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ABSTRACT 21 
Background 22 
Predicting treatment response or survival of cancer patients remains challenging in immuno-oncology. 23 
Efforts to overcome these challenges focus, among others, on the discovery of new biomarkers. 24 
Despite advances in cellular and molecular approaches, only a limited number of candidate biomarkers 25 
eventually enter clinical practice.  26 
Methods 27 
A computational modeling approach based on ordinary differential equations was used to simulate 28 
the fundamental mechanisms that dictate tumor-immune dynamics and to investigate its implications 29 
on responses to immune checkpoint inhibition (ICI) and patient survival. Using in silico biomarker 30 
discovery trials, we revealed fundamental principles that explain the diverging success rates of 31 
biomarker discovery programs.  32 
Results 33 
Our model shows that a tipping point – a sharp state transition between immune control and immune 34 
evasion – induces a strongly non-linear relationship between patient survival and both immunological 35 
and tumor-related parameters. In patients close to the tipping point, ICI therapy may lead to long-36 
lasting survival benefits, whereas patients far from the tipping point may fail to benefit from these 37 
potent treatments.  38 
Conclusion 39 
These findings have two important implications for clinical oncology. First, the apparent conundrum 40 
that ICI induces substantial benefits in some patients yet completely fails in others could be, to a large 41 
extent, explained by the presence of a tipping point. Second, predictive biomarkers for 42 
immunotherapy should ideally combine both immunological and tumor-related markers, as a patient’s 43 
distance from the tipping point can typically not be reliably determined from solely one of these. The 44 
notion of a tipping point in cancer-immune dynamics helps to devise more accurate strategies to select 45 
appropriate treatments for cancer patients.   46 
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INTRODUCTION 47 

Immunotherapies are revolutionizing clinical care for cancer patients. The most widely used approach, 48 

immune checkpoint inhibition (ICI), can lead to long-term survival benefits in patients with advanced 49 

melanoma (1), lung cancer (2), and renal cell carcinoma (3). However, not all patients benefit from ICI 50 

therapy, and adequate predictions of treatment response have proven elusive so far (4, 5). Efforts to 51 

improve these predictions focus mainly on discovering biomarkers in aberrant molecular pathways 52 

within the tumor microenvironment that drive immunosuppression and therapeutic resistance (6, 7). 53 

These include genomic alterations in oncogenic drivers, the absence of tumor-specific antigens, and 54 

the presence of immunosuppressive molecules or cells (8, 9). Despite substantial efforts, only a limited 55 

fraction (according to one estimate, <1% (10)) of proposed cancer biomarkers find their way into the 56 

clinical practice. These apparent challenges in identifying biomarkers for immunotherapy and 57 

translating them into clinical practice could be a consequence of the inherent complexity of cancers 58 

and their interaction with the immune system.  59 

To unravel the complexities of cancers and their treatments, researchers have adopted mathematical 60 

and computational approaches to complement laboratory research. A plethora of modeling 61 

approaches are available, ranging from simple one-variable equations to complex spatial agent-based 62 

simulation models. In silico modeling has contributed to fundamental insights into tumor growth and 63 

cancer progression (11-13), tumor-immune control (e.g., neoantigen prediction as targets for 64 

immunotherapy) (14), identification of tumor-associated genes (15), verification of treatment-related 65 

safety concerns such as hematological toxicity (16), prediction of treatment responses to chemo- and 66 

immunotherapy (17-19), investigation of drug-induced resistance (20), and timing of anti-cancer 67 

treatments (21-23). In the context of disease course dynamics, ordinary differential equation (ODE) 68 

models have proven useful over the years. ODE models follow the principle that a model should be “as 69 

simple as possible but not simpler”. Based on plausible biological assumptions, they aim to reduce the 70 

complex reality of the modeled system to its bare essentials to enable the investigation of critical 71 

underlying dynamics. The field of quantitative systems pharmacology is built upon this premise. 72 

Classically, experimentally-derived pharmacokinetic and pharmacodynamic parameters serve as input 73 

for ODE models to investigate the emergent properties of biological systems and to study its 74 

consequences in terms of clinical outcomes (24). As an illustrative example, Fassoni et al. used ODE 75 

models to predict that dose de-escalation of tyrosine kinase inhibitors targeting the oncogenic protein 76 

BCR-ABL1 in patients with chronic myeloid leukemia (chronic phase) does not lead to worse long-term 77 

outcomes (25). The recent results of the DESTINY trial support this prediction (26). 78 

