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Abstract 

Chronic pain conditions present in various forms, yet all feature symptomatic impairments in 
physical, mental, and social domains. Rather than assessing symptoms as manifestations of 
illness, we used them to develop a chronic pain classification system. A cohort of real-world 
treatment-seeking patients completed a multidimensional patient-reported registry as part of a 
routine initial evaluation in a multidisciplinary academic pain clinic. We applied hierarchical 
clustering on a training subset of 11448 patients using nine pain-agnostic symptoms. We then 
validated a three-cluster solution reflecting a graded scale of severity across all symptoms and 
eight independent pain-specific measures in additional subsets of 3817 and 1273 patients. 
Negative affect-related factors were key determinants of cluster assignment. The smallest subset 
included follow-up assessments that were predicted based on baseline cluster assignment. 
Findings provide a cost-effective classification system that promises to improve clinical care and 
alleviate suffering by providing putative markers for personalized diagnosis and prognosis. 
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Introduction 

Chronic pain is a global epidemic reflecting a health care crisis for the person suffering from it, 
their family, and society as a whole (1–3). More than 100 million individuals are impacted by 
various chronic pain conditions in the US alone, with medical expenses and lost productivity 
costing more than $635 billion annually and projected to become much worse (4–6). Primary 
chronic pain conditions present in various shapes and forms, commonly classified by anatomical 
location of experienced pain, from low-back pain and headaches to pelvic or bladder pain, 
including wide spread non-specific or overlapping pain (7). However, common to all conditions 
is a global functional impairment that is manifested in the experience of multiple physical, 
“mental”, and social health symptoms, reflective of the biopsychosocial model of shared 
etiological factors across chronic pain conditions (7–10). While various studies aimed to uncover 
and classify sub-groups of chronic pain (11–19), little is known whether a combination of 
domain-general symptoms agnostic to pain can be used to classify one’s chronic pain condition, 
and subsequently serve as potential markers for clinical diagnosis and prognosis (20, 21). A 
symptom-based approach may also reveal potentially modifiable factors as targets for therapeutic 
interventions. Therefore, we suggest a reversal of the paradigm – instead of assessing patient-
reported symptoms as features of the a-priori determined pain condition, we examined whether 
such symptoms may serve to classify current and predict future pain condition. If confirmed, our 
approach could be used to support personalized and efficient treatment of individuals with 
chronic pain. 

We implemented unsupervised machine learning, specifically agglomerative hierarchical 
clustering analysis (22–24), on multidimensional patient-reported symptoms that assess physical, 
mental, and social health status factors, to identify idiosyncratic groups, or clusters of patients 
with chronic pain. Patients reflected a real-world clinical population with a heterogeneous mix of 
pain conditions seeking treatment at a tertiary academic pain clinic. As part of their routine initial 
evaluation, they completed multidimensional patient-reported assessments using Stanford’s 
CHOIR registry-based learning health system (Figure 1A) (25, 26). We used nine symptoms for 
clustering based on the National Institute of Health’s (NIH) Patient-Reported Outcomes 
Measurement Information System (PROMIS), which was designed and validated for precise and 
efficient measurement of health-related symptoms in patients with a wide variety of chronic 
health conditions (27). These symptoms were agnostic to nine pain-specific measures that we 
subsequently used to validate the diagnostic-like nature of the data-driven clusters independently.  

Mechanistically, we aimed to uncover whether the multivariate pattern of symptoms and pain-
specific measures characterizing each identified cluster reflects a general graded scale of severity 
or a differential pattern. Furthermore, given the centrality and comorbidity of mental health 
related factors with chronic pain, predominantly negative affect-related symptoms such as 
anxiety, depression, and anger (9, 28, 29), we expected these symptoms to be key drivers for the 
determination of cluster assignment, thus highlighting them as targets for treatment. We based 
cluster discovery on a training dataset of 11448 patients and subsequently validated it in two 
additional datasets of 3817 and 1273 patients. The later dataset included follow-up assessments 
allowing us to examine if cluster assignment at baseline would be predictive of pain-related 
measures at follow-up, thus providing potential prognostic-like validation of the identified 
clusters. Finally, we examined the dynamics across assigned clusters between time-points. 
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Materials and Methods 

General data acquisition procedures and dataset definition 

Data were collected using Stanford University’s CHOIR (http://choir.stanford.edu), a registry-
based, learning health care system that administers an electronic survey assessing self-reported 
demographic information, medical history, and multiple domains of health status in real-world 
clinical settings (Figure 1A) (30). Patients presenting for consultation at Stanford Pain 
Management Center locations throughout the San Francisco Bay Area and broader Norther 
California region, USA, with the main site located in Redwood City, complete the survey as part 
of their routine clinical care. While intended for completion at home using personal computers or 
hand-held devices, patients may complete the survey before their appointment at clinic check-in 
using a tablet computer. Survey completion is encouraged, yet optional, and based on patients’ 
willingness and ability to collaborate. Patients may therefore choose not to respond to certain 
items or assessments. These procedures were approved by the Stanford University School of 
Medicine Institutional Review Board (IRB). Informed consent was waived by the IRB, as 
CHOIR data were collected for clinical care and quality improvement purposes. 

Data analyzed were from a retrospective review of all collected surveys since CHOIR's inception 
in October 2013 through August 2019. Our initial data extraction included 24389 records, from 
which we removed records based on the following criteria: non-completed or test records (6002), 
missing data in any of the nine measures used for clustering (as detailed below; 1651), duplicated 
records (136), and age below 18 years (62). From the resulting 16538 surveys belonging to 
16538 different patients, we extracted a longitudinal dataset of 1273 patients with a follow-up 
survey between 3-12 months later, and again with a minimal requirement of having complete 
data for the nine assessments used for clustering at both time points. We chose this time frame 
since 3 months is considered the minimal threshold for diagnosing primary chronic pain (7). The 
upper threshold of 12 months allowed to keep a substantially large proportion of the dataset for 
cluster discovery validation. The resulting 15265 patients were randomly split based on a 
75%:25% allocation into a training dataset of 11448 patients used for cluster discovery and an 
additional validation dataset of 3817 patients. 

 

Measures  

Demographic characteristics 

Demographic characteristics included age, sex, ethnicity, race, marital status, and years of 
education. 

 

Clustering symptoms 

The nine symptoms assessing health-related functionality and used as the basis for the clustering 
procedures were from the National Institute of Health’s (NIH’s) Patient-Reported Outcomes 
Measurement Information System (PROMIS) (27, 31–35). We divided these nine symptoms into 
three domains: (1) the physical domain (fatigue, sleep disturbance, and sleep impairment), (2) 
the mental or negative affect domain (depression, anxiety, and anger), and (3) the social domain 
(social isolation, emotional support, and satisfaction with social roles and activities). Response 
items are contextualized to the frequency of the experienced symptom in the past seven days 
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(e.g., “in the past seven days how often did you feel tired?”, “in the past seven days I felt 
worthless”), and responses were marked on a 1-5 scale (1 = never, 5 = always). Each assessment 
was completed using computerized adaptive testing (CAT), based on item response theory-
derived metrics. CAT reduces the time needed to complete each assessment because patients 
respond only to a subset of items for each PROMIS item bank, until resulting measurements 
meet preset criteria of below three standard errors (27, 36). Most patients complete 4-5 items per 
assessment, and take about 15 minutes to complete these nine symptoms.  

Ultimately, a standardized T score for each PROMIS symptom is generated for each patient. A 
score of 50 reflects the mean of the US general population, with a standard deviation (SD) of 10. 
Higher scores reflect more of the measures’ symptom. We further extracted data of a PROMIS-
based global health measure, specifically the Global Health Mental subscale that consisted of 
four items assessing general mental health, quality of life, satisfaction with social activities, and 
emotional problems (37). While for most measures such as fatigue or depression, higher T scores 
indicated a worse condition, for emotional support, satisfaction with social roles, global health 
mental, and physical function (see below), higher T scores reflected a better condition. Further 
details regarding measure development and validation are available at 
http://www.healthmeasures.net. 

 

Pain-specific measures 

Pain-specific measures were used independently of the clustering process to validate the 
diagnostic-like nature of the data-driven generated clusters in terms of pain-related constructs. A 
composite score of pain intensity was calculated by averaging three self-reported pain intensity 
measures. These measures used a common and validated (38) 11-point numeric rating scale of 0-
10 (0=no pain, 10=pain as bad as you can imagine) for worst and average pain in the last seven 
days, and current pain. The number of body segments in which chronic pain is experienced were 
self-reported by patients, who were asked to mark locations of pain on a reliable and valid 
CHOIR body map scheme that included 36 anterior and 38 posterior symmetrical body segments 
for a maximum total of 74 segments (Figure 1A) (39). This measure was used to reflect the 
extent of pain throughout the body. A group of physicians recoded these 74 body segments into 
11 body regions (Table S1, Figure S1) subsequently used to examine specific locations in which 
patients experienced pain. Pain duration was calculated as the number of months from onset of 
chronic pain that was self-reported by patients.  

Additional measures assessed using PROMIS instrumentation included pain interference with 
daily life activities, pain behavior, and physical function (27, 33). In September 2016 and 
moving forward, physical function was assessed using two separate measures in CHOIR, 
reflecting physical function of the upper extremity, and lower mobility (40). Across the entire 
dataset, most patients had the two separate measures (61.32%). We analyzed each of the three 
physical function measures separately to be able to differentiate between them. 

