean value, while 
the vertical lines represent 95% quantile intervals; colors refer to the two scenarios F50 and F100. 
Parameters are as the baseline values reported in Tab. S1 and S2. Note that R is estimated in the absence 
of the class-closure strategy. The relative change is defined as the estimated number of infections after 1 
year since the introduction of the first infected individual without the implementation of the school-closure 
strategy minus the one with the school-closure strategy implemented, relative to the estimated number 
without the implementation of the school-closure strategy. Note that, to exclude spontaneous extinctions 
from the analysis, only simulations leading to a final infection attack rate of 5% or higher after 1 simulated 
year are considered. B As A, but for the number of deaths. C Number of missed school days per student 
due to the reactive school-closure strategy.  
 
 

We performed a sensitivity analysis on the initial immunity of the population by increasing the 

fraction of immune population to 15% and 20%. Fig. S10 shows the impact of increased fraction 

of immune population on the COVID-19 burden and the number of missed school days per 
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student due to the reactive school-closure strategy. As observed for the reactive class-closure 

strategy (Fig. S8), the reduction of COVID-19 burden is not much affected by the initial fraction of 

immune population (Fig. S10 A and B). However, the number of missed school days decreases 

with increases in immunity for low values of R, while it increases for R=1.7 and 1.9 (Fig. S10 C).  

 

 
Fig. S10. Sensitivity of the school-closure strategy based on syndromic surveillance to changes in 
initial fraction of immune population. A Relative change in the cumulative number of infections after one 
year as a function of the reproduction number and for three different initial fractions of immune population. 
The bars correspond to the mean value, while the vertical lines represent 95% quantile intervals; colors refer 
to three assumptions of the initial fraction of immune population, including 10% (i.e., baseline), 15%, and 
20%. Note that R is estimated in the absence of the class-closure strategy and the scenario considered is 
F50. Additionally, to exclude spontaneous extinctions from the analysis, only simulations leading to a final 
infection attack rate of 5% or higher after 1 simulated year are considered. B As A, but for the number of 
deaths. C Number of missed school days per student due to the reactive school-closure strategy.  
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4 Reactive class-closure strategy based on rapid antigen screening 

4.1 Additional results for the baseline analysis 

In addition to the primary results of COVID-19-related burden shown in Fig. 4A of the main text, 

Fig. S11 shows more metrics related to the burden of COVID-19, including number of 

symptomatic infections, number of hospitalized patients, number of patients admitted to ICU, and 

number of deaths. The results highlight that antigen-based class-closure strategy is capable to 

prevent not only a big share of infections, but also a significant share of hospitalizations, ICU use, 

and deaths (Fig. S11). 

 
Fig. S11. Impact of the reactive class-closure policy based on antigen screening. A Relative change in 
the cumulative number of symptomatic infections after one year as a function of the reproduction number 
and for different scenarios about school transmission contribution. The bar corresponds to the mean value, 
while the vertical line represents the 95% quantile intervals; colors refer to the three scenarios F25, F50, 
F100. The fraction of immune population at the beginning of epidemic is set at 10%, the probability of testing 
a student at school with the antigen test is 100%, the frequency of the antigen screening is weekly; other 
parameters are as the baseline values reported in Tab. S1 and S2. Note that R is estimated in the absence 
of the class-closure strategy. Additionally, to exclude spontaneous extinctions from the analysis, only 
simulations leading to a final infection attack rate of 5% or higher after 1 simulated year are considered. B 
As A, but for the number of hospitalized patients. C As A, but for the number of ICU admissions. D As A, but 
for the number of deaths.  
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4.2 Antigen screening frequency 

In the main text we explored the impact of antigen screening frequency on the effectiveness of 

the strategy by performing a sensitivity analysis on screening frequency, where we decreased the 

screening frequency from once every 3 days to once every 7 days to once every 14 days. Here 

we show other metrics. Similar to the decrease in the number of infections shown in Fig. 4E (of 

the main text), the strategy impact on COVID-19 burden (measured through the change in 

hospitalizations, ICU use, and deaths) tend to decrease with screening becoming less frequent 

(Fig. S12 A-D). The effectiveness of the control over epidemic decreases mostly due to the low 

number of infectious students at the time the class closure is triggered as compared to strategy 

based on syndromic surveillance (Fig. S12E vs. Fig. 2 of the main text). 

