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Abstract

Background: Malaria elimination is the goal for Bioko Island, Equatorial Guinea.
Intensive interventions implemented since 2004 have reduced prevalence, but
progress has stalled in recent years. A challenge for elimination has been malaria
infections in residents acquired during travel to mainland Equatorial Guinea. We
quantify how off-island contributes to remaining malaria prevalence on Bioko
Island, and investigate the potential role of a pre-erythrocytic vaccine in making
further progress towards elimination.

Methods: We simulated malaria transmission on Bioko Island using a model
calibrated based on data from the Malaria Indicator Surveys (MIS) from
2015-2018, including detailed travel histories and malaria positivity by
rapid-diagnostic tests (RDTs), as well as geospatial estimates of malaria
prevalence. Mosquito population density was adjusted to fit local transmission,
conditional on importation rates under current levels of control and within-island
mobility. We evaluated the impact of two pre-erythrocytic vaccine distribution
strategies: mass treat and vaccinate, and prophylactic vaccination for off-island
travelers. We propagated uncertainty through the model through an ensemble of
simulations fit to the Bayesian joint posterior probability distribution of the
geospatial prevalence estimates.

Results: The simulations suggest that in Malabo, an urban city containing 80%
of the population, there are some pockets of residual transmission, but a large
proportion of prevalence is attributable to malaria importation by travelers.
Outside of Malabo, prevalence was mainly attributable to local transmission. We
assess the uncertainty in the local transmission vs. importation to be lowest
within Malabo and highest outside. Using a pre-erythrocytic vaccine to protect
travelers would have larger benefits than using the vaccine to protect residents of
Bioko Island from local transmission. In simulations, mass treatment and
vaccination had short-lived benefits, as malaria prevalence returned to current
levels as the vaccine’s efficacy waned. Prophylactic vaccination of travelers
resulted in longer-lasting reductions in prevalence. These projections were robust
to underlying uncertainty in prevalence estimates.

Conclusions: The modeled outcomes suggest that the volume of malaria cases
imported from the mainland is a partial driver of continued endemic malaria on
Bioko Island, and that continued elimination efforts on must account for human
travel activity.

Keywords: Malaria connectivity; Malaria importation; Human mobility; Human
travel; Mathematical modeling
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Background
Importation of malaria represents an important barrier to elimination in many

cases. Indeed, there are many known settings in which human travelers contribute

to outbreaks when they bring malaria parasites from a high-transmission setting to

a low-endemic or pre-elimination setting [1, 2, 3, 4]. It is important that malaria

elimination programs which operate in such settings understand the risk of re-

introduction of malaria parasites by visitors or by residents who travel away from

home and return with infections [5, 6, 7, 8].

Bioko Island in Equatorial Guinea represents a setting where malaria endemic-

ity has been reduced relative to neighboring areas in the region, and where peo-

ple travel frequently. The Bioko Island Malaria Control Project (BIMCP) began

in 2004, implementing an extensive program of indoor insecticide spraying, long-

lasting insecticidal net distribution, expanding access to diagnostics and treatment,

and surveillance. The program was later renamed as the Bioko Island Malaria Elim-

ination Project (BIMEP), reflecting the ambition to interrupt malaria transmission

on Bioko Island altogether. As of 2015, the average malaria parasite rate (Pf PR) in

children 2-14 years old has fallen from 0.43 to 0.11 [9]. At the same time, there has

been a sharp reduction in the viable vector population on the island [10, 11, 12].

Despite reductions in transmission, malaria persists across Bioko Island. Many ar-

eas remain receptive to malaria outbreaks, as was documented in Riaba District in

2019 [13]. The changes brought about through the BIMEP represent tremendous

progress, yet that progress has stagnated in recent years and prevalence has not

decreased further despite ongoing efforts to contribute to elimination [9, 14].

One hypothesis for why malaria persists in certain areas of Bioko Island is

that cases may be attributable to travelers to mainland Equatorial Guinea [9].

While Pf PR has decreased on Bioko Island since 2004, there has not been the

same concerted effort to reduce malaria burden in mainland Equatorial Guinea

and prevalence remains high in that region [15], estimated as 0.46 among all age

groups in a recent study [16]. One study of children found that those who reported

recent travel to the mainland were much more likely to be infected than those

who had not (56% vs 26% in 2013; 42% vs 18% in 2014) [6]. The same study also

found that areas with high proportion of travelers increased the risk of malaria

infection in non-travelers [6]. A subsequent analysis of island-wide surveillance data

produced geospatial estimates of malaria prevalence across Bioko Island, and found

significantly higher prevalence among travelers to mainland Equatorial Guinea [17].