The last pain-specific measure was pain catastrophizing, reflecting maladaptive cognitions such 
as rumination, magnification, and helplessness, in response to actual or anticipated pain. Pain 
catastrophizing has been associated with poor outcomes, maintenance, and worsening of chronic 
pain illness (41–43). We used the Pain Catastrophizing Scale (PCS) which previously 
demonstrated sound psychometric properties (44–46) to measures the frequency with which a 
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patient engages in catastrophic thought patterns, and consists of 13 self-reported items on a 0-4 
scale (0=not at all, 10=all the time). 

 

Statistical analysis 

Programming and analyses were conducted using a combination of R version 4.0.0 (47), RStudio 
version 1.2.5042 (48), and IBM® SPSS® version 26. Relevant open source R codes are 
available at TBA. 

Cluster discovery 

Hierarchical clustering is a well-established unsupervised machine learning technique that aims 
to discover groups or clusters of observations within a dataset without needing to a-priori 
determine the specific characteristics of each cluster (22–24). Observations within the same 
cluster are expected to have similar characteristics, while different clusters are expected to have 
dissimilar characteristics. A cluster-tree diagram or dendrogram is a mathematical and pictorial 
representation of a cluster solution.  

We implemented an AHCA on the training dataset and using the nine clustering symptoms, to 
assign each patient to a cluster. AHCA implements an iterative process in which the two most 
similar observations (i.e., patients, or groups of patients) are fused to form a superordinate cluster 
until all observations belong to one single cluster. Two parameters important for this process are 
a distance metric that determines how similar observations are to each other, and a linkage 
method to fuse similar observations. The agglomerative coefficient can then assess how tightly 
packed each cluster is within a cluster solution. We used the Euclidian distance metric combined 
with the Ward linkage method as it optimized the agglomerative coefficient compared to four 
other linkage methods (Table S5). 

We subsequently used the gap statistic to determine the optimal number of clusters, k (50). The 
gap statistic compares the within-cluster sum of squares of a certain k-clusters solution to the 
expected within-cluster sum of squares under a null distribution with no clusters. An ideal 
solution will have a small within cluster sum of squares, and therefore a large gap statistic. We 
calculated the gap statistic for k between 1 and 10. The smallest value of k that is within one 
standard deviation of the value of k that maximizes the gap statistic should be chosen as the 
optimal number of clusters. 

We next aimed to determine the relative importance of each clustering symptom to the clustering 
process, i.e. to the separability between clusters. We computed the cluster centroid (22, 24), 
which is the average value of each clustering symptom for all of the observations in that cluster, 
and then calculated the total Euclidian distance between all cluster centroids. The average 
amount each clustering symptom contributed to the distance between each clusters’ centroid, 
divided by the total sum of all clustering symptoms’ contribution to the total Euclidean distance 
between all cluster centroids, provides a percent contribution to the overall separability between 
clusters. 

 

Cluster characterization, reliability, and validity 

Univariate analysis of variance (ANOVA) and subsequent t-tests were used to examine 
differences in clustering symptoms and in pain-specific measures between the identified clusters, 
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with Bonferroni correction applied to account for multiple comparisons. Chi2 tests were used to 
examine the differential distribution of demographic factors and of body regions between the 
clusters and determine whether specific body regions were associated with any of the identified 
clusters. This sequence of tests was conducted initially on the training dataset to assess the 
clusters’ diagnostic-like potential, and subsequently on the validation and the baseline of the 
longitudinal datasets, to assess the reliability of cluster assignment and validate the cluster’s 
characteristics in other sets of patients. A nearest centroid classifier (22, 24) was generated to 
assign or label a cluster to a “new” patient, based on the shortest Euclidian distance between the 
values of the clustering symptoms of that patient and each clusters’ centroids. 

 

Predictive validation and cluster dynamics over time 

Univariate analyses as described above were used to examine differences in clustering symptoms 
and in pain-specific measures between clusters as assigned at baseline, using data from the 
follow-up. To control for time-related effects, we added the number of days between the two 
assessments as covariate. This provided prognostic-like validation of the clusters. 

Next, the nearest centroid classifier was implemented on the follow-up dataset to assess patient 
movement across clusters between the baseline and follow-up time points. Also, we used a 
bootstrap procedure (23, 24) to assess whether patients’ movement across clusters over time was 
due to potential error in measurement of the clustering symptoms, or potentially to the clusters’ 
ability to portray real improved or worsening of their condition. Since the PROMIS CAT engine 
uses a criterion of below three standard errors to calculate the final T score (27, 36), we 
randomly jittered the original T score for each patient and for each of the clustering symptoms at 
baseline, within ± three standard errors. The nearest centroid classifier was implemented on each 
patient’s simulated data to assign a cluster. We then assessed movement across clusters between 
the simulated dataset and the follow-up dataset, and calculated the number and subsequently the 
percent of patients moving across clusters. This procedure repeated 1000 times to generate a 
bootstrapped distribution of the percent of patients moving across clusters within measurement 
error. This distribution allowed us to calculate the probability of the actual percent of patients 
moving across clusters between the baseline and follow-up time points being attributed to 
measurement error. 

 

Results 

Demographic characteristics 

Demographic characteristics of study participants are described in Table 1 (see also Table S1). 

 

Cluster discovery, characterization, reliability, and validity 

The dendrogram reflecting results of the AHCA as implemented on the training dataset is shown 
in Figure 1B. Based on the gap statistic, we grouped patients into an optimal number of three 
clusters (Figure 1C). In line with our expectation, the negative affect-related clustering 
symptoms of depression, anxiety, and anger were the most important factors driving the 
clustering process, ranked 1st, 2nd, and 4th, respectively, and contributing 42.4% to the overall 
separability between clusters (Figure 1D). 
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We labeled the clusters Cluster1, Cluster2, and Cluster3 to reflect the graded scale of severity 
that characterized all clustering symptoms (Table 2; Figure2A-I), as well as all pain-specific 
measures (Table 2; Figure 2J-R). These results provided initial validation of these clusters such 
that: Cluster1 reflects the least severe condition, Cluster3 the worst, and Cluster2 in between, 
with substantial effect sizes across all comparisons (Table 2). Since PROMIS instruments are 
normed to the general US population, we could inform that Cluster1 was on average 0.60 
standard deviations (SD) better than the norm in the clustering symptoms, but 0.46SD worse than 
the norm in the subset of PROMIS-based pain-specific measures. Cluster2 was 0.36SD and 
1.05SD, and Cluster3 was 1.20SD and 1.54SD, all worse than the norm in the clustering 
symptoms and pain-specific measures. 

Although the pattern of severity also manifested in the number of self-reported body segments in 
pain, with Cluster3 indicative of potential widespread and/or overlapping chronic pain 
conditions, we found no significant associations between specific body regions (Table S2, Figure 
S1) and any of the clusters (Chi2=3.25, p=0.99; Figure2S). Cluster1 was only descriptively 
associated with more pain in the Front of Head (13.89%) compared to Cluster2 (9.47%) and 
Cluster3 (8.07%; Chi2=1.76, p=0.41). Similarly, none of the demographic characteristics were 
significantly associated with any specific cluster (Table 1). We replicated the same pattern of 
results across clustering symptoms and pain-specific measures in the validation (Table S3, 
Figure S2) as well as the longitudinal datasets (Table S4, Figure S3), except for pain duration, 
for which we found no differences between the three clusters (p-values>0.12). This supported the 
reliability and validity of the identified clusters. However, two critical questions arose that we 
addressed in the following two sections. 

 

Can we obtain a similar clustering solution using only pain intensity? 

The clustering solution identified three clusters portraying a graded scale of severity across all 
clustering symptoms and, importantly, all pain-specific measures. To address whether one 
variable could be used to obtain a similar clustering solution, we applied AHCA on the training 
dataset using a common measure for assessing the severity of pain, namely pain intensity. The 
dendrogram reflecting the results of the AHCA is shown in Figure 3A. The gap statistic indicated 
an optimal number of one cluster (Figure 3B). We nevertheless selected the non-optimal three-
cluster solution to compare it with the clustering symptoms-based solution directly. To visualize 
this comparison, we applied Principal Components Analysis (PCA) (23, 24) on the nine-
dimensional clustering symptoms (see Figure S4A for scree plot and Figure S4B for clustering 
symptoms’ contribution to the first three principal components). To evaluate the separability 
between the clusters of the two solutions, we plotted the entire training data-set using the first 
three principal components and colored the data points based on the three clusters of the 
clustering symptoms solution (Figure 3C) and of the pain intensity solution (Figure 3D). The 
separability between clusters is clearly seen in the clustering symptoms’ solution, while a 
substantial overlap is seen in the pain intensity solution, indicating that using pain intensity alone 
cannot capture a similar solution. 

 

Does the clustering solution reflect a latent mental health-related construct? 
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As we initially expected, the negative affect- or mental health- related clustering symptoms were 
the most important factors driving the clustering process, and contributing most to the first 
principal component (42.2% of the explained variance; Figure S4B). This may suggest that the 
underlying structure of the dataset and subsequent clustering solution reflected a mere latent 
mental health construct. Therefore, by using a measure of mental health we might obtain similar 
results. To examine this alternative hypothesis, we calculated the Pearson correlation coefficient 
between the first principal components and the PROMIS Global Health Mental subscale. To 
note, this measure was available for n=10835 of the training dataset. The first principal 
component explained 55.42% of the variance in the data structure (Figure S4A), and had a 
correlation of r=-0.78 with the PROMIS Global Health Mental subscale (Figure 3E). The 
correlation with the second and third principal components, which explained 12.28% and 8.83% 
of the variance in the data structure (Figure S4) were r=0.11 and r=-0.02, respectively. As 
expected, this reconfirms mental health as a key construct in the data's underlying structure, but 
not the only. 