In this study, we investigate the consequences of tumor-immune dynamics on patients’ responses to 79 

ICI and survival in an ODE model. Our model reveals a tipping point within tumor-immune dynamics – 80 

a critical threshold for survival culminating in an all-or-nothing principle – that has profound 81 
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implications for a patient’s disease course and outcome. We show how the presence of a tipping point 82 

alone robustly induces heterogeneous immunotherapy treatment outcomes, and how this complicates 83 

the search for both prognostic and predictive biomarkers.  84 

 85 

METHODS 86 

Capturing core mechanisms of tumor development in a mathematical model 87 

We constructed a mathematical model consisting of a system of ordinary differential equations (ODE) 88 

to capture essential interactions between cancer cells and lymphocytes during tumor formation. Our 89 

model represents tumorigenesis in patients, starting with the malignant transformation of a single cell.  90 

The model consists of five equations that describe essential processes in the tumor microenvironment 91 

and the lymphatic organs (Figure 1A). In the tumor microenvironment, tumor growth (Equation 1a) and 92 

T cell-mediated killing of tumor cells (Equation 1b) determine the evolution of the tumor burden (the 93 

numbers of the equations correspond to those used in Figure 1A). Tumor-infiltrating lymphocytes 94 

migrate from the lymph nodes to the microenvironment (Equation 2). Before migration, T cells expand 95 

clonally in the lymph nodes’ T cell zones (Equation 3) after conversion of naive T cells into antigen-96 

specific effector T cells (Equation 4). Below, we provide in-depth descriptions of each model equation.  97 

We modeled tumor growth – i.e., the formation of tumor cells during carcinogenesis – with the 98 

generalized exponential model proposed by Mendelsohn, in which r represents a tumor growth rate 99 

constant  (27). Essentially, this means that at each time interval, a fraction of tumor cells divide. The 100 

dividing fraction decreases as the tumor burden increases since substantial parts of a larger tumor 101 

mass, such as the necrotic core, are no longer able to proliferate. Since the tumor burden (T) is 102 

determined by the combination of tumor growth and tumor cell killing, the first part of Equation 1 – 103 

describing the tumor burden over time – will be: 104 

(Eq. 1a)   !"
!#
= r	𝑇

'
(, 105 
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!#
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")/(
  as the fraction of dividing cells per time 106 

interval, which scales inversely with the tumor burden T.  107 

The killing rate expression is derived from the conventional Michaelis-Menten kinetics for enzyme-108 

substrate interaction (28, 29): 109 

𝐸 + 𝑆							
𝑘2
⇌
𝑘4
					𝐸𝑆					

x
→					𝐸 + 𝑃 110 

in which E, S, and P are the enzyme, substrate, and product, respectively. k1, k2, and x represent the 111 

enzyme-substrate complex formation rate, the complex dissociation rate, and the catalytic rate. Given 112 

that complex formation and dissociation occur at a rate that is at least an order of magnitude faster 113 
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than tumor growth, Borghans et al. argued that the Michaelis-Menten kinetics could be simplified 114 

using a quasi-steady-state assumption (28). Simplification using a Padé approximation and subsequent 115 

rearrangement leads to a conventional Double Saturation (DS) model that describes effector T cell-116 

mediated killing (28, 29): 117 

(Eq. 1b)   !"
!#
= − x	8	"

29 :
;:
9	 <;<

 118 

in which I is the number of immune cells in the tumor microenvironment, x is the T cell killing rate, hI 119 

is the saturation constant of the effector T cells, and hT is the tumor cells’ saturation constant. Here 120 

we consider T cells to follow a ‘monogamous killing’ strategy, meaning that one T cell interacts with 121 

one tumor cell at a time (28, 29). 122 

Combining T cell-mediated tumor cell killing (Equation 1b) and tumor growth (Equation 1a), we obtain 123 

the complete differential equation that describes the tumor burden over time: 124 

(Eq. 1)  !"
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 125 

Subsequently, the immunogenicity of the tumor triggers an anti-tumor immune response. Lymph 126 

node-resident T cells (S) migrate at rate ms from the lymph nodes to the tumor microenvironment. The 127 

number of intratumoral T cells over time is determined by migration and death.  Therefore, by 128 

combining a migration term with a death term at rate d, we obtain the following equation for the 129 

evolution of intratumoral T cells over time: 130 

(Eq. 2)  !8
!#
= 𝑚>𝑆 − d	𝐼 131 

Intratumoral T cells migrate from the lymph nodes where they are produced. This process starts with 132 

converting lymph node-resident naive T cells (i.e., not activated antigen-specific; N) into antigen-133 

specific effector T cells (S) at priming rate a. The priming rate a is scaled by the tumor size (i.e., a 134 

smaller tumor will cause less T cell priming than a larger tumor) with a scaling term @ "
2AB9	"