The data collection efforts through BIMEP have resulted in a detailed under-

standing of the current state of malaria transmission on Bioko Island. The next

step, however, is to assess options for where and how to intervene against the dis-

ease. In this setting, the BIMEP needs to understand why it is that progress has

slowed and what changes that could be made to the malaria intervention program

are most likely to continue reducing the case burden on Bioko Island. To this end,

we extend the analysis of [17] using a simulation model to represent transmission

patterns across Bioko Island, to further quantify the fraction of cases attributable to

off-island travel, and lastly to predict the impact of possible changes to the current

set of interventions.
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We approach this problem using a simulation model of malaria transmission

patterns on Bioko Island. We construct the model to reflect our current best un-

derstanding of the epidemiological ground truth from 2015-2018. We then use the

model to quantify the fraction of cases which may be attributable either to local

transmission or to exposure while traveling. That is to say, we are able to map

where it is that people experience exposure risk, providing important and action-

able information for how and where to intervene. We also are able to use the model

to quantify the efficacy and impact of potential future interventions. Specifically,

we investigate the potential impact of distributing a vaccine which confers pre-

erythrocytic protection against malaria to see whether such an intervention could

result in eliminating malaria in the long term [18].

The structure of the paper is as follows: we will begin by describing the data

sources which we use to understand the transmission environment on Bioko Island.

We then describe our simulation model and how we used our data sources to cali-

brate the model — this calibration step is important, because it allows us to derive

local exposure risk from local estimates of prevalence. Knowing the local exposure

risk, we are then able to use the simulation to differentiate between cases resulting

from local transmission and cases acquired during travel. Overall, we are able to

quantify the importance of travel and importations in the transmission setting of

Bioko Island, and show that there are portions of the island where prevalence is

sustained through imported cases. Lastly, we simulate the impact of expanding the

current intervention package and deploying a vaccine against malaria.

Methods
Data sources

Much of the data which we use to design and calibrate our simulation model of

malaria transmission on Bioko Island was collected by the BIMEP and the National

Malaria Control Program (NMCP). Population census data were collected as part

of two campaigns for distributing long-lasting insecticidal nets across the island in

2015 and 2018 (Figure 1b) [19, 20, 21]. Although the bednet campaigns only visited

88% of households on the island and hence underestimated the overall population,

we rely on these data as they represent the most accurate map of human population

on the island. Since the beginning of malaria control on Bioko Island in 2004, the

BIMEP has performed extensive annual malaria indicator surveys (MIS) that have

collected epidemiological, demographic, and socioeconomic data. We draw upon

MIS data collected in each of the years from 2015 to 2018, which sampled an average

of 16,500 respondents each year, to analyze transmission patterns on Bioko Island

[22, 23, 24, 25]. MIS data were again collected in 2019 and 2020, but the analyses

in the present manuscript were performed before those data were available.

The MIS data include results from rapid diagnostic tests (RDT; CareStart

Malaria Pf/PAN (HRP2/pLDH) Ag Combo RDT, AccessBio Inc, Monmouth,

USA), used to diagnose survey participants for the presence of detectable Plas-

modium falciparum parasites (Figure 1c). The RDT results in the MIS data make

it possible to map the spatial distribution of occurrences of malaria infection. Guerra

et al. utilized the RDT data to produce geostatistical estimates of Plasmodium fal-

ciparum parasite rate (Pf PR) [17]. The geostatistical estimation techniques use the
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RDT results together with geospatial environmental covariates to estimate malaria

prevalence across the island, accounting for the uneven distribution of samples taken

by the survey [26]. These estimates allow us to see how the prevalence varies across

geographical space, with the highest prevalence on the island occurring along the

northwest coast and in the southeast; a reduced prevalence in the high population

density, urbanized areas in the capital city of Malabo; and reduced prevalence in

the elevated regions nearer to the center of the island. The overall mean estimated

Pf PR is around 0.12 for the entire island. Note that the Pf PR estimates reflect the

current level of interventions on the island. The Pf PR estimates are made for all

age groups, as there were no significant differences between Pf PR measurements

made for children (ages 2-10 years) and the overall sample population [17]. The me-

dian surface of Pf PR estimates are shown in Figure 1d, reproduced with permission

from [17].