To further illustrate this point, we split the range of possible PROMIS Global Health Mental 
scores into tertiles and labeled them in order of severity (1, 2, and 3) to match the clustering 
symptoms’ cluster solution labeling. We then quantified the level of congruence between these 
two sets of labels by counting how many patients were assigned by each of the solutions to the 
same cluster label and how many were mismatched between the clusters (Figure 3F). The level 
of congruence was 76.73%, 50.44%, and 71.77% for Cluster1, Cluster2, and Cluster3, 
respectively, and with an overall 62.26% congruence. Together, it is clear that mental health is a 
primary component in the data's underlying structure. Still, the proposed clustering solution 
reflects more than a mere latent mental health-related construct, particularly at the intermediate 
Cluster2. 

 

Predictive validation and cluster dynamics over time 

After controlling for the time between the two assessments (3-12months), we were able to 
demonstrate substantial differences between clusters as identified at baseline in all clustering 
symptoms (Table 3; Figure 4A-I), and pain-specific measures at follow-up (Table 3; Figure 4J-
Q). Cluster1 continued to reflect the least severe condition, Cluster3 the worst, and Cluster2 in 
between, and again with substantial effect sizes across all comparisons (Table 3). These results 
validate the prognostic-like nature of the clusters and suggest that the graded scale of severity 
remains consistent at follow-up at the group-level. Nevertheless, cluster identification at follow-
up demonstrates that while most patients (n=879, 69.05%) remained within their same cluster 
between the two time-points, there were movements across clusters (Figure 5A): 180 patients 
(14.14%) had an improvement in their condition and moved from Cluster3 to Cluster2 (n=69, 
5.42%) or to Cluster1 (n=6, 0.47%), and from Cluster2 to Cluster1 (n=105, 8.25%); and 214 
patients (16.81%) had a worsening in their condition and moved from Cluster1 to Cluster2 
(n=115, 9.03%) or to Cluster3 (n=4, 0.31%), and from Cluster2 to Cluster3 (n=95, 7.46%). We 
compared the total movement of patients across clusters between time-points (n=394, 30.95%) to 
a bootstrapped distribution of patients moving across clusters within potential measurement error 
(M=5.81%±0.54SD; Figure 5B), which indicated a significant amount of movement 
(t(df=999)=1477.18, p<0.0001; Figure 5C). This suggests that the changes across clusters are 
meaningful, potentially indicating an interaction between treatment effects and regression to the 
mean (51). Importantly, cluster assignment is not a static condition; rather, various factors might 
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impact the long-term dynamics across clusters, offering a window of opportunity for 
personalized interventions. 

 

Discussion 

In our study we offer a novel biopsychosocial-inspired approach to classify patients with chronic 
pain, resulting in the identification of three robust idiosyncratic groups of patients, and 
generating putative markers that can classify current and predict future severity of chronic pain 
in a graded manner, regardless of their formal diagnosis or their underlying etiology. We applied 
a data-driven clustering algorithm on multidimensional self-reported symptom assessments that 
are agnostic to pain. These assessments were collected through CHOIR, Stanford’s registry-
based, learning health care system (30), and belonging to more than 16 thousand real-world 
patients seeking treatment at a tertiary academic pain clinic. These findings can be instrumental 
in supporting treatment selection and pain management in a personalized healthcare platform, 
especially in the current forward-triage approach to healthcare in which a clinician might not be 
able to physically examine a patient (52). Moreover, findings inspire further research into the 
biological and behavioral mechanisms that characterize the identified clusters. 

The three identified groups reflected a graded scale of severity. They were therefore labeled 
Cluster1, Cluster2, and Cluster3, with higher numbers indicative of a more severe condition, as 
shown in all assessments, including those used for clustering as well as those specific for pain, 
except for pain duration since onset of chronic pain. No apparent demographic factors 
significantly differed between clusters. The overall group characteristics initially discovered on a 
subset of more than 11 thousand patients reliably reproduced in two additional subsets consisting 
of about five thousand patients. The sample size utilized in the development and validation of 
these clusters (>16K) is consdireably larger compared to even the largest samples (~5K) used in 
previous efforts (11, 12, 14). Moreover, one of our subsets comprising 1273 patients included 
follow-up assessments, the severity of which were predicted based on the baseline cluster 
assignment. Examining the dynamics across clusters between baseline and follow-up 
assessments indicated that cluster assignment is not a static condition, suggesting that various 
factors might impact improvement or worsening of the pain condition. Thus, beyond the 
diagnostic- and prognostic-like nature of these symptom-based putative markers, future clinical 
and research efforts can examine whether and to what extent they will indicate response to 
various treatments (20, 21). 

One of the biggest challenges for chronic pain healthcare is identifying safe and effective 
treatments tailored to the patient’s particular needs. The symptom-based classification system 
proposed here addresses this challenge by reversing the common paradigm – it uses the endpoint, 
as in patient-reported symptoms, to classify the condition of pain and aiming in subsequent 
research to provide the underlying mechanistic basis. Similar evidence-based approaches have 
called for chronic pain classification systems that focus on the fine-grained multidimensional and 
mechanistic substrates of chronic pain conditions (53, 54). However, having potentially too 
many dimensions for classification, and the costs and burdensome nature of medical tests 
required for such classification processes may make translating them into clinically interpretable 
and applicable tools challenging (55). Subsequently, in most clinical settings, as in research, 
chronic pain continues to be diagnosed predominantly by the relevant anatomical location of 
pain (56). In contrasts, our computational approach is easily interpretable and substantially cost-
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effective since it relies on a minimal set of self-reported assessments that can be completed using 
an electronic device from almost any place, in about 15 minutes, and with hardly any need for 
assistance from staff. Moreover, unlike the dominant diagnostic system, we find no associations 
between location of experienced pain and identified cluster. Nevertheless, the number of body 
regions in pain increased with severity, indicating that patients with widespread and/or 
overlapping chronic pain conditions suffer more than those with a more localized pain condition. 
In line with previous research (12, 57), findings thus evidence a diminished reliance on specific 
anatomical locations of experienced pain when assessing and classifying the severity of 
impairment in primary pain conditions, and potentially when considering treatment avenues. 

As expected, negative affect-related symptoms emerged as key factors driving the clustering 
process. Researchers have previously demonstrated similar negative affect-related metrics to be 
central in clustering patients with chronic pain (11, 12). As we further confirmed, a global 
measure of mental health was a key construct in the data's underlying structure. This reverberates 
with the crucial role of mental health in chronic pain (9, 28). Currently, there is an ongoing 
paradigm shift in psychology and psychiatry, calling for the classification of psychopathology as 
a hierarchy of continuous dimensions rather than describing it through discrete diagnostic 
categories (58). On top of the hierarchy is a global factor termed the “p factor”, generally ranging 
from low to high psychopathological severity, and cutting through all psychopathological 
disorders to account for their nonspecific and overlapping manifestation of symptoms (59, 60). 
The resemblance to chronic pain is astounding. The empirical findings presented here suggest 
that pain as a field should consider establishing a similar hierarchy of continuous global 
transdiagnostic dimensions to improve the ability to address the challenges of chronic pain. 
Moreover, this echoes our contemporary perspective on the need for more synergistic 
interactions between the research and clinical fields of pain and mental health, specifically 
regarding the centrality of affective components to these fields (28). 

Our findings build on existing notions of a general graded scale of severity of chronic pain 
illness (57, 61, 62). However, our approach extends previous efforts in terms of the combination 
of scale, scope, computational approach, and especially in that we use multidimensional domain-
general symptoms that are agnostic to pain. This is advantageous for two main reasons. First, it 
may highlight potentially modifiable targets for intervention. As we anticipated, negative affect-
related factors, namely depression, anxiety, and anger, were key drivers in cluster assignment at 
the group level. Fortunately, there is a flourishing of treatment strategies aimed to reduce 
negative affect-related symptomatology (63–68). Moreover, findings indicate that the 
distribution of symptoms severity and of patients across clusters is to a certain extent blended 
(e.g., Figure 2A-R, Figure 3C). This suggests that a healthcare clinician may consider the 
particular pattern of symptoms at the individual patient level regarding the assigned cluster and 
utilize this information to guide and support clinical decision-making contextually. For example, 
we may envision a patient assigned to the lower severity Cluster1, but has relatively high levels 
of sleep dysfunction that a clinician could address with specific sleep-related treatments (69). 

A second advantage of the domain-general symptoms approach is that it may be implemented 
and potentially generalizable to other chronic illnesses requiring symptom management beyond 
the specific pathophysiology of their disease, like cancer, immune disorders, and cardiovascular 
diseases among many others. Notably, the graded classification of severity resonates with other 
illnesses that are characterized by a staged progression of disease, like cancer (70), heart (71) and 
kidney diseases (72), diabetes (73), and more. Here, however, we did not use objective and 
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etiological based metrics, and future integration of genetic, metabolic, inflammatory, and/or 
anatomical and functional neuroimaging metrics can substantially improve our understanding of 
the biological mechanisms underlying the identified symptom-based clusters and potentially lead 
to improved (bio)marker properties (20, 21). 

The US National Pain Strategy has drawn attention to a sub-group of chronic pain patients – 
those with persistent high-impact chronic pain. These patients suffer from the most severe and 
debilitating illness, substantially restricting and interfering with daily life activities, and requiring 
increased healthcare expenditure (3, 74, 75). The prevalence of high-impact chronic pain is 
estimated to be between 5-15% of the adult US population (10-30 million people) (3, 5, 75). 
Compared to lower but still clinically significant chronic pain, high-impact chronic pain was 
associated with unfavorable health outcomes, limitations in daily activity, negative coping 
strategies, elevated distress, increased health care costs, and higher usage and dosage of opioid 
medication (62, 76). With the potential collateral personal, societal, and financial impact of long-
term opioid medication (77), it is particularly crucial to better identify and understand people 
suffering from and at increased risk of high-impact chronic pain. Within our proposed 
classification system, Cluster3 may be reflective of such a group of patients: an overall most 
severe condition characterizes it, manifested at the group level by highest levels of pain 
interference, widespread and/or overlapping chronic pain conditions, low levels of physical 
function, fatigue, depression, and basically in every measure that we assessed. Early 
identification of these patients is essential for the provision of more comprehensive and costly 
pain assessments (e.g., psychological, medical, etcetera) that better inform treatment approaches 
(e.g., physical or psychosocial therapy, medical interventions, etcetera).  

