Supplementary Material

Supplementary Table 1. Brain regions determined by the Hammers Atlas.

Hippocampus
Amygdala
Anterior Medial Temporal Lobe
Anterior Lateral Temporal Lobe
Ambient and Parahippocampal Gyri
Superior Temporal Gyrus
Inferior Middle Temporal Gyri
Fusiform Gyrus
Insula
Lateral Occipital Lobe
Anterior Cingulate Gyrus
Posterior Cingulate Gyrus
Middle Frontal Gyrus
Posterior Temporal Lobe
Inferior Lateral Parietal Lobe
Caudate Nucleus
Accumbens Nucleus
Putamen
Thalamus
Pallidum
Precentral Gyrus
Gyrus Rectus
Orbito-Frontal Gyri
Inferior Frontal Gyrus
Superior Frontal Gyrus
Postcentral Gyrus
Superior Parietal Gyrus
Lingual Gyrus
Cuneus

Supplementary Table 2. Top-ranked brain regions exposed to the highest EF and brain regions showing the largest volume expansion.

Electric field (EF)				Volume expansion			
rank	side	Brain regions	EF (V/m)	rank	side	Brain regions	Effect size (d)
1	right	Precentral gyrus	148.2	1	right	Hippocampus	1.92
2	right	Postcentral gyrus	143.6	2	right	Amygdala	1.83
3	right	Superior temporal gyrus	127.4	3	right	Anterior medial temporal lobe	1.77
4	right	Inferior lateral parietal lobe	127.3	4	right	Inferior middle temporal gyrus	1.71
5	right	Middle frontal gyrus	127.1	5	right	Insula	1.65
6	right	Inferior middle temporal gyrus	126.5	6	right	Anterior cingulate gyrus	1.51
7	right	Anterior lateral temporal lobe	122.2	7	right	Posterior cingulate gyrus	1.36
8	right	Inferior frontal gyrus	118.5	8	right	Ambient and parahippocampal gyrus	1.34
9	right	Nucleus accumbens	118	9	right	Putamen	1.27
10	right	Pallidum	107	10	left	Inferior frontal gyrus	1.25

Supplementary Table 3. ECT parameters associated with percentage volume expansion in the right MTL in participants with additional diffusion tensor imaging derived anisotropy modelling

	B	SE	β	p-value
Total EEG seizure duration	0.01	0.006	0.45	0.045
Electric field	0.12	0.08	0.32	0.15
Number of ECTs (residuals)	0.35	0.40	0.18	0.40

B: non-standardized coefficient; SE: standard error; β : standardized coefficient

Supplementary Figure 1. Results of the whole-brain DBM analysis with a strict significance

 threshold. Given the number of participants in this study (i.e., 30 participants), a whole-brain significance threshold of a voxel-level FWE-corrected $p<0.05$ may be too conservative. However, the right MTL volume expansion was still identified at this threshold.DBM (2 mm smoothing)

$\mathrm{y}=18$

$y=-14$

$y=-46$
L $6.6{\underset{\text { Expansion }}{\mathbf{T}^{-}} 9} 9$

Supplementary Figure 2. Electric field distribution and regional volume change following ECT. (a) There was a weak correlation between EF and the effect size of regional volume expansion when including all regions-of-interest in both hemispheres (Spearman's rho $=0.27, \mathrm{p}=0.04$). (b) There were no correlations between them when analyzing each hemisphere separately (right: Spearman's rho $=-0.03, p=0.88$; left: Spearman's rho $=0.03, p=0.88$). Each region-of-interest (ROI) was defined by the Hammers brain atlas (Supplementary table 1) i.e. each point on the scatter plot represents a different ROI. Y-axis represents the effect size of volume changes (Cohen's d).

(b)

Supplementary Figure 3. Electric field distribution and Euclidean distance from brain regions near the stimulus electrodes. (a) There was a strong correlation between EF and Euclidean distance from the right precentral gyrus (PreCG) ($\mathrm{r}=-0.76, \mathrm{p}<0.001$). The correlations were significant when analyzing each hemisphere separately (right: $\mathrm{r}=-0.58, \mathrm{p}<0.001$; left: $\mathrm{r}=-0.78, \mathrm{p}<0.001$).
There was a strong correlation between EF and Euclidean distance from the right superior temporal gyrus (STG) ($\mathrm{r}=-0.74, \mathrm{p}<0.001$). The correlations were significant when analyzing each hemisphere separately (right: $\mathrm{r}=-0.37, \mathrm{p}=0.05$; left: $\mathrm{r}=-0.47, \mathrm{p}=0.009$). Each region-of-interest was defined by the Hammers brain atlas (Supplementary table 1).

Supplementary Figure 4. Relationships among tissue-specific volume changes. (a) GMV increase and WMV decrease (Pearson's $r=-0.71, \mathrm{p}<0.001$), (b) WMV increase and WMV decrease (Pearson's $\mathrm{r}=-0.46, \mathrm{p}=0.010$), and (c) WMV increase and CSF decrease (Pearson's $\mathrm{r}=$ $-0.60, \mathrm{p}<0.001$) in the peak regions were significantly correlated with each other. The MNI coordinates in each peak region is the following: GMV increase: ($20,-9,-20$); WMV decrease: (20, $-12,-10)$; WMV increase: $(15,0,15)$; and CSF decrease: $(10,-10,20)$.
(a)

(b)

(c)

Supplementary Figure 5. Relationships between the number of ECTs, seizure duration, and stimulus charge. (a) The number of ECTs was positively correlated with total seizure duration (Pearson's $\mathrm{r}=0.68, \mathrm{p}<0.001$). (b) The number of ECTs was negatively correlated with mean seizure duration (Pearson's $\mathrm{r}=-0.51, \mathrm{p}=0.004$). (c) The number of ECTs was positively correlated with mean stimulus charge (Spearman's rho $=0.44, \mathrm{p}=0.01$). (d) Mean stimulus charge was negatively correlated with mean seizure duration (Spearman's rho $=-0.48, \mathrm{p}=0.007$).
These results could be interpreted in the context of the anticonvulsant effect of ECT (Sackeim, 1999). Although we did not measure seizure threshold during the ECT course, seizure threshold might increase with the number of ECT sessions and therefore clinicians may need to increase the stimulus dose to induce seizures. Higher stimulus charge relative to each individual's seizure threshold produced shorter seizures (Frey et al., 2001).

(b)

(c)

References

Sackeim HA. The Anticonvulsant Hypothesis of the Mechanisms of Action of ECT: Current Status. J ECT 1999; 15: 5-26.
Frey R, Heiden A, Scharfetter J, Schreinzer D, Blasbichler T, Tauscher J, et al. Inverse Relation Between Stimulus Intensity and Seizure Duration: Implications for ECT Procedure. J ECT 2001; 17: 102-108.