The MIS asks respondents about recent travel history, providing information

on where it was that people could have become exposed. For the MIS in 2015-

2017, respondents reported whether they had recently taken a trip where they had

spent at least one night away from their home residence in the preceding 8 weeks.

Respondents who reported at least one trip also reported one of seven possible

destinations, to each of the regions of Malabo, Baney, Luba, Riaba, Moka, Ureka,

or off-island (Figure 1a). Most of the travelers (84%) reporting off-island travel

reported going to mainland Equatorial Guinea [17]. The 2018 MIS included an

additional question on travel duration, such that we could assess how many days

travelers had been away from home [27].

Given that so many travelers reported going to mainland Equatorial Guinea,

our model also required knowing estimates of prevalence in that region. We draw

the overall prevalence in the region of mainland Equatorial Guinea from the Malaria

Atlas Project, which estimated a median Pf PR of 0.43 in children aged 2-10 at the

time of MIS data collection [15]. This estimate is corroborated by a study conducted

in 2015 by Ncogo et al., which reported an overall Pf PR in the region to be 0.46

[16] among all age groups. The Ncogo et al. study did find geographical variation in

Pf PR, with elevated prevalence as high as 0.58 in rural areas and 0.34 in urban areas

[16], but the MIS travel data do not contain enough detail to report exactly where

travelers spent their time in the mainland. For this reason, along with the fact that

even in lower-prevalence areas the Pf PR remains far higher than on Bioko Island,

we use the median Pf PR estimate for the mainland region. That the prevalence is

so much higher on the mainland than on Bioko Island suggests that travelers would

experience a much higher risk of infection while visiting the mainland than they

would at home. This is consistent with the prior studies and analyses performed

which suggest that there is an elevated risk of prevalence among those who had

recently traveled to mainland Equatorial Guinea [6, 9, 17].

Lastly, the MIS data also included some basic information on treatment-seeking

behavior. Respondents reported whether they had recently experienced a fever and

whether they sought treatment for malaria.

Designing the simulation model

We constructed a family of models to simulate malaria transmission patterns on

Bioko Island, based on the census and epidemiological data collected from 2015-
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2018. The models are continuous-time, event-driven agent-based stochastic simu-

lations that describe how individual human hosts become infected through con-

tact with mosquito vectors in the environment; how malaria infections run their

course; and how infected individuals contribute to onward transmission of sub-

sequent infections. The models are spatially explicit, meaning that prevalence

and local transmission intensity are allowed to vary across geographical space.

The model also simulates human travel behavior, and human hosts may experi-

ence different levels of transmission risk as they move from one location to an-

other. Parameters describing local transmission and human mobility were fit to

be consistent with the geospatial analysis of prevalence and MIS data (see be-

low). Code supporting the simulations may be found in the macro.pfsi directory

at https://github.com/dtcitron/bioko_island_travel_materials, and an ex-

planation for how the simulation program works may be found in Section 1 of the

Supplementary Information.

Within the simulation, the resident population of Bioko Island is based on the

2018 census data, which were aggregated into 241 gridded 1km×1km map-areas [21]

(as shown in Figure 1b). Each populated map-area from the census is represented as

an isolated patch in the simulation, home to as many human hosts as in the corre-

sponding map-area from the census data. Patch residents spend most of their time

in their home patches but occasionally travel to other ones. To simulate malaria im-

portation, we also include a 242nd patch to represent the destination of off-island

travel (mainland Equatorial Guinea). This final patch serves as a boundary condi-

tion for the simulation: Bioko Island residents import cases through experiencing

exposure risk while traveling off-island, and the 242nd patch represents the off-island

transmission environment.

The core of the simulation model represents transmission of malaria parasites

between human hosts and the vectors. We base the core of our transmission model

on the Ross-Macdonald model, which includes a modeled description of human

hosts, the population dynamics of the vector population, how the vectors and hu-

mans interact with one another, and the course of infection in a malaria-afflicted

individual [28, 29].

Figure 2 shows a simplified schematic representing the modeled compartments

for both mosquitoes and humans within a single patch. The model tracks mosquito

population dynamics: within each patch, adult mosquitoes emerge at a rate which

reflects the local ecology and die at a constant rate. Adult mosquitoes become in-

fected with malaria parasites when they blood feed on infectious human hosts. After

the extrinsic incubation period, surviving adult mosquitoes then become infectious.