	C, meaning 135 

that the priming rate is at half of its maximum rate and starts to saturate in tumors larger than 107 136 

cells (i.e., a sphere with a radius of 0.29 cm). Effector T cells expand clonally at proliferation rate ps and 137 

migrate into the tumor microenvironment. Combining these processes, we arrive at the final two 138 

differential equations that describe the evolution of naïve and primed T cells in the lymph nodes: 139 

(Eq. 3)  !D
!#
= 	𝛼	 @ "

2AB9"
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(Eq. 4)  !H
!#
= −	𝛼	 @ "

2AB9"
	C𝑁 141 

The simulations used the following initial conditions: T(0) = 1, I(0) = 0, S(0) = 0, and N(0) = 106.  142 

  143 
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Simulation parameters 144 

The simulation parameters are listed in Table 1.  145 
Table 1: Simulation parameters in the ODE model 146 

Symbol Parameter (dimension) Default value (rangea) 
r Tumor growth rate (cells day-1) 1 (0-7) 
x Relative killing rate (cells day-1) 0.001 (0-0.05) 
h Michaelis constant (cells) 571 
d Death rate of immune cells (cells day-1) 0.019 (30) 
a Conversion rate of naive T cells into 

specific T cells (cells day-1) 
0.0025  

pS Total production rate of effector T cells 
from lymph nodes (cells day-1) 

1 

mS Migration rate from lymph node to 
tumor microenvironment (cells day-1) 

1 

 a: if not fixed 147 

 148 

The parameters were chosen to mimic realistic in vivo intercellular behavior. The rationale for the 149 

choice of each parameter is explained below. 150 

In a human adult, an estimated repertoire of approximately 1010 - 1011 naive CD8+ T cells is present (31, 151 

32). Naive CD8+ T cells need to be primed to become activated effector T cells. The CD8+ T cell precursor 152 

frequency – the frequency at which any given peptide-MHC complex is recognized by naive antigen-153 

specific CD8+ T cells – is on the order of 1 : 100.000 (31). Priming should be limited primarily to naive 154 

CD8+ T cells in one of the tumor areas draining lymph nodes. A human body contains ±600 lymph 155 

nodes. At a steady state, roughly 40% of all lymphocytes reside in lymph nodes, meaning that 40.000 156 

naive T cells (» 70 naive CD8+ T cells per lymph node) can be primed (33, 34). We assume that priming 157 

occurs primarily in the tumor-draining lymph node station (per station harboring around 20 lymph 158 

nodes (35)). Then, 1400 T cells would be available for priming at any given time, and this pool would 159 

be refreshed approximately once per day by T cell recirculation. Considering that dendritic cells might 160 

present multiple epitopes and antigens, and that T cell priming in vivo might occur suboptimally, we 161 

set a priming rate of at most 2500 cells per day. The order of magnitude of these priming rates 162 

corresponds to priming rates found in chronic infectious diseases (36). Due to evasive mechanisms, 163 

anti-tumor immunity is a more dormant process than an immune response to infections (37). 164 

Therefore, we scaled the priming rate with tumor size, which translates into a maximum production 165 

of 106 antigen-specific CD8+ T cells per day via clonal expansion. Next, we assume that all antigen-166 

specific effector T cells migrate into the tumor microenvironment to interact with tumor cells (i.e., 167 

complex formation).  168 
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Complex formation and dissociation rates are described by the ‘Michaelis constant’, which we derived 169 

from the literature (29). The Michaelis constant describes the ratio between complex formation and 170 

dissociation.  171 

The killing rate of effector T cells has been investigated mainly in the context of infectious disease. In 172 

their review (38), Halle et al. discuss discrepancies between in vitro and in vivo killing rates of effector 173 

T cells. Depending on the context, killing rates of effector T cells vary from 1 target per 5 minutes to 0-174 