There are notable limitations to our study. While our cohort is uniquely large, it is restricted to 
the San Francisco Bay Area and the outlining Northern California region, and potentially also to 
patients who can afford specialized medical treatment in a tertiary academic clinic. Future efforts 
will need to generalize our findings to other locations with different demographic, socio-cultural, 
and economic characteristics. In this regard, there are known demographic disparities related to 
pain healthcare (78, 79) that were not captured by the identified clusters. This may be attributed 
to the particular characteristics of the cohort (Table S3), for example being primarily White 
(53.87%) and with above college level of education (61.92%). However, there are some 
descriptive trends worth noting. Across datasets (Table S3), Cluster3 was generally characterized 
by younger age, lower education level, more females, more patients identifying as Hispanic or 
Latino, less of them identifying as White, and less reporting being married. It is essential to 
highlight that we can only address most of these factors through a systematic change in 
healthcare. Additionally, in terms of cohort characteristics, we had no data on formal diagnoses 
within our cohort. Although findings indicate no association between the identified clusters and 
anatomical pain location, which is commonly used to support formal definitions of chronic pain 
conditions, this should still be tested and confirmed. Notably, previous CHOIR studies were able 
to indicate a multitude of formal diagnoses (25, 26), including neuropathic, thoracolumbar, 
orofacial, visceral, and various musculoskeletal pain conditions, as well as fibromyalgia and 
complex regional pain syndrome, amongst many others, and these can be assumed to be part of 
the current cohort. Thus, unlike previous clustering efforts that were restricted to specific chronic 
pain conditions (12, 13, 15, 17, 19), our findings seem to be generalizable at least to varying 
types of chronic pain conditions.  
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That the assessments used for clustering are based on NIH’s PROMIS system has its limitations 
since although they were validated for their psychometric properties (27, 31–36), they are still 
based on self-reported assessments and thus prone to potential biases and demand characteristics. 
Other studies using various clustering approaches have incorporated more objective 
measurements, with a better characterization of their underlying mechanistic substrates. Most 
have used various multimodal pain sensory testing that map on to various nociceptive pathways 
(12, 13, 15, 16, 18, 19). While incorporating objective measures with better understanding of 
their underlying pathophysiology is a clear next step for this research, using the PROMIS system 
offers substantial advantages. PROMIS-based T scores are normed to the general US population 
and thus easily comparative across cohorts. PROMIS is also an inexpensive and easily 
administered system, using short forms or computerized adaptive testing to reduce time and 
patient burdens, and is already in wide usage in many settings, even beyond chronic pain, thus 
allowing others to take a similar approach as ours, or to engage with our freely available cluster-
classifier (TBA) for additional utilization in clinical and research settings. Moreover, previous 
findings show associations between various PROMIS measures and potential biomarkers in both 
pain and non-pain clinical contexts (80–82). Finally, that the clusters differ in pain-specific 
measure that are non-PROMIS based, such as pain intensity and pain catastrophizing, solidifies 
the validity and generalizability beyond PROMIS-based measures. 

In conclusion, our symptom-based approach and findings offer significant diagnostic- and 
prognostic-like utility for a cost-effective, graded severity classification system of patients with 
chronic pain, potentially generalizable to other chronic illnesses. Our study’s exploratory nature 
requires further research to reconfirm and generalize the identified clusters in different chronic 
pain cohorts, as well as experimental and mechanistic studies to uncover their etiological basis. 
Nevertheless, this system promises to support clinical decision-making, impacting the day-to-day 
functioning of patients with chronic pain, and encourages investigations into new treatment 
opportunities oriented towards a precision- and evidence-based approach to relieve the burdens 
of people suffering from chronic illness, and improve their quality of life. It thus reflects a 
synergy between theory-driven scientific research, clinical care, and technological advancement 
that aims to facilitate personalized healthcare by closing on the bedside-to-bench-to-bedside 
loop. 
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Table 1.  
N (%) Total Cluster1 Cluster2 Cluster3 P* 
Training dataset      
Total: 11448 (69.22) 2943 (25.71) 5802 (50.68) 2703 (23.61)  
Age (years):     0.95 

18-29 1398 (12.21) 372 (12.64) 660 (11.38) 366 (13.54)  
30-39 1966 (17.17) 510 (17.32) 954 (16.44) 502 (18.57)  
40-49 2127 (18.58) 506 (17.19) 1029 (17.74) 592 (21.90)  
50-59 2454 (21.44) 564 (19.16) 1264 (21.79) 626 (23.16)  
60-69 1974 (17.22) 543 (18.45) 1048 (18.06) 380 (14.06)  
≥70 1512 (13.21) 442 (15.02) 836 (14.41) 234 (8.66)  
No response 20 (0.17) 6 (0.2) 11 (0.19) 3 (0.11)  

Sex     0.95 
Female 7340 (64.12) 1817 (61.74) 3700 (63.77) 1823 (67.44)  
Male 3723 (32.52) 1025 (34.83) 1904 (32.82) 794 (29.37)  
No response 385 (3.36) 101 (3.43) 198 (3.412) 86 (3.18)  

Ethnicity     0.98 
Hispanic/Latino 1162 (10.15) 304 (10.33) 515 (8.88) 343 (12.69)  
Non-Hispanic/Non-Latino 8527 (74.48) 2230 (75.77) 4401 (75.85) 1896 (70.14)  
Patient refused 349 (3.05) 94 (3.19) 180 (3.1) 75 (2.77)  
Unknown 413 (3.61) 111 (3.77) 211 (3.64) 91 (3.37)  
No response 997 (8.71) 204 (6.93) 495 (8.53) 298 (11.02)  

Race     0.99 
American Indian or Alaska Native 48 (0.42) 9 (0.31) 22 (0.38) 17 (0.63)  
Asian 935 (8.17) 287 (9.75) 469 (8.08) 179 (6.62)  
Asian, non-Hispanic 8 (0.07) 1 (0.03) 5 (0.09) 2 (0.07)  
Black or African American 405 (3.54) 102 (3.47) 184 (3.17) 119 (4.4)  
Black, non-Hispanic 8 (0.07) 3 (0.1) 2 (0.03) 3 (0.11)  
Native American, Hispanic 1 (0.01) 0 (0) 0 (0) 1 (0.04)  
Native American, non-Hispanic 1 (0.01) 0 (0) 1 (0.02) 0 (0)  
Native Hawaiian or Other Pacific 65 (0.57) 14 (0.48) 35 (0.6) 16 (0.59)  
Other 1921 (16.78) 487 (16.55) 929 (16.01) 505 (18.68)  
Other, Hispanic 11 (0.1) 1 (0.03) 9 (0.16) 1 (0.04)  
Other, non-Hispanic 8 (0.07) 2 (0.07) 5 (0.09) 1 (0.04)  
Patient Refused 326 (2.85) 84 (2.85) 170 (2.93) 72 (2.66)  
Unknown 443 (3.87) 113 (3.84) 230 (3.96) 100 (3.7)  
White 6148 (53.7) 1598 (54.3) 3186 (54.91) 1364 (50.46)  
White, Hispanic 2 (0.02) 1 (0.03) 0 (0) 1 (0.04)  
White, non-Hispanic 106 (0.93) 30 (1.02) 54 (0.93) 22 (0.81)  
No response 1012 (8.84) 211 (7.17) 501 (8.63) 300 (11.1)  

Marital Status     0.65 
Married 5969 (52.14) 1809 (61.47) 3031 (52.24) 1129 (41.77)  
Separated 237 (2.07) 37 (1.26) 111 (1.91) 89 (3.29)  
Widowed 437 (3.82) 99 (3.36) 246 (4.24) 92 (3.4)  
Never Married 2149 (18.77) 489 (16.61) 1065 (18.35) 595 (22.01)  
Living Together 671 (5.86) 157 (5.33) 345 (5.95) 169 (6.25)  
Divorced 1218 (10.64) 229 (7.78) 623 (10.73) 366 (13.54)  
No response 767 (6.7) 123 (4.18) 381 (6.57) 263 (9.73)  

Education (years):     0.37 
≤12 342 (2.99) 73 (2.48) 159 (2.74) 110 (4.07)  
13-16 3346 (29.23) 742 (25.21) 1606 (27.68) 998 (36.92)  
17-20 6033 (52.7) 1687 (57.32) 3135 (54.03) 1211 (44.80)  
≥21 1025 (8.95) 327 (11.11) 554 (9.55) 144 (5.33)  
No response 702 (6.13) 114 (3.87) 348 (6) 240 (8.88)  

Validation dataset      
Total: 3817 (23.08) 931 (24.39) 2346 (61.46) 540 (14.15)  
Age (years):     0.76 

18-29 490 (12.84) 119 (12.78) 299 (12.75) 72 (13.33)  
30-39 644 (16.87) 156 (16.76) 386 (16.45) 102 (18.89)  
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40-49 713 (18.68) 144 (15.47) 439 (18.71) 130 (24.07)  
50-59 768 (20.12) 165 (17.72) 485 (20.67) 118 (21.85)  
60-69 682 (17.81) 198 (21.27) 414 (17.65) 70 (12.96)  
≥70 510 (13.36) 147 (15.79) 316 (13.47) 47 (8.7)  
No response 10 (0.26) 2 (0.21) 7 (0.3) 1 (0.19)  