Each day, within each patch we generate a number of infectious bites based on lo-

cal population of infectious mosquitoes and distribute those infectious bites across

the human hosts who are present that day. Thus, susceptible human hosts can

become infected. Infected human hosts may develop symptoms and consequently

seek treatment, at which point their infections become cleared and they remain

protected against new infections for a short period. Two final model features are

not shown in Figure 2. The complete transmission model simulates together many

patches, and allows for human hosts to travel between them. The simulation model

also has the capability to simulate the distribution of a pre-erythrocytic vaccine,

where vaccinated people experience a lower infection risk.
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Calibrating the simulation model

The key to calibrating each simulation model is to set the mosquito population

density such that it sustains a level of transmission intensity which subsequently

produces the correct Pf PR within each patch. We calibrate the simulation using a

geospatial estimate of Pf PR within each patch drawn from the Bayesian posterior

probability distribution [15, 17], and then use our transmission model to translate

Pf PR into a local force of infection (FOI). Each patch’s FOI is a quantitative repre-

sentation of the transmission risk experienced by human hosts found there. Knowing

the FOI, we again use our transmission model to derive that patch’s mosquito pop-

ulation density. Within the simulation, the mosquito population density produces

blood feeding activity, which in turn affects the transmission risk (FOI) which fi-

nally gives rise to the geospatial Pf PR estimates when the mosquito and human

populations are coupled together within the simulation. Thus, we are able to cal-

ibrate the vector ecology across the different patches on the island such that we

reproduce the geospatial Pf PR estimates.

Knowing Pf PR is only the first step to calibrating the simulation model. We ini-

tialize the simulation by setting the the mosquito population density in each patch.

The simulation translates each patch’s mosquito population density into local FOI.

As a consequence of the malaria transmission and infection model, the simulation

translates FOI into Pf PR. The trick to constructing the simulation model is to cali-

brate the mosquito population density and FOI in each patch such that the resulting

Pf PR matches the mapped Pf PR estimates from data. We adapt this procedure

from the source-sink analysis described in [30, 31] and describe it in detail in Section

2 of the Supplementary Information. From the perspective of an individual human

host, their risk of becoming infected with malaria is the result of the FOI they

experience. The average FOI is computed as a sum of the FOI experienced in each

patch visited by that individual weighted by the duration of time spent in each of

those patches.

Incorporating Travel Data

Accounting for human hosts’ travel patterns is the last step required for properly

calibrating FOI. The total FOI experienced by an individual host includes both FOI

at home as well as FOI experienced while traveling away from home. For this, we

construct a model of human travel patterns on Bioko Island and parameterize that

model using the MIS travel data [27]. We model each human host’s travel behavior

in three steps: the human host chooses when to leave their home patch; chooses the

destination; and chooses how many days they spend away before returning to their

home patch. Within the simulation, each individual requires a set of parameters

that includes the frequency of travel; the multinomial probability distribution for

determining travel destination; and the mean duration of their trip [32]. This model

of movement behavior is too simple to allow for trips with multiple destinations,

but it is nevertheless consistent with the MIS travel history data. We estimate

the frequency of leaving home based on the frequency of trips reported by MIS

respondents. We estimate the probability of traveling to each travel destination

based on the relative frequencies of trips from each patch to each destination region.

We estimate the duration of trips based on the distribution of trip duration reported
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— an average of about 10.5 days for travel within Bioko Island and 20 days for travel

to mainland Equatorial Guinea. Data for fitting travel frequencies and probabilities

were available from the MIS from 2015-2018, but data for fitting travel duration

were only available with the most recent 2018 MIS [27]. Refer to Section 3 in the

Supplementary Information for a detailed description of how we parameterized the

movement model. For simplicity, all human hosts from each patch have the same

set of movement parameters, but we allow those parameters to vary from patch to

patch according to the MIS data. For example, individuals who live in the southern

parts of Bioko Island travel more frequently and tend to choose Malabo as the

destination, whereas individuals who live in Malabo travel less frequently but tend

to choose mainland Equatorial Guinea as the destination. We assume that we can

ignore migration of mosquitoes between patches.

Estimating uncertainty

One of the benefits of using a simulation model is that it enables us to produce re-

sults which reflect the uncertainties underlying the data used to calibrate the model.

The geostatistical Pf PR estimates include mean surfaces across the island (plotted

in Figure 1d) as well as a full ensemble of draws from the joint posterior distribution.