10 targets per day (38), but tumor cells are considered difficult to kill. Extensive variation in 175 

experimental in vivo per capita killing rates (i.e., the number of cells killed by an effector T cell per unit 176 

of time) complicates the selection of a default fixed killing parameter. Therefore, we investigated T cell 177 

dynamics over a wide range of killing rates as described using the monogamous killing regime in a 178 

double saturation model by Gadhamsetty et al. (29). The double saturation model ensures that the 179 

killing rate saturates with respect to the tumor cell and the effector cell densities. Consequently, our 180 

model’s maximum per capita killing rate is 2.5: one T cell can kill at most 2.5 tumor cells per day, 181 

provided there are abundant target cells available, and there is no competition with other T cells. The 182 

default tumor growth rate is one cell day-1, but we varied this parameter extensively in our simulations. 183 

Taken together, our default parameter values led to simulations of disease courses with realistic 184 

survival times in patients with malignancies and matched the order of magnitude of tumor growth 185 

rates as reported by others (39). 186 

 187 

Time-varying parameters 188 

For the simulations shown in Figures 4 and 5, we varied the tumor growth rate r and the T cell killing 189 

rate x in a stochastic manner over time. Briefly, we set one value per month of simulated time by 190 

multiplying the baseline parameter value with a random number drawn from a normal distribution 191 

with a fixed standard deviation. The values used for the standard deviations are given in 192 

Supplementary Tables 4 and 5 (“stochasticity”). From these monthly reference values, we generated 193 

time-dependent functions using cubic B-spline interpolation. For details, see our simulation code (link 194 

given below). 195 

 196 

Patient simulations 197 

We simulated tumor development in patients up to a maximum of 5 years. Note that depending on 198 

emergent tumor-immune dynamics, simulated patients may not reach the overall survival endpoint 199 

during this interval. Each time step in the simulation corresponded to one day. At baseline, one tumor 200 

cell and a pool of 106 naïve tumor-specific T cells are present in a patient. Activated effector T cells are 201 

absent. We defined the time of diagnosis as the time at which the tumor exceeded 65 * 108 cells and 202 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 18, 2021. ; https://doi.org/10.1101/2020.10.29.20222455doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.29.20222455
http://creativecommons.org/licenses/by/4.0/


 7 

became clinically apparent. This cut-off corresponds to the assumption that a tumor with a volume of 203 

1 cm3 contains 108 tumor cells (40) and that several primary tumors (e.g., lung cancer, colon carcinoma, 204 

and renal cell carcinoma) are diagnosed as spherical structures with a median diameter of 205 

approximately 5 cm (41-43). The ‘lethal’ tumor burden of patients in these simulations is estimated at 206 

1012 cells, corresponding to a total tumor mass of approximately 22 * 22 * 22 cm.  207 

 208 

Validation cohort 209 

Model findings related to biomarker discovery programs were validated in a cohort of 58 patients with 210 

metastatic cutaneous melanoma that were treated with dendritic cell vaccination. Full details of this 211 

cohort, including baseline characteristics, were published previously (44). None of the patients 212 

received prior or subsequent immunotherapy. The serum lactate dehydrogenase levels at baseline 213 

(i.e., before therapy) were analyzed as a surrogate marker for tumor growth. The ratio of intratumoral 214 

versus peritumoral T cell densities (I/P ratio), obtained by immunohistochemical staining of the 215 

primary tumor, was selected as a surrogate marker for the T cell killing rate. Overall survival data were 216 

available for all patients.  217 

 218 

Model implementation  219 

We implemented our ODE model in C++. The Boost library ‘odeint’ was used to solve the system of 220 

ordinary differential equations (45). The code is available at GitHub: 221 

https://github.com/jeroencreemers/tipping-point-cancer-immune-dynamics. Analyses and 222 

visualizations were performed in R. 223 

 224 

RESULTS 225 

Modeling tumor-immune dynamics yields realistic disease trajectories 226 

To investigate the consequences of tumor-immune dynamics on the survival kinetics of patients, we 227 

used a computational modeling approach. We aimed to capture the interplay between tumor- and 228 

immune cells in the tumor microenvironment and simulate tumor growth in patients (see Methods). 229 

Our ODE model captured essential processes in anti-tumor immunity: priming of naive antigen-specific 230 