Sex     0.87 
Female 2496 (65.39) 589 (63.27) 1564 (66.67) 343 (63.52)  
Male 1193 (31.25) 322 (34.59) 698 (29.75) 173 (32.04)  
No response 128 (3.35) 20 (2.15) 84 (3.58) 24 (4.44)  

Ethnicity     0.87 
Hispanic/Latino 386 (10.11) 94 (10.1) 221 (9.42) 71 (13.15)  
Non-Hispanic/Non-Latino 2797 (73.28) 688 (73.9) 1747 (74.47) 362 (67.04)  
Patient refused 122 (3.2) 36 (3.87) 68 (2.9) 18 (3.33)  
Unknown 151 (3.96) 47 (5.05) 87 (3.71) 17 (3.15)  
No response 361 (9.46) 66 (7.09) 223 (9.51) 72 (13.33)  

Race     0.99 
American Indian or Alaska Native 21 (0.55) 5 (0.54) 12 (0.51) 4 (0.74)  
Asian 323 (8.46) 90 (9.67) 189 (8.06) 44 (8.15)  
Asian, non-Hispanic 2 (0.05) 0 (0) 1 (0.04) 1 (0.19)  
Black or African American 124 (3.25) 32 (3.44) 71 (3.03) 21 (3.89)  
Black, non-Hispanic 2 (0.05) 1 (0.11) 1 (0.04) 0 (0)  
Native American, Hispanic 0 (0) 0 (0) 0 (0) 0 (0)  
Native American, non-Hispanic 1 (0.03) 1 (0.11) 0 (0) 0 (0)  
Native Hawaiian or Other Pacific 15 (0.39) 4 (0.43) 8 (0.34) 3 (0.56)  
Other 647 (16.95) 161 (17.29) 388 (16.54) 98 (18.15)  
Other, Hispanic 5 (0.13) 2 (0.21) 3 (0.13) 0 (0)  
Other, non-Hispanic 0 (0) 0 (0) 0 (0) 0 (0)  
Patient Refused 121 (3.17) 37 (3.97) 66 (2.81) 18 (3.33)  
Unknown 134 (3.51) 42 (4.51) 77 (3.28) 15 (2.78)  
White 2021 (52.95) 480 (51.56) 1283 (54.69) 258 (47.78)  
White, Hispanic 0 (0) 0 (0) 0 (0) 0 (0)  
White, non-Hispanic 36 (0.94) 9 (0.97) 22 (0.94) 5 (0.93)  
No response 365 (9.56) 67 (7.2) 225 (9.59) 73 (13.52)  

Marital Status     0.76 
Married 1991 (52.16) 529 (56.82) 1230 (52.43) 232 (42.96)  
Separated 99 (2.59) 15 (1.61) 59 (2.51) 25 (4.63)  
Widowed 157 (4.11) 49 (5.26) 89 (3.79) 19 (3.52)  
Never Married 684 (17.92) 162 (17.40) 420 (17.90) 102 (18.89)  
Living Together 243 (6.37) 55 (5.91) 152 (6.48) 36 (6.67)  
Divorced 396 (10.37) 81 (8.7) 250 (10.66) 65 (12.04)  
No response 247 (6.48) 40 (4.3) 146 (6.22) 61 (11.3)  

Education (years):     0.21 
≤12 108 (2.83) 25 (2.69) 53 (2.26) 30 (5.56)  
13-16 1140 (29.87) 241 (25.89) 700 (29.84) 199 (36.85)  
17-20 1995 (52.27) 529 (56.82) 1245 (53.07) 221 (40.93)  
≥21 331 (8.67) 93 (9.99) 207 (8.82) 31 (5.74)  
No response 243 (6.37) 43 (4.62) 141 (6.01) 59 (10.93)  

Longitudinal dataset (at baseline)      
Total: 1273 (7.70) 263 (20.66) 827 (64.96) 183 (14.38)  
Age (years):     0.14 

18-29 169 (13.28) 34 (12.93) 111 (13.42) 24 (13.11)  
30-39 184 (14.45) 35 (13.31) 123 (14.87) 26 (14.21)  
40-49 263 (20.66) 42 (15.97) 172 (20.8) 49 (26.78)  
50-59 275 (21.6) 47 (17.87) 181 (21.89) 47 (25.68)  
60-69 229 (17.99) 56 (21.29) 144 (17.41) 29 (15.85)  
≥70 151 (11.86) 49 (18.63) 95 (11.49) 7 (3.83)  
No response 2 (0.16) 0 (0) 1 (0.12) 1 (0.55)  

Sex     0.80 
Female 865 (67.95) 172 (65.4) 560 (67.71) 133 (72.68)  
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Male 367 (28.83) 84 (31.94) 239 (28.9) 44 (24.04)  
No response 41 (3.22) 7 (2.66) 28 (3.39) 6 (3.28)  

Ethnicity     0.89 
Hispanic/Latino 129 (10.13) 31 (11.79) 71 (8.59) 27 (14.75)  
Non-Hispanic/Non-Latino 998 (78.4) 207 (78.7) 652 (78.84) 139 (75.96)  
Patient refused 43 (3.38) 7 (2.66) 30 (3.63) 6 (3.28)  
Unknown 47 (3.69) 10 (3.8) 33 (3.99) 4 (2.19)  
No response 56 (4.4) 8 (3.04) 41 (4.96) 7 (3.83)  

Race     0.95 
American Indian or Alaska Native 10 (0.79) 3 (1.14) 6 (0.73) 1 (0.55)  
Asian 90 (7.07) 20 (7.6) 56 (6.77) 14 (7.65)  
Asian, non-Hispanic 0 (0) 0 (0) 0 (0) 0 (0)  
Black or African American 31 (2.44) 7 (2.66) 15 (1.81) 9 (4.92)  
Black, non-Hispanic 0 (0) 0 (0) 0 (0) 0 (0)  
Native American, Hispanic 0 (0) 0 (0) 0 (0) 0 (0)  
Native American, non-Hispanic 0 (0) 0 (0) 0 (0) 0 (0)  
Native Hawaiian or Other Pacific 3 (0.24) 1 (0.38) 1 (0.12) 1 (0.55)  
Other 239 (18.77) 58 (22.05) 136 (16.44) 45 (24.59)  
Other, Hispanic 0 (0) 0 (0) 0 (0) 0 (0)  
Other, non-Hispanic 0 (0) 0 (0) 0 (0) 0 (0)  
Patient Refused 35 (2.75) 7 (2.66) 22 (2.66) 6 (3.28)  
Unknown 51 (4.01) 8 (3.04) 35 (4.23) 8 (4.37)  
White 740 (58.13) 148 (56.27) 501 (60.58) 91 (49.73)  
White, Hispanic 1 (0.08) 0 (0) 1 (0.12) 0 (0)  
White, non-Hispanic 12 (0.94) 2 (0.760) 10 (1.21) 0 (0)  
No response 61 (4.79) 9 (3.42) 44 (5.32) 8 (4.37)  

Marital Status     0.52 
Married 688 (54.05) 151 (57.41) 461 (55.74) 76 (41.53)  
Separated 19 (1.49) 2 (0.76) 12 (1.45) 5 (2.73)  
Widowed 42 (3.3) 14 (3.32) 22 (2.66) 6 (3.28)  
Never Married 272 (21.37) 49 (18.63) 174 (21.04) 49 (26.78)  
Living Together 80 (6.28) 18 (6.84) 49 (5.93) 13 (7.1)  
Divorced 157 (12.33) 27 (10.27) 100 (12.09) 30 (16.39)  
No response 15 (1.18) 2 (0.76) 9 (1.09) 4 (2.19)  

Education (years):     0.06 
≤12 21 (1.65) 4 (1.52) 12 (1.45) 5 (2.73)  
13-16 384 (30.16) 72 (27.37) 231 (27.93) 81 (44.26)  
17-20 747 (58.68) 159 (60.46) 502 (60.70) 86 (46.99)  
≥21 109 (8.56) 23 (8.75) 77 (9.31) 9 (4.92)  
No response 12 (0.94) 5 (1.9) 5 (0.6) 2 (1.09)  

Table 1. Participants’ demographic information as per dataset and across the three clusters. Number of 
patients is indicated, with % in parenthesis. * Reflects the results of a Chi2 test (categories with less than a minimum 
of 5 patients per group were removed) comparing across clusters. Similar tests across datasets found no differences 
(p-values>0.74). 
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Table 2. 
 Descriptive (M±SD) Main Effect of Cluster C1 vs. C2 C1 vs. C3 C2 vs. C3 

 C1 C2 C3 F df P* P^ Cohen's D P^ Cohen's D P^ Cohen's D 

Clustering symptoms:             
    Fatigue 47.36±8.82 57.97±7.63 67.64±6.68 4849.83 2, 11445 <0.0001 <0.0001 1.29 <0.0001 2.59 <0.0001 1.35 

    Sleep Disturbance 48.84±8.92 55.26±7.35 64.24±7.58 2742.75 2, 11445 <0.0001 <0.0001 0.79 <0.0001 1.86 <0.0001 1.20 

    Sleep Impairment 45.78±9.09 55.45±6.79 65.92±6.55 5218.07 2, 11445 <0.0001 <0.0001 1.21 <0.0001 2.54 <0.0001 1.57 

    Depression 42.29±6.82 53.87±6.34 63.82±6.95 7515.97 2, 11445 <0.0001 <0.0001 1.76 <0.0001 3.13 <0.0001 1.50 