Each draw from the joint posterior distribution by itself represents a map of Pf PR

estimates across Bioko Island that also accounts for spatial correlations between

the Pf PR in different patches. The full ensemble of draws from the joint posterior

distribution represents a sample which reflects the uncertainty of the mapped Pf PR

estimates [15]. Using the ensemble of draws, we construct an ensemble of simulated

outcomes. For each scenario that we simulate, we create 1000 simulation runs. Each

simulation run is calibrated using its own Pf PR surface draw. The full ensemble of

simulation runs represents a family of models whose outputs reflect the variability

in simulated outcomes when considered together. We can express these variations in

terms of error bars or confidence intervals. The error bars shown in the subsequent

plots reflect both the uncertainty inherent to the stochastic simulation as well as

the uncertainty associated with the Pf PR maps.

Results
Infections attributable to off-island travel

The fully calibrated simulation model now enables investigations of how the volume

of human travel from Bioko Island to the mainland influences the transmission

patterns found in the MIS data. We distinguish the infections that are caused by

local transmission on Bioko Island from the infections which affect travelers on

the mainland. We define the travel fraction as the fraction of prevalence which is

attributable to off-island travel. This can be measured within the simulation by

eliminating exposure risk at home, setting the local FOI to zero on Bioko Island in

the simulation. Figure 3a is a map of this travel fraction, showing that for many

areas in Malabo and a few areas in the Luba district in the south a high fraction

of the estimated prevalence may be attributable to travel. This result is consistent

with the entomological surveillance data, which have shown a significant decrease in

viable vector populations since the BIMCP began [10, 11, 12]. While more thorough

entomological monitoring is still required to characterize the transmission ecology
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in Malabo and elsewhere on the island in greater detail, it is plausible that the

apparently diminished vector populations in the city are not solely responsible for

sustaining the high malaria prevalence in the area.

Similarly, we define the local residual fraction as the fraction of prevalence

which is attributable to local transmission only. This can be measured within the

simulation by eliminating the exposure risk to travelers and setting FOI to zero off-

island while preserving local transmission patterns. Figure 3b is a map of this travel

fraction, showing that once the influence of off-island transmission is removed, there

are some areas particularly along the northwest coast where local transmission is

still responsible for many malaria cases.

These maps make it possible to discern where different types of interventions

might be most effective. Deploying additional interventions against the vector —

such as indoor residual spraying, long-lasting insecticidal nets, and larval source

management — in areas where the Local Residual Fraction is low is unlikely to

lead to a strong measurable decrease in Pf PR. Instead, the areas with high local

residual fraction likely have a malaria burden which is driven by local transmission.

By the same token, a different set of interventions is likely necessary to further

reduce Pf PR in Malabo where the majority of annual malaria cases occur.

The modeling methodology also makes it possible to evaluate the uncertainty

associated with the modeled outcomes across different parts of the island. The en-

semble of simulated results show variation that reflects the underlying uncertainty in

the Pf PR estimates used to calibrate the simulation as well as the uncertainty from

the stochastic simulation. Figures 3a and b map the ensemble means of travel frac-

tion and local residual fraction, respectively. Figures 3c and d map the uncertainty

in the travel fraction and local residual fraction, respectively, where uncertainty is

the ensemble standard deviation divided by the ensemble mean (σ/µ, or coefficient

of variation), showing the characteristic variations that appear across the ensemble

of simulation runs. For both maps, we see lower uncertainty in the densely popu-

lated areas in and around Malabo in the north and higher uncertainty in the less

populated areas elsewhere on Bioko Island. The interpretation here is that we can

be most confident about the estimates of travel fraction and local residual fraction

in and around Malabo than in other areas of the island.

Simulating additional interventions

We next use the simulation to estimate the impact of expanding the program of

interventions. It has been suggested that a vaccine may be effective for further re-

ducing the number of malaria cases on Bioko Island [33]. Already there have been

vaccine efficacy studies on Bioko Island of a pre-erythrocytic vaccine which works

to block the maturation of parasites prior to blood stage infection [18]. Within the

simulation, this works by reducing the probability that an infectious bite causes a

new infection in a human host by 50% for an average of 10 months (sampling from

a normal distribution with mean duration of effect 300 days ± 30 days standard

deviation), providing temporary protection for a little less than a year. The param-

eters used here are largely hypothetical, although we find that the results reported

below are robust to changes in the parameters (unless the vaccine is assumed to

be indefinitely and 100% effective in blocking new infections). The vaccine in the
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simulation is administered along with parasite-clearing treatment, so human hosts

who receive a vaccine lose their infections if they were infected and enter a protected

state for a short period. We assume that travelers account for any latent periods

such that the vaccine’s protection is in effect by the time they leave the island. We

simulate three possible scenarios: administering vaccines to all travelers who leave

the island; vaccinating everyone on the island; and reducing the risk of infection

among travelers by reducing the transmission risk in mainland Equatorial Guinea

by 50%.