CD8+ T cells, clonal expansion of effector T cells in lymph nodes, tumor growth leading to effector T 231 

cell attraction into the tumor microenvironment, and formation of tumor-immune cell complexes to 232 

enable tumor cell killing (Fig. 1A).  233 
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 234 
Figure 1: An in silico model of the tumor microenvironment generates realistic and modifiable disease courses of cancer 235 
patients. 236 
(A) The ODE model describes fundamental processes in the tumor microenvironment. Parameters: a = naive T cell priming 237 
rate, d = effector T cell death rate, x = effector T cell killing rate, r = tumor growth rate, ps = effector T cell proliferation rate, 238 
and ms = effector T cell migration rate. (B) An effective anti-tumor immune response can eradicate tumor cells before the 239 
clinical manifestation of a tumor. (C) After an initial state in which the tumor outpaces the immune system, the immune system 240 
can suppress tumor growth and controls it in a subclinical state. (D) The natural course of disease for a clinically apparent 241 
tumor. An initial malignant transformation is followed by tumor growth until clinical diagnosis. Despite the activation of 242 
adaptive immunity, the tumor prevails. A stage of progressive disease follows, ultimately culminating in cancer-related death. 243 
The horizontal grey lines indicate (from bottom to top): the tumor burden at diagnosis and the tumor burden at death, 244 
respectively. Simulation parameters are added in Supplementary Table 1. 245 

We simulated tumor development from malignant transformation of a single cell, via clinical detection 246 

of a tumor, to advanced disease and possibly death. Depending on the tumor growth and the cytotoxic 247 

capacity of effector T cells, the ‘time to clinical manifestation’ and overall survival varied. Despite this 248 

variation, our simulations consistently showed three possible outcomes: 1) effector T cells inhibited 249 

tumor cell outgrowth and eradicated the tumor before clinical manifestation (Figure 1B); 2) effector T 250 

cells were initially unable to inhibit tumor cell outgrowth but caught up and suppressed tumor growth 251 

to a balanced subclinical state (Figure 1C); or 3) exponential tumor growth outpaced the immune 252 

system’s control and gave rise to a clinically detectable tumor (Figure 1D). These three scenarios only 253 

led to two clinically different outcomes in patients: either a tumor became clinically evident, or the 254 

immune system could suppress or eradicate a tumor at an early stage (i.e., before the tumor could 255 
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reach a clinically detectable size). A balanced equilibrium state, in which the immune system keeps a 256 

clinically evident tumor under persistent control, does not exist in this deterministic version of our 257 

model. 258 

  259 

Patient survival depends on a tipping point in tumor-immune dynamics 260 

To better characterize these dichotomous survival kinetics, we examined how tumor-immune 261 

dynamics influenced patient survival by varying the tumor growth rate and the T cell killing rate over 262 

a broad range of possible values.  263 

First, we focused solely on the tumor-component by varying the tumor growth rate. An increase in 264 

tumor growth did not gradually shorten overall survival in patients (Figure 2A). On the contrary, a 265 

critical threshold was present. Once the threshold was exceeded, the kinetics ‘flipped’ from a state of 266 

immune control (Figure 2A, inset 1) to a state in which the tumor could evade immune control (Figure 267 

2A, inset 2).  268 

Second, we investigated the influence of the T cell killing rate on overall survival. As for the death rate, 269 

a gradual increase in the cytotoxic capacity of effector T cells did not induce a gradual change in survival 270 

times. Instead, a sharp state transition that differentiated short from long survival was observed again 271 

(Figure 2B). This coincided with the phenotypes ‘immune evasion’ (Figure 2B, inset 1) and ‘immune 272 

control’ (Figure 2B, inset 2).  273 

To visualize this sudden state transition or ‘tipping point’ in tumor-immune dynamics as a function of 274 

both tumor proliferation and cytotoxic killing at the same time, we visualized the joint influence of the 275 

tumor growth rate and T cell killing rate on survival in a heatmap (Figure 2C). This ‘phase diagram’ 276 

shows that the tipping point is not only present for specific parameter values but is a fundamental 277 

property in our model. By contrast, the state of subclinical tumor control was not universally present 278 

around the tipping point (Figure 2C, inset) but manifested itself only in a narrow range of parameters. 279 

Within both the ‘Cure’ and ‘Control’ domain (Figure 2, inset), the immune system prevented tumors 280 

from reaching a detectable size, precluding the clinical classification as ‘patient’. The difference 281 

between individuals in the ‘Cure’ and ‘Control’ domains was that all tumor cells were eradicated in the 282 

former, while in the latter, the immune system kept the tumor in an undetectable subclinical state 283 