    Anxiety 44.2±7.26 54.76±6.83 64.81±6.56 6334.6 2, 11445 <0.0001 <0.0001 1.50 <0.0001 2.98 <0.0001 1.50 

    Anger 39.11±7.71 49.18±7.38 59.26±8.23 4860.57 2, 11445 <0.0001 <0.0001 1.33 <0.0001 2.53 <0.0001 1.29 

    Social Isolation 38.22±6.67 47.48±7.29 55.61±7.89 4034.82 2, 11445 <0.0001 <0.0001 1.33 <0.0001 2.38 <0.0001 1.07 

    Emotional Support 56.94±9.23 49.99±8.56 47.4±8.81 933.58 2, 11445 <0.0001 <0.0001 0.78 <0.0001 1.06 <0.0001 0.30 

    Satisfaction w/ Soc. Roles 52.91±9.14 41.71±7.1 35.79±7.6 3614.51 2, 11445 <0.0001 <0.0001 1.37 <0.0001 2.04 <0.0001 0.80 

Pain-specific measures:             
    Pain Intensity 4.93±2.34 5.86±1.98 7.01±1.76 734.67 2, 11445 <0.0001 <0.0001 0.50 <0.0001 1.49 <0.0001 0.92 

    # Bodymap Segments 7.62±8.43 11.39±11.39 17.99±16.09 461.19 2, 9916 <0.0001 <0.0001 0.27 <0.0001 1.29 <0.0001 0.58 

    Pain Duration 86.5±119.99 95.91±122.92 101.8±116.73 9.74 2, 9477 <0.0001 <0.002 0.08 <0.0001 0.18 0.061 0.07 

    Pain Interference 57.34±7.97 63.52±6.45 69.29±5.78 2227.08 2, 11445 <0.0001 <0.0001 1.01 <0.0001 2.62 <0.0001 1.41 

    Pain Behavior 54.26±6.82 58.39±4.39 61.53±3.14 1575.07 2, 11445 <0.0001 <0.0001 1.08 <0.0001 2.34 <0.0001 1.41 

    Physical function 44.13±10.18 37.4±8.49 32.5±6.95 467.67 2, 4081 <0.0001 <0.0001 0.87 <0.0001 1.94 <0.0001 1.00 

    Phys. Func.-Mobility 47.69±9.88 41.49±9.26 36.79±8.13 642.56 2, 7361 <0.0001 <0.0001 0.71 <0.0001 1.66 <0.0001 0.82 

    Phys. Func.-Up. Extrem. 46.64±9.52 40.49±10.3 34.71±9.77 640.15 2, 7361 <0.0001 <0.0001 0.61 <0.0001 1.64 <0.0001 0.84 

    Pain Catastrophizing 12.67±9.88 20.99±10.97 32.37±11.15 2237.26 2, 10795 <0.0001 <0.0001 0.75 <0.0001 2.54 <0.0001 1.44 

Table 2. Clustering symptoms and pain-specific measures as per the three clusters in the training dataset. M=mean, SD=standard deviation; C1=Cluster1, 
C2=Cluster2; C3=Cluster3. *Bonferroni threshold for ANOVA main effects of cluster is set at p=0.0028 ^Bonferroni threshold for t-test comparisons between 
each two clusters is set at p=0. 0009 
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Table 3. 
 Descriptive (M±SD) Main Effect of Cluster C1 vs. C2 C1 vs. C3 C2 vs. C3 

 C1 C2 C3 F df P* P^ Cohen's D P^ Cohen's D P^ Cohen's D 

Clustering symptoms:             
    Fatigue 53.49±10.23 59.53±9.33 65.75±9.02 61.27 3, 1269 <0.0001 <0.0001 0.62 <0.0001 1.27 <0.0001 0.68 

    Sleep Disturbance 50.5±9.42 56.35±8.62 62.76±9.12 69.52 3, 1269 <0.0001 <0.0001 0.65 <0.0001 1.32 <0.0001 0.72 

    Sleep Impairment 49.68±9.76 57.25±8.46 64.46±8.72 104.78 3, 1269 <0.0001 <0.0001 0.83 <0.0001 1.60 <0.0001 0.84 

    Depression 46.19±8.70 54.6±8.35 63.13±8.39 149.00 3, 1269 <0.0001 <0.0001 0.99 <0.0001 1.98 <0.0001 1.02 

    Anxiety 47.35±9.04 56.33±8.24 64.5±8.45 153.95 3, 1269 <0.0001 <0.0001 1.04 <0.0001 1.96 <0.0001 0.98 

    Anger 42.04±9.74 50.36±9.14 59.05±9.57 121.55 3, 1269 <0.0001 <0.0001 0.88 <0.0001 1.76 <0.0001 0.93 

    Social Isolation 40.68±8.25 48.54±8.49 57.9±8.66 149.69 3, 1269 <0.0001 <0.0001 0.94 <0.0001 2.04 <0.0001 1.09 

    Emotional Support 54.92±9.64 51.66±9.38 47.99±8.44 20.93 3, 1269 <0.0001 <0.0001 0.34 <0.0001 0.76 <0.0001 0.41 

    Satisfaction w/ Soc. Roles 48.37±10.11 42.65±8.22 36.14±7.51 75.65 3, 1269 <0.0001 <0.0001 0.62 <0.0001 1.37 <0.0001 0.83 

Pain-specific measures:             
    Pain Intensity 5.12±2.31 5.60±2.05 6.39±1.93 13.76 3, 1269 <0.0001 <0.005 0.24 <0.0001 0.88 <0.0001 0.58 

    # Bodymap Segments 8.87±10.84 12.44±12.58 17.41±15.45 14.62 3, 1088 <0.0001 <0.0005 0.25 <0.0001 0.96 <0.0001 0.45 

    Pain Interference 60.72±8.29 63.63±7.31 67.91±7.07 33.25 3, 1269 <0.0001 <0.0001 0.40 <0.0001 1.39 <0.0001 0.86 

    Pain Behavior 56.23±5.57 58.69±4.18 61.07±2.65 46.04 3, 1269 <0.0001 <0.0001 0.70 <0.0001 1.64 <0.0001 1.27 

    Physical function 40.26±9.90 36.86±8.39 31.96±6.75 12.89 3, 488 <0.0001 <0.005 0.45 <0.0001 1.40 <0.0001 1.03 

    Phys. Func.-Mobility 43.86±10.51 40.04±10.09 35.13±9.48 18.63 3, 777 <0.0001 <0.0001 0.39 <0.0001 1.22 <0.0001 0.73 

    Phys. Func.-Up. Extrem. 44.92±10.00 41.69±8.70 37.88±8.56 14.52 3, 777 <0.0001 <0.0001 0.37 <0.0001 1.14 <0.0001 0.63 

    Pain Catastrophizing 12.57±10.99 18.72±12.14 29.57±12.62 73.07 3, 1269 <0.0001 <0.0001 0.50 <0.0001 1.98 <0.0001 1.22 

Table 3. Clustering symptoms and pain-specific measures in the longitudinal dataset at follow-up, as per the three clusters assigned at baseline. 
M=mean, SD=standard deviation; C1=Cluster1, C2=Cluster2; C3=Cluster3. *Bonferroni threshold for ANCOVA main effects of cluster is set at p=0.0029 
^Bonferroni threshold for t-test comparisons between each two clusters is set at p=0.001 
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Figure 1. 

 
Fig. 1. Cluster development. (A) An illustration of a simulated CHOIR report used at the Stanford Pain Clinics. 
The CHOIR body map with marked regions in pain is on the left, and multiple normalized symptom scores are listed 
on the right. (B) The dendrogram reflecting results of the agglomerative hierarchical clustering algorithm as 
implemented on the training dataset (n=11448) and using the nine clustering symptoms. The three-cluster solution is 
reflected by the different shades of blue per cluster. Cluster1 comprised of 25.71% of the patients (n=2943), 
Cluster2 of 50.68% (n=5802), and Cluster3 of 23.61% (n=2703). (C) The plot shows the gap statistic values for 
different k number of clusters, and indicating with a red dashed line the optimal solution of k=3 since it is the 
smallest value of k that is within one standard deviation of the value of k that maximizes the gap statistic. The error 
bars represent one standard error of the estimated gap statistic. (D) The plot shows the percent contribution to the 
overall separability between clusters of each of the nine clustering symptoms, in order from most contributing 
(Depression=15.20%) to least (Emotional Support=3.19%).
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Figure 2. 

 
Fig. 2. Cluster characterization and diagnostic-like validation. A graded scale of severity is manifested across all 
clustering symptoms (A-I), as well as all pain-specific measures (J-R), such that Cluster1 reflects a low severity, 
Cluster2 a medium severity, and Cluster3 the worst severity. Raincloud plots combining jittered raw data, data 
distribution, and boxplots were generated using open source code (83). Complementary descriptive and inferential 
statistical information is provided in Table 2. (S) The plot shows the % endorsement of 11 body regions as 
distributed in each of the clusters. There was no significant association in the distribution of % endorsed body 
regions between the clusters (p=0.99). NRS=Numerical Rating Scale; PCS=Pain Catastrophizing Scale. 
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Figure 3.  