Figure 4 shows the simulated future trends of malaria prevalence in each of

these scenarios for an area in urban Malabo (a, upper row) and a more rural area

in Riaba in the south (b, lower row). For each scenario we simulate 1000 simulation

runs. The black lines represent the mean of the ensemble of simulation runs and the

error bars represent one standard deviation above and below the mean. We choose to

show the error bars to explicitly illustrate the uncertainty in our simulation results:

The error bars reflect both the uncertainty inherent to the stochastic simulation as

well as the uncertainty underlying the Pf PR estimates.

The leftmost column in Figure 4 shows the baseline case, of how Pf PR would

persist if we assume that the island’s transmission ecology does not change and

the BIMEP makes not changes to its current suite of interventions. (This scenario

does not reflect alternative vector control measures currently being considered.) The

second column from the left shows the impact of travel vaccination: an individual

receives a vaccine dose the first time each year that they schedule a trip off-island.

Administering treatment and vaccination to travelers to the mainland once per year

results in a strong, steady decrease in prevalence over time. The third column shows

the impact of distributing the vaccine to all residents on the island. From the mass

treatment, this would very quickly reduce the prevalence to zero, but as the protec-

tive effects of the vaccine begin to wear off we begin to see that prevalence increases

back to the baseline level after a few years. Indeed, the influence of off-island trans-

mission is strong enough that even if the parasite population is reduced to zero on

the island it is likely to be replenished after a few years through contact with the

mainland. A single round of mass vaccination is unlikely to halt transmission for

very long, meaning that multiple subsequent rounds of mass vaccination would be

required to sustain any temporary progress and provide lasting protection for the

island’s population. We emphasize that the simulated vaccine deployment repre-

sents a best-case scenario, and in practice it is more likely that the vaccine would

reach the population over a period of many months or years through a sustained

distribution campaign. Varying the parameters in the simulation that encode the

vaccine’s efficacy and duration of protection does not qualitatively change the con-

clusions reported here: as long as the vaccine’s effect wears off after a short period,

mass vaccination will not result in a reduction in malaria prevalence much longer

than the vaccine’s duration on Bioko Island, as the volume of imported cases will

remain too high.

Directly comparing the travel vaccination and the full-island vaccine deploy-

ment strategies, the travel vaccination requires fewer resources for distribution but

also requires more doses of vaccine if the plan is to vaccinate all travelers over

the course of many years. Within the simulation, over 240,000 doses of vaccine are
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needed to vaccinate all island residents. This number is likely an underestimate: the

population counts used to create the simulations came from a 2018 bednet distribu-

tion campaign which did not reach all households, and the island’s total population

has been estimated to be as high as 335,000 by the government of Equatorial Guinea.

On the other hand, distributing vaccines to travelers only would require on average

fewer than 130,000 doses each year. This number is likely an overestimate, seeing as

many who travel off-island do so frequently while many others do not. The simula-

tion does not explicitly account for this heterogeneity across different individuals,

hence only requiring vaccinations for travelers may result in reducing the required

volume of vaccine doses.

The rightmost column of Figure 4 shows the impact of reducing the FOI on

the mainland by 50% through an intervention program similar to the one run by

BIMEP on Bioko Island. There is a significant reduction in Pf PR in the areas with

high travel fraction (a, upper row), but less of a reduction in areas with higher

local residual fraction (b, lower row). Thus, this change would not result in a strong

decrease in malaria burden everywhere on Bioko Island. Furthermore, this scenario

is largely hypothetical, as it would require a major investment of resources and time

to achieve these changes on the mainland, but it serves as a comparison with the

vaccine-related interventions.

Discussion
Our analysis demonstrates the important role of imported malaria in sustaining

the reservoir of malaria parasites on Bioko Island, Equatorial Guinea. The malaria

parasite populations of Bioko Island in general, and urban Malabo in particular,

are well-connected to the parasite populations of mainland Equatorial Guinea. The

analysis suggests that there are many areas, particularly in urban Malabo, where

most malaria cases are likely attributable to infections contracted while traveling

off-island. There are also areas outside of Malabo where residual local transmission

appears to be high enough to sustain endemic transmission, with some malaria being

due to onward transmission from imported cases by residual mosquito populations.