(i.e., a tumor size of around 103 tumor cells; Figure 1B/C).  284 

Next, we expanded these analyses to characterize the tipping point in different tumor types. A 285 

fundamental distinction between tumors is the rate at which they induce T cell priming, for instance, 286 

through tumor-specific immunogenicity or by specific characteristics of the immunosuppressive 287 

microenvironment.  To this end, we simulated four tumor types: a tumor without T cell priming and 288 

three tumors in which T cell priming was varied from low to high. Without T cell priming, survival was 289 

only determined by the tumor growth rate – logically, no tipping point exists in the absence of T cells 290 
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(Supplementary Figure 1A). With T cell priming, tipping points became apparent. The location of the 291 

tipping point was affected by the priming rate. A higher priming rate facilitated improved tumor 292 

eradication through an increased influx of cytotoxic T cells into the tumor microenvironment 293 

(Supplementary Figure 1B-D).  294 

In general, the presence of a tipping point indicates that small perturbations in either tumor growth 295 

rate or T cell killing rate in the vicinity of a tipping point may result in substantial overall survival 296 

differences in patients. In contrast, much larger perturbations far away from the tipping point would 297 

have far less effect.    298 

 299 
Figure 2: A tipping point in the tumor-immune interaction determines a patient’s outcome.  300 
(A) A gradual increase in tumor growth reveals a tipping point, where long-term survival (immune control; inset 1) abruptly 301 
changes to short-term survival (immune evasion; inset 2). (B) A similar analysis reveals a tipping point along the immune axis, 302 
again differentiating short-term survival (immune evasion; inset 1) from long-term control (immune control; inset 2). (C) The 303 
tipping point is present across the entire range of parameters examined. Cure and progressive disease are the dominant states, 304 
whereas subclinical tumor control only occurs within a limited parameter range (inset). Simulation parameters are shown in 305 
Supplementary Table 2. 306 
 307 
Immune checkpoint inhibitors induce a survival benefit by shifting patients over a tipping 308 
point 309 
So far, we have described tumor-immune interactions during the natural course of malignant disease. 310 

In a clinical setting, however, therapeutic interventions are available to steer disease courses. 311 
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Dependent on the treatment of choice, a specific effect is exerted on the tumor microenvironment. 312 

Treatment effects vary from constraining the proliferative capacity of tumor cells (e.g., chemotherapy 313 

or targeted therapy) to increasing the T cell pool (e.g., CAR T cells) or expanding the proliferative 314 

capacity of T cells (e.g., cancer vaccines; Figure 3A). Given the unparalleled responses of advanced 315 

malignancies to immunotherapy, we focused on the consequences of a tipping point for responses to 316 

immune checkpoint inhibitors (ICI), but these findings could be extended to other therapies as well. In 317 

this study, we limited the treatment effect of ICI to their primary mode of action: the augmentation of 318 

the T cell killing rate (Figure 3A).  319 

 320 
Figure 3: Tipping points induce dichotomous clinical outcomes in heterogeneous patient populations.  321 
(A) Treatments target processes or cell populations in the tumor microenvironment. (B-C) Two criteria need to be met to 322 
induce long-term survival: (B) ICI need to augment T cell killing sufficiently, and (C) the treatment effect needs to be retained 323 
for a prolonged time. An inadequate treatment effect or limited treatment duration led at maximum to a temporary survival 324 
benefit. (D-E) In patient populations with variation in only (D) the tumor (i.e., growth rate), or (E) the immune system (i.e., T 325 
cell killing rate), the distance to a tipping point determines the clinical benefit. Without treatment, survival was limited (grey 326 
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bars). In contrast, ICI induced long-term survival solely in patients close to a tipping point (green bars). See also Supplementary 327 
Table 3. 328 
 329 
In the presence of a tipping point, ICI could induce a long-term survival benefit under two conditions: 330 

1) the effect of treatment needs to be potent enough to shift a patient over a tipping point (Figure 3B), 331 

and 2) the treatment effect needs to be sustained long enough for a patient to benefit from the 332 

treatment (Figure 3C). The treatment effect was defined as the multiplication factor of the T cell killing 333 

rate. When both criteria were satisfied, ICI were able to induce a long-term survival benefit. However, 334 

if the treatment effect (anti-PD1 effect < 12.6) or duration (less than ±5 months) proved inadequate, 335 

any survival benefit was only temporary, and inevitable tumor progression would ultimately limit 336 

overall survival (Figure 3B/C; insets). These survival kinetics depend not solely on therapeutic features 337 

of ICI but rather on the interplay between patient and ICI characteristics. To illustrate this, we 338 

simulated twenty patients with identical immune systems (i.e., identical T cell killing rates). In the 339 

absence of ICI therapy, variation in the tumor growth rate – that is, variation in the distance to a tipping 340 

point – led to a limited variation in survival (Figure 3D; grey bars). When these same patients were 341 

treated with ICI, a survival benefit is induced in all patients. However, the extent of this benefit differs 342 

and depends on the distance to a tipping point. Following clinical observations, long-term survival is 343 

only induced in the subset of patients close to a tipping point (Figure 3D; green bars). Similar findings 344 

were obtained in a population of patients with identical tumors but different immune systems. 345 