 
Fig. 3. Alternatives to the symptom-based clustering solution. (A) The resulting dendrogram reflecting results of 
the agglomerative hierarchical clustering algorithm (AHCA) as implemented on the training dataset (n=11448) and 
using the Pain Intensity measure. The tree is not clustered since the optimal solution was of one cluster. (B) The plot 
shows the gap statistic values for different k number of clusters, and indicating with a red dashed line the optimal 
solution of k=1. The error bars represent one standard error of the estimated gap statistic. (C) and (D) are plots that 
show the distribution of all data points in the training dataset on the three primary principal components (PC) 
derived from the nine-dimensional clustering symptoms, and colored according to either the three clusters generated 
from the AHCA of these symptoms (C) or according to the three clusters generated from the AHCA of pain 
intensity (D). The separability between clusters is clearly seen in the clustering symptoms’ solution, while a 
substantial overlap is seen in the pain intensity solution. (E) The plot shows the correlation between the first PC and 
the PROMIS global health (GH) mental subscale in the training dataset (available for n=10835): r=-0.78, p<0.001. 
(F) Congruence matrix between the clustering symptoms’ three-cluster solution, and the tertiles labeled according to 
the PROMIS GH mental subscale. The overall level of congruence was 62.26%.  
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Figure 4. 

 
Fig. 4. Predictive validation of the clusters. All raincloud plots for the clustering symptoms (A-I) as well as for the 
pain-specific measures (J-Q) reflect severity of assessment at follow-up (longitudinal dataset, n=1273), based on 
cluster identification at baseline. Complementary descriptive and inferential statistical information is provided in 
Table 3. The graded scale of severity is manifested also here, such that those labeled as Cluster1 at baseline continue 
to have at the group level the lowest level of severity across all measures, and the same for Cluter2 and Cluster3 
being the medium and worst severity, respectively. 
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Figure 5. 

 
Fig. 5. Cluster dynamics over time. (A) Sankey plot indicating the transition of patients across clusters over time 
in the longitudinal dataset (n=1273). Width of lines reflect the extent of movement between time points. One 
hundred and eighty patients (14.14%) had an improvement in their condition, 214 patients (16.81%) had a 
worsening in their condition, and 879 (69.05%) remained in the same cluster, between baseline assessment and 
follow-up. (B) Plot of the smoothed kernel density estimate, or relative likelihood, of observing a % change in the 
bootstrapped distribution of patients moving across clusters within a randomized range of ±3 point measurement 
error. The red dashed line marks the average set at M=5.81%±0.54SD. The smoothed curve indicates the exact 
likelihood of observing an exact percent change (i.e., the x-axis value). The bars behind the density curve reflect the 
same information, averaged at 0.25 sized bins. (C) Bar plot comparing the average percent change of patients 
moving across clusters from the bootstrap distribution (Standard Error=0.017, too small to be seen), with the actual 
30.95% found over time in the longitudinal dataset.  
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Fig. S1. CHOIR body map with 74 numbered segments and 11 colored body regions (see also 
Table S2). 
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Fig. S2. Clusters validation in the validation dataset (n=3817). A graded scale of severity is manifested again across 
all clustering symptoms (A-I), as well as on almost all pain-specific measures (J-R), except for pain duration (L, 
p=0.724), such that Cluster1 reflects a low severity, Cluster2 a medium severity, and Cluster3 the worst severity. 
Raincloud plots combining jittered raw data, data distribution, and boxplots were generated using open source code 
(83). Complementary descriptive and inferential statistical information is provided in Table S3. (S) The plot shows 
the % endorsement of 11 body regions as distributed in each of the clusters. There was no significant association in 
the distribution of % endorsed body regions between the clusters (Chi2=1.78, p=0.99). NRS=Numerical Rating 
Scale; PCS=Pain Catastrophizing Scale. 
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Fig. S3. Clusters validation in the longitudinal dataset, at baseline (n=1273). A graded scale of severity is 
manifested again across all clustering symptoms (A-I), as well as on almost all pain-specific measures (J-R), except 
for pain duration (L, p=0.12), such that Cluster1 reflects a low severity, Cluster2 a medium severity, and Cluster3 
the worst severity. Raincloud plots combining jittered raw data, data distribution, and boxplots were generated using
open source code (83). Complementary descriptive and inferential statistical information is provided in Table S4. (S)
The plot shows the % endorsement of 11 body regions as distributed in each of the clusters. There was no significant
association in the distribution of % endorsed body regions between the clusters (Chi2=4.43, p=0.99). 
NRS=Numerical Rating Scale; PCS=Pain Catastrophizing Scale. 
  

 

ng 
(S) 
nt 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.21.21255885doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.21.21255885
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. S4. Principal Component Analysis (PCA) applied on the nine clustering symptoms. (A) 
Scree plot indicating the percent of explained variance in the data by each of the nine principal 
components (PCs). For example, 55.42% of the variance is explained by PC 1. (B) The percent 
contribution of each of the nine clustering symptoms in accounting for the variability in the first 
three PCs. Variables that are mostly contributing to PC 1 are the most important in explaining 
the variability in the dataset. The negative affect-related factors Depression, Anxiety, and Anger, 
are ranked 1st, 2nd, and 4th, respectively, and contribute together 42.2% to PC 1. 
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N (%) Total Cluster1 Cluster2 Cluster3 p* 
Total: 16538 4137 (25.02) 8975 (54.27) 3426 (20.72)  
Age (years):     0.97 

18-29 2057 (12.44) 525 (12.69) 1070 (11.92) 462 (13.49)  
30-39 2794 (16.89) 701 (16.94) 1463 (16.3) 630 (18.39)  
40-49 3103 (18.76) 692 (16.73) 1640 (18.27) 771 (22.5)  
50-59 3497 (21.15) 776 (18.76) 1930 (21.5) 791 (23.09)  
60-69 2882 (17.43) 797 (19.27) 1606 (17.89) 479 (13.98)  
≥70 2173 (13.14) 638 (15.42) 1247 (13.89) 288 (8.41)  
No response 32 (0.19) 8 (0.19) 19 (0.21) 5 (0.15)  

Sex     0.96 
Female 10701 (64.71) 2578 (62.32) 5824 (64.89) 2299 (67.1)  
Male 5283 (31.94) 1431 (34.59) 2841 (31.65) 1011 (29.51)  
No response 554 (3.35) 128 (3.09) 310 (3.45) 116 (3.39)  

Ethnicity     0.97 
Hispanic/Latino 1677 (10.14) 429 (10.37) 807 (8.99) 441 (12.87)  
Non-Hispanic/Non-Latino 12322 (74.51) 3125 (75.54) 6800 (75.77) 2397 (69.96)  
Patient refused 514 (3.11) 137 (3.31) 278 (3.1) 99 (2.89)  
Unknown 611 (3.69) 168 (4.06) 331 (3.69) 112 (3.27)  
No response 1414 (8.55) 278 (6.72) 759 (8.46) 377 (11)  

Race     0.99 
American Indian or Alaska Native 79 (0.48) 17 (0.41) 40 (0.45) 22 (0.64)  
Asian 1348 (8.15) 397 (9.6) 714 (7.96) 237 (6.92)  
Asian, non-Hispanic 10 (0.06) 1 (0.02) 6 (0.07) 3 (0.09)  
Black or African American 560 (3.39) 141 (3.41) 270 (3.01) 149 (4.35)  
Black, non-Hispanic 10 (0.06) 4 (0.1) 3 (0.03) 3 (0.09)  
Native American, Hispanic 1 (0.01) 0 (0) 0 (0) 1 (0.03)  
Native American, non-Hispanic 2 (0.01) 1 (0.02) 1 (0.01) 0 (0)  
Native Hawaiian or Other Pacific 83 (0.5) 19 (0.46) 44 (0.49) 20 (0.58)  
Other 2807 (16.97) 706 (17.07) 1453 (16.19) 648 (18.91)  
Other, Hispanic 16 (0.1) 3 (0.07) 12 (0.13) 1 (0.03)  
Other, non-Hispanic 8 (0.05) 2 (0.05) 5 (0.06) 1 (0.03)  
Patient Refused 482 (2.91) 128 (3.09) 258 (2.87) 96 (2.8)  
Unknown 628 (3.8) 163 (3.94) 342 (3.81) 123 (3.59)  
White 8909 (53.87) 2226 (53.81) 4970 (55.38) 1713 (50)  
White, Hispanic 3 (0.02) 1 (0.02) 1 (0.01) 1 (0.03)  
White, non-Hispanic 154 (0.93) 41 (0.99) 86 (0.96) 27 (0.79)  
No response 1438 (8.7) 287 (6.94) 770 (8.58) 381 (11.12)  

Marital Status     0.72 
Married 8648 (52.29) 2489 (60.16) 4722 (52.61) 1437 (41.91)  
Separated 355 (2.15) 54 (1.31) 182 (2.03) 119 (3.47)  
Widowed 636 (3.85) 162 (3.92) 357 (3.98) 117 (3.42)  
Never Married 3105 (18.77) 700 (16.92) 1659 (18.48) 746 (21.77)  
Living Together 994 (6.01) 230 (5.56) 546 (6.08) 218 (6.36)  
Divorced 1771 (10.71) 337 (8.15) 973 (10.84) 461 (13.46)  
No response 1029 (6.22) 165 (3.99) 536 (5.97) 328 (9.57)  

Education (years):     0.36 
≤12 471 (2.85) 102 (2.47) 224 (2.5) 145 (4.23)  
13-16 4870 (29.45) 1055 (25.5) 2537 (28.27) 1278 (37.3)  
17-20 8775 (53.06) 2375 (57.41) 4882 (54.4) 1518 (44.31)  
≥21 1465 (8.86) 443 (10.71) 838 (9.34) 184 (5.37)  
No response 957 (5.79) 162 (3.92) 494 (5.5) 301 (8.79)  
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Table S1. Participants’ demographic information for the entire dataset and across the three 
clusters. Number of patients is indicated, with % in parenthesis. * Reflects the results of a Chi2 

test (categories with less than a minimum of 5 patients per group were removed) comparing 
across clusters. 