The current distribution of malaria on the island is highly heterogeneous, but there

is substantial uncertainty about where the last residual transmission foci remain,

in part, because their locations are masked by high rates of imported malaria.

Malaria importation thus represents one of the most important challenges to malaria

elimination on Bioko Island.

While a pre-erythrocytic vaccine would improve the prospects of elimination on

Bioko Island, we show that the most effective use of a pre-erythrocytic vaccine would

be to prevent infections in travelers, which would also have a large effect on reducing

the number of malaria cases imported to Bioko Island. For most travelers, intensive

vector control measures in place across the island mean that the risk of malaria

is much higher while traveling. A travel vaccine would thus have a direct benefit

for those who travel. These simulations suggest that high coverage with a highly

effective travel vaccine would also have sustained effects on malaria prevalence in

Bioko Island, effectively increasing its isolation from the mainland. The simulations

suggest that administering vaccines directly to travelers is more effective at lowering

overall Pf PR in the long term than vaccinating everyone on the island all at once.
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As long as importation is halted or slowed, mass vaccination would likely require

multiple rounds across many years in order to protect the island population over the

long term. While acknowledging operational challenges, distributing the vaccine to

travelers is likely to require fewer resources than distributing the vaccine to all island

residents, given only two points of departure for leaving the island by sea or air.

Broadly speaking, the vaccine discussed here is largely theoretical and any further

analysis for discussing a specific vaccine would require parameterizing according to

clinical trial data [18]. Operational concerns would need to account for the duration

of a vaccine’s protective efficacy and delays when multiple vaccine doses are required

for protection. Simulations show that mass treatment and vaccination of travelers

on Bioko Island would not be as effective because of the short-lived efficacy of

the vaccine, and because the reservoir of parasites would be rapidly renewed by

imported malaria.

In using simulation models to evaluate potential policy scenarios, we recognize

the importance of quantifying and propagating uncertainty. In this study, we have

shown that our recommendations are robust to statistical uncertainty in the spa-

tial distribution of malaria prevalence. The simulation model is spatially explicit,

where mosquito populations and transmission intensity are allowed to vary across

different locations. In each population, the mosquito populations were fit to a dif-

ferent modeled surface selected at random from the Bayesian posterior probability

distribution (cite: joint simulation). The policy recommendation is robust to spa-

tial uncertainty in that it considers reasonable alternative formulations of a model;

the policy implications are consistent across the full range of uncertainty in the

underlying MIS prevalence data. We acknowledge that there are other important

sources of uncertainty to be considered. Our modeling framework, which draws from

several different data sets, could be extended to perform a full sensitivity analysis

across many different data inputs, and illustrate for stakeholders how different data

sources contribute to overall uncertainty.

An important concern for malaria is uncertainty about the future, such as the

environmental conditions that affect mosquito populations, the malaria interven-

tions that suppress transmission, and connectivity to the mainland. In particular,

our simulations assume that interventions currently used by BIMEP, such as bed

net distribution and indoor residual spraying, would remain in place and continue

to be at least as effective as they currently are. The assumptions about local trans-

mission vs. imported malaria describe mosquito ecology and malaria transmission

using MIS data from the years 2015-2018. Unfortunately, there is evidence that

the transmission setting has changed over the last two years. In 2019, there was a

marked increase in local transmission and cases in several areas including the north-

western coast and in Riaba District in the southeast [13], likely due to changes in

the local ecology. Two important factors were higher than normal rainfall and con-

struction projects that created mosquito habitats. We did not explicitly consider

these scenarios. In 2020 the BIMEP expanded their use of indoor residual spraying

in Malabo as a response to evidence of increased EIR in the area, but it seems likely

mass treatment and vaccination would, perhaps, be one way of responding to such

perturbations.

Additionally, much of the conclusions suggested through our modeling method-

ology follow from the presence of a high volume of travelers between Bioko Island
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and the mainland. As of 2020, much of the volume of travelers has been reduced

due to port closures implemented as a response to the COVID-19 pandemic. Our

modeling results would suggest that dramatically reducing the number of travelers

between the mainland and Bioko Island for a sustained period of many months

might result in a reduction in prevalence in areas where travel fraction is high. At

the same time, we might expect to see no such decreases in locations on the island

with high local residual transmission. This represents a natural experiment affect-

ing malaria at the same time as the ecological changes mentioned above; as MIS

data from 2020 become available, it may be possible to support evidence for the

connections between travel and malaria cases on Bioko Island if cases do begin to

decrease.