Without treatment, hardly any survival variation is present (Figure 3E; grey bars). Again, treatment 346 

with ICI induced dichotomous clinical outcomes: a small survival benefit in most patients, with long-347 

term survival in a subset (Figure 3E; green bars).  Hence, the mere presence of a tipping point yields 348 

heterogeneity in treatment outcomes.  349 

 350 

Tipping points determine patient outcomes in dynamic patient trajectories 351 

Thus far, our simulations considered tipping points generated in patients with fixed characteristics. 352 

However, disease courses in patients are certainly not fixed and are, to a certain extent, subject to 353 

(possibly random) variation. We hypothesized that interpatient variability in clinical outcomes could 354 

be partially attributable to this dynamic behavior of cancers and the interaction with the immune 355 

system. Such variation might reflect biological processes (e.g., accumulating mutations, the expression 356 

of checkpoint molecules, and the availability of nutrients) that alter anti-tumor immunity and promote 357 

or hamper tumor development. We reasoned that the subsequent dynamics could drive patients 358 

towards and ultimately over a tipping point – or move patients away from it, which would limit the 359 

survival benefit of these treatments. To verify this hypothesis, we simulated the effect of dynamically 360 

evolving tumors (Figure 4A) or immune systems (Figure 4B) in identical patients compared to a static 361 

reference patient. Specifically, we varied the tumor growth rate and the T cell killing rate randomly 362 
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over time (parameter values are included in Supplementary Table 4). Upon reaching a diagnosable 363 

tumor volume, all patients in these examples were treated with ICI. As expected, stochastic dynamics 364 

prompted survival differences and induced a survival benefit in a subset of patients. In a 365 

heterogeneous patient population, this led to an interesting finding: the initial distance to a tipping 366 

point, along with the dynamics itself, determined the clinical outcome of patients treated with ICI 367 

(Figure 4C, Supplementary Figure 2). At population level, this led to a distinction between three subsets 368 

of patients: (1) patients far away from a tipping point with an unmodifiable bad prognosis (non-369 

responders), (2) patients close to a tipping point with a favorable prognosis (responders), and, most 370 

importantly, (3) patients in between these groups (potential responders). In the last subset, tumor 371 

dynamics ultimately determined the treatment response, and thereby the clinical outcome (Figure 4C; 372 

grey box). A clinically important ramification of dynamic trajectories is that even if the subset to which 373 

a patient belongs is known at baseline, dynamics could alter the distance to a tipping point and, 374 

thereby, the prognosis of a patient. Therefore, it might be impossible to predict the prognosis solely 375 

based on characteristics measured upon diagnosis.  Dynamic trajectories can significantly diversify 376 

patient outcomes, meaning that continuous variation in the tumor growth rate (Figure 4D) or T cell 377 

killing rate (Figure 4E) leads to an entire spectrum of patient outcomes.  378 

 379 
Figure 4: Survival outcomes are strongly affected by evolving patient dynamics. 380 
(A-B) Examples of dynamic disease courses in patients with identical tumors and immune systems at baseline, respectively. 381 
(A) Evolving tumors (i.e., random variation in tumor growth rate over time) and (B) continuous variation in the potency of the 382 
immune system (i.e., killing rate) lead to divergent survival outcomes. The grey dotted lines indicate the baseline values for 383 
the growth rate and killing rate, respectively. (C) Dynamic trajectories in a heterogeneous patient population can move 384 
patients towards or away from a tipping point. The grey box indicates patients in which dynamic trajectories strongly alter 385 
survival outcomes. See also Supplementary Figure 2. In dynamic trajectories, (D) baseline tumor growth and (E) baseline T cell 386 
killing rates cannot accurately predict overall survival. Note: all patients in these examples are treated with ICI. The red and 387 
black dotted lines indicate the 25% and 75% quantiles, respectively. See also Supplementary Table 4. 388 
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Implications of tipping points for biomarker discovery studies 389 