 

 
Fig. S12. Sensitivity of the class-closure strategy based on antigen screening to changes in 
screening frequency. A Relative change in the cumulative number of symptomatic infections after one year 
as a function of the reproduction number and for three scenarios about screening frequency (every 3, 7 or 
14 days). The bars correspond to the mean value, while the vertical lines represent 95% quantile intervals. 
Note that R is estimated in the absence of the class-closure strategy and the scenario considered is F50. 
Additionally, to exclude spontaneous extinctions from the analysis, only simulations leading to a final 
infection attack rate of 5% or higher after 1 simulated year are considered. B As A, but for the number of 
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hospitalized patients. C As A, but for the number of ICU admissions. D As A, but for the number of deaths. E 
Number of missed school days per student due to the reactive class-closure strategy.  
 

In the main text, we also tested the performance of a strategy where, instead of screening all 

students in one single day once per week, 1/7 of the student population is tested every day. 

Similar to the results illustrated in Fig. 4F, the impact of the two strategy variations on the COVID-

19 burden measured through the change in hospitalizations, ICU use, and deaths is comparable 

(Fig. S13A-D). When 1/7 of the student population is tested every day, the number of missed 

school days is higher than the alternative for all values of R (Fig. S13E), while the number of 

infectious students at closure is slightly higher for lower values of R and lower for higher values of 

R (Fig. S13F).  

 

 
Fig. S13. Sensitivity of the class-closure strategy based on antigen screening to changes in the 
performance of the strategy. A Relative change in the cumulative number of symptomatic infections after 
one year as a function of the reproduction number when all students are tested in one day, once per week, 
or when 1/7 of the students at each school are tested every day. The bars correspond to the mean value, 
while the vertical lines represent 95% quantile intervals; colors refer to different performance of the strategy. 
Note that R is estimated in the absence of the class-closure strategy and the scenario considered is F50. 
Additionally, to exclude spontaneous extinctions from the analysis, only simulations leading to a final 
infection attack rate of 5% or higher after 1 simulated year are considered. B As A, but for the number of 
hospitalized patients. C As A, but for the number of ICU admissions. D As A, but for the number of deaths. E 
Number of missed school days per student due to the reactive class-closure strategy. F Number of 
infectious students in a school at the time when the class closure is triggered.  
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4.3 Initial fraction of immune population 

In the analysis of the antigen-based class-closure strategy presented in the main text, we 

considered 10% of the population to be initially immune. We performed a sensitivity analysis by 

increasing the fraction of the initially immune population to 15% and 20%. As shown in the main 

text (Fig. 4H), the strategy performs even better with the higher share of immune population. For 

20% of initially immune population, the strategy averts all the hospitalizations, need for ICU and 

deaths for R=1.5, and decreases them by almost 80% for R=1.7 (Fig. S14A-D). Significant 

decrease in the number of infectious students at the moment of class closure illustrates the 

increasing effectiveness of the strategy (Fig. S14E). 

 

 
Fig. S14. Sensitivity of the class-closure strategy based on antigen screening to changes in initial 
fraction of immune population. A Relative change in the cumulative number of symptomatic infections 
after one year as a function of the reproduction number and for three different initial fractions of immune 
population. The bars correspond to the mean value, while the vertical lines represent 95% quantile intervals; 
colors refer to three assumptions of the initial fraction of immune population, including 10% (i.e., baseline), 
15%, and 20%. Note that R is estimated in the absence of the class-closure strategy and the scenario 
considered is F50. Additionally, to exclude spontaneous extinctions from the analysis, only simulations 
leading to a final infection attack rate of 5% or higher after 1 simulated year are considered. B As A, but for 
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the number of hospitalized patients. C As A, but for the number of ICU admissions. D As A, but for the 
number of deaths. E Number of missed school days per student due to the reactive class-closure strategy.  
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