Some aspects of the local transmission dynamics remain poorly quantified, de-

spite the intensive surveillance efforts on the island. We remain uncertain about

within-island connectivity due to mosquito mobility. We remain uncertain about

the importance of visitors to Bioko Island from mainland Equatorial Guinea in con-

tributing to sustained malaria transmission. MIS data represent a cross-sectional

sample of island residents collected during an eight-week period in August and

September. In the absence of year-round data, we have ignored seasonal patterns in

travel behavior and transmission. The features of the malaria transmission model

itself have been simplified: we stick to treating human hosts as either infected or

not, and do not model parasitemia, infection history, or changing immune responses

of infected hosts. To assess robustness more fully, we would need to vary assump-

tions about each aspect of the dynamics to know whether it would have a strong

effect on the outcome. For this investigation in this particular setting we believe

that these simplifying assumptions are unlikely to greatly impact the quantitative

results: there is already considerable evidence that many of the cases observed on

the island can be attributable to the high endemic level of malaria on the mainland

[6, 9, 16, 17]. Ultimately, it may not be possible to eliminate malaria on Bioko Island

unless it is part of a regionally coordinated effort.

The style of analysis presented here may be applied to other transmission set-

tings where malaria prevalence is driven in part by non-local exposure and cases

imported from other locations. There are a variety of other settings where studies

have shown that accounting for non-local exposure and importations is important

for understanding the persistence of malaria, including other islands such as Zanz-

ibar [5]; low-transmission regions of sub-Saharan Africa where travel from high-

transmission region has been shown to be the primary risk factor for infection [7];

or cases occurring among laborers who become exposed to malaria while working in

the forest [8]. The analysis requires spatial data describing malaria prevalence, such

as the maps provided by the Malaria Atlas Project, in conjunction with a data set

describing travel patterns and behavior. The travel data set may be derived directly

from survey data [27], or indirectly inferred from mobile phone data [4], but in any

case must make it possible to characterize the duration and intensity of exposure

experienced by travelers in the locations they travel to. Together, in conjunction

with a mathematical model of malaria transmission, it becomes possible to assess

malaria connectivity and quantify how imported cases contribute to local malaria

burden.
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Availability of data and materials

All code required to reproduce the simulations and analysis presented here may be found in the following GitHub

repository: https://github.com/dtcitron/bioko_island_travel_materials/releases/tag/v1.0. All data

required to parameterize and calibrate the simulations may be found in the following data repository:

https://figshare.com/articles/dataset/Data_Supporting_Bioko_Island_Travel_Modeling/14380565
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Figure 1 Maps of Bioko Island All squares represent 1km×1km areas. a Map of administrative
units on Bioko Island. b 2018 population map. c Parasite rate Pf PR ascertained through the use
of rapid diagnostic tests as part of the 2018 MIS. d Mean geostatistical estimates of Pf PR,
reproduced with permission from [17].
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Figure 2 Diagram of Simulation Model Human hosts begin in a Susceptible state and become
Infected through contact with infectious mosquitoes. Infected human hosts may develop
symptoms and seek treatment, which clears the infection and moves them to a Protected state
where they resist infection for 30 days. Susceptible human hosts may also enter the Protected
state if they are given anti-malarial prophylaxis. Adult mosquitoes emerge at a constant rate and
become infected through contact with infectious human hosts, and then become infectious after
surviving through the extrinsic incubation period. Mosquitoes die at a constant rate. Not shown
are human hosts moving between different patches and vaccination.
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Figure 3 Travel Fraction and Local Residual Transmission a Travel fraction, or the fraction of
Pf PR attributable to infections contracted while traveling to the mainland. b Local residual
fraction, or the fraction of Pf PR attributable to local transmission. c Travel fraction uncertainty:
the standard deviation of the simulation results, divided by the mean of the simulation results.
(σTF /µTF ) d Local residual fraction uncertainty. (σLRF /µLRF )
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Figure 4 Simulated Impact of Additional Interventions Showing baseline case and three
additional intervention scenarios for an area in urban Malabo (a, top row) and Riaba in the South
(b, lower row). The black lines represent the mean result across 1000 simulation runs and the red
error bars represent the mean ± one standard deviation.
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