 

 

 

Body region  CHOIR body map segments  

Front of Head 1, 2, 3, 4 

Back of Head 37, 38, 39, 40 

Neck  5, 6, 41, 42  

Chest/Abdomen 8, 9, 16, 17 

Upper Back  44, 45, 48, 49 

Lower Back   54, 55 

Pelvic  21, 22 

Right Shoulder/Arm 7, 11, 13, 15, 19, 25, 46, 50, 52, 56, 62, 64 

Left Shoulder/Arm 10, 12, 14, 18, 24, 28, 43, 47, 51, 53, 57, 63 

Right Hip/Buttocks/Leg 20, 26, 29, 31, 33, 35, 60, 61, 66, 68, 70, 72, 74 

Left Hip/Buttocks/Leg 23, 27, 30, 32, 34, 36, 58, 59, 65, 67, 69, 71, 73  

Table S2. CHOIR body map regions and their associated segments (see also Fig. S1). 
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 Descriptive (M±SD) Main Effect of Cluster C1 vs. C2 C1 vs. C3 C2 vs. C3 

 C1 C2 C3 F df P* P^ Cohen's D P^ Cohen's D P^ Cohen's D 

Clustering symptoms:             

    Fatigue 49.84±9.68 58.35±8.96 67.37±7.61 676.62 2, 3814 <0.0001 <0.0001 0.91 <0.0001 2.01 <0.0001 1.09 

    Sleep Disturbance 49.13±8.67 56.45±7.29 65.97±7.54 830.78 2, 3814 <0.0001 <0.0001 0.91 <0.0001 2.07 <0.0001 1.28 

    Sleep Impairment 46.13±9.1 56.56±7.28 67.33±6.86 1344.73 2, 3814 <0.0001 <0.0001 1.27 <0.0001 2.63 <0.0001 1.52 

    Depression 41.77±6.53 54.84±6.59 67.23±5.93 2785.15 2, 3814 <0.0001 <0.0001 1.99 <0.0001 4.08 <0.0001 1.98 

    Anxiety 43.14±6.75 55.98±6.37 68.12±5.68 2773.84 2, 3814 <0.0001 <0.0001 1.96 <0.0001 4.00 <0.0001 2.01 

    Anger 37.58±6.96 50.05±7.03 62.33±7.65 2175.22 2, 3814 <0.0001 <0.0001 1.78 <0.0001 3.38 <0.0001 1.67 

    Social Isolation 37.25±6.65 47.94±7.36 58.16±7.57 1511.44 2, 3814 <0.0001 <0.0001 1.52 <0.0001 2.93 <0.0001 1.37 

    Emotional Support 53.99±10.11 51.04±8.98 48.68±8.84 61.47 2, 3814 <0.0001 <0.0001 0.31 <0.0001 0.56 <0.0001 0.26 

    Satisfaction w/ Soc. Roles 51.93±10.04 41.79±8.17 34.73±8.14 762.22 2, 3814 <0.0001 <0.0001 1.11 <0.0001 1.88 <0.0001 0.87 

Pain-specific measures:             

    Pain Intensity 5.13±2.43 5.89±1.96 7.21±1.79 173.39 2, 3814 <0.0001 <0.0001 0.40 <0.0001 1.50 <0.0001 1.04 

    # Bodymap Segments 8.46±9.68 11.69±11.39 17.71±15.67 88.49 2, 3279 <0.0001 <0.0001 0.24 <0.0001 1.15 <0.0001 0.54 

    Pain Duration 95.14±132.12 97.03±124.25 99.51±119.86 0.17 2, 3613 0.846 0.724 0.02 0.575 0.05 0.71 0.03 

    Pain Interference 58±8.34 63.79±6.56 70.39±5.87 557.71 2, 3814 <0.0001 <0.0001 0.93 <0.0001 2.67 <0.0001 1.59 

    Pain Behavior 54.89±6.73 58.65±4.38 61.92±3.32 371.14 2, 3814 <0.0001 <0.0001 0.97 <0.0001 2.27 <0.0001 1.39 

    Physical function 42.62±10.71 37.26±8.49 31.44±6.92 106.97 2, 1378 <0.0001 <0.0001 0.69 <0.0001 1.86 <0.0001 1.19 

    Phys. Func.-Mobility 46.09±10.63 41.75±9.49 36.17±8.42 111.29 2, 2433 <0.0001 <0.0001 0.48 <0.0001 1.48 <0.0001 0.94 

    Phys. Func.-Up. Extrem. 45.28±10.28 40.79±10.05 34±10.23 128.48 2, 2433 <0.0001 <0.0001 0.44 <0.0001 1.59 <0.0001 0.94 

    Pain Catastrophizing 12.86±10.19 21.6±11.12 36.37±9.91 753.77 2, 3598 <0.0001 <0.0001 0.83 <0.0001 2.99 <0.0001 2.11 

Table S3. Clustering symptoms and pain-specific measures as per the three clusters in the validation dataset (n=3817). M=mean, SD=standard 

deviation; C1=Cluster1, C2=Cluster2; C3=Cluster3. *Bonferroni threshold for ANOVA main effects of cluster is set at p=0.0028 ^Bonferroni 

threshold for t-test comparisons between each two clusters is set at p=0.0009 
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 Descriptive (M±SD) Main Effect of Cluster C1 vs. C2 C1 vs. C3 C2 vs. C3 

 C1 C2 C3 F df P* P^ Cohen's D P^ Cohen's D P^ Cohen's D 

Clustering symptoms:             

    Fatigue 53.02±9.47 59.37±8.6 67.62±7.16 155.85 2, 1270 <0.0001 <0.0001 0.70 <0.0001 1.74 <0.0001 1.04 

    Sleep Disturbance 48.68±8.87 56.85±7.23 64.93±7.2 252.70 2, 1270 <0.0001 <0.0001 1.01 <0.0001 2.01 <0.0001 1.12 

    Sleep Impairment 46.29±8.44 56.73±7.85 66.78±6.56 381.60 2, 1270 <0.0001 <0.0001 1.28 <0.0001 2.71 <0.0001 1.39 

    Depression 43.3±6.53 54.84±6.65 66.97±5.94 721.08 2, 1270 <0.0001 <0.0001 1.75 <0.0001 3.79 <0.0001 1.92 

    Anxiety 44.26±6.5 55.92±6.52 67.4±5.48 727.29 2, 1270 <0.0001 <0.0001 1.79 <0.0001 3.85 <0.0001 1.91 

    Anger 38.79±7.66 50.44±7.26 61.28±7.13 523.95 2, 1270 <0.0001 <0.0001 1.56 <0.0001 3.04 <0.0001 1.51 

    Social Isolation 38.24±6.84 48.5±7.13 59.19±6.44 495.58 2, 1270 <0.0001 <0.0001 1.47 <0.0001 3.15 <0.0001 1.57 

    Emotional Support 53.43±9.96 50.97±9.47 47.74±8.17 19.79 2, 1270 <0.0001 <0.0005 0.25 <0.0001 0.62 <0.0001 0.37 

    Satisfaction w/ Soc. Roles 49.6±9.91 41.02±7.81 33.52±6.81 218.01 2, 1270 <0.0001 <0.0001 0.96 <0.0001 1.89 <0.0001 1.02 

Pain-specific measures:             

    Pain Intensity 5.39±2.06 6.05±1.85 6.95±1.64 37.59 2, 1270 <0.0001 <0.0001 0.38 <0.0001 1.19 <0.0001 0.78 

    # Bodymap Segments 9.27±11.63 12.77±12.44 18.88±16.03 24.12 2, 980 <0.0001 0.0005 0.24 <0.0001 1.09 <0.0001 0.54 

    Pain Duration 118.85±161.08 99.14±123.74 114.22±128.99 2.10 2, 1017 0.12 0.06 0.16 0.78 0.05 0.19 0.17 

    Pain Interference 59.9±7.02 64.73±5.97 69.81±5.92 140.15 2, 1270 <0.0001 <0.0001 0.81 <0.0001 2.35 <0.0001 1.21 

    Pain Behavior 55.86±5.48 59.09±3.61 61.83±3.07 125.90 2, 1270 <0.0001 <0.0001 0.96 <0.0001 2.34 <0.0001 1.26 

    Physical function 41.42±8.82 37.23±8.16 31.74±6.33 58.40 2, 931 <0.0001 <0.0001 0.57 <0.0001 1.68 <0.0001 1.23 

    Phys. Func.-Mobility 45.1±9.1 40.41±9.53 34.98±8.36 16.21 2, 336 <0.0001 <0.0005 0.52 <0.0001 1.50 <0.001 0.92 

    Phys. Func.-Up. Extrem. 45.4±9.53 41.84±9.25 37.12±8.08 10.98 2, 336 <0.0001 <0.005 0.41 <0.0001 1.27 <0.005 0.83 

    Pain Catastrophizing 15.27±10.53 23.24±10.68 36.58±8.85 227.25 2, 1270 <0.0001 <0.0001 0.81 <0.0001 2.82 <0.0001 2.13 

Table S4. Clustering symptoms and pain-specific measures as per the three clusters in the longitudinal dataset, at baseline (n=1273). M=mean, 

SD=standard deviation; C1=Cluster1, C2=Cluster2; C3=Cluster3. *Bonferroni threshold for ANOVA main effects of cluster is set at p=0.0028 

^Bonferroni threshold for t-test comparisons between each two clusters is set at p=0.0009 
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Linkage methods  Agglomerative coefficient 
Single 0.440 

Average 0.670 
McQuitty 0.749 
Complete 0.846 

Ward 0.920 

Table S5. Agglomerative coefficient values of various linkage methods that were combined with 
the Euclidian distance metric. 
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