Biomarker discovery studies aim to improve the prediction of patient survival upon treatment. We 390 

observed that tipping points are crucial in shaping survival kinetics. Therefore, accurate survival 391 

predictions would require the consideration of tipping points. Ideally, a prognostic biomarker (or 392 

biomarker panel) would consistently distinguish long-term survivors from their counterparts. Since the 393 

non-linear survival dynamics following a tipping point weaken the correlation between a single 394 

biomarker and survival, the question is: how can we screen for biomarkers in a more efficient manner 395 

that takes this tipping point into account?  396 

 397 
Figure 5: Non-linear tumor-immune dynamics complicate biomarker discovery. 398 
(A) An in silico biomarker discovery study in a ‘fixed’ patient cohort: while a single biomarker – either a tumor or an immune 399 
marker – can predict survival to some extent (the first and second columns), information from both markers in a biomarker 400 
panel enhances the predictive capacity greatly (third column). (B) Dynamic disease trajectories challenge survival prediction 401 
with ‘baseline’ biomarkers. In dynamic disease courses, the predictive value of single ‘baseline’ biomarkers is limited (the first 402 
and second columns; compare to Figure 5A). A biomarker panel improves survival predictions in this cohort (the third column) 403 
but is still defied by evolving dynamics. See also Supplementary Table 5. 404 

 405 
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At first, we approached this question with an in silico biomarker discovery study. We measured the 406 

value of two potential biomarkers at baseline in simulated patients (n=100) that were subsequently 407 

treated with ICI (cohort characteristics are specified in Supplementary Table 5). We simplified the 408 

cohort by fixing the tumor and immune characteristics of these patients over time and assumed to 409 

have access to an entirely accurate biomarker (i.e., no measurement error; Figure 5A). Within this 410 

cohort, we predicted the prognosis of patients based on either the tumor or immune marker (the first 411 

and second columns of Figure 5A, respectively). As is common in practice (though from a statistical 412 

point of view far from ideal), we dichotomized the biomarker using its median as a cut-off. Although 413 

survival differentiation based on these biomarkers alone was partially possible, it remained far from 414 

optimal. However, when we constructed a biomarker panel including both biomarkers, it highly 415 

accurately discriminated short-term from long-term survivors (third column of Figure 5A). Note that 416 

despite variability in time from diagnosis, the initial plateau in the survival curves was caused by the 417 

fact that all tumors were diagnosed with identical sizes and immediately treated. 418 

In clinical practice, the assumption of a ‘fixed’ patient trajectory does not hold. Therefore, we 419 

simulated this cohort again with dynamic trajectories. Due to the dynamics, a subgroup of patients did 420 

not develop clinical tumors and was excluded from the analysis. The prediction of a patient’s prognosis 421 

with a single biomarker, either from the tumor or the immune system, in a dynamic cohort became 422 

increasingly challenging (the first and second columns of Figure 5B). The combination of both markers 423 

in a biomarker panel increased the predictive capacity slightly, enabling the prediction of prognosis to 424 

some extent. However, in line with the notion of personalized medicine, the accurate and 425 

individualized prediction of prognosis based on baseline characteristics was not feasible in a significant 426 

subgroup of patients due to dynamic tumor-immune interactions (third column of Figure 5B).  427 

These in silico experiments suggest that biomarker discovery efforts benefit from considering tumor 428 

and immune markers in concert rather than alone. To test this hypothesis, we retrospectively analyzed 429 

clinical data derived from previous trials in patients with metastatic melanoma (n = 58; see baseline 430 

characteristics in Supplementary Table 6) (44). We assessed whether a combination of two biomarkers 431 

would provide more information on a patient’s survival than either marker alone. Baseline lactate 432 

dehydrogenase (LDH) was selected as a surrogate marker for tumor growth, and the ratio between 433 

immunohistochemically-determined intratumoral vs. peritumoral immune cells (I/P ratio) on the 434 

primary tumor was selected as an immune marker. We then used two different methods to measure 435 

the amount of information these markers provide on patient survival. First, we applied linear 436 

discriminant analysis to determine marker cut-off values that distinguish “short survivors” (<9 months) 437 

from “long survivors” (>9 months, corresponding to the median survival in the cohort). A cut-off based 438 

on the tumor marker LDH alone correctly classifies 71% of patients (Figure 6A), which increased to 78% 439 

when using the I/P ratio as an immune marker instead. A combination of both markers achieves 86% 440 
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accuracy, with the discrimination line following a roughly diagonal slope akin to the tipping point in 441 

our “in silico” cohort (Figure 2).  442 

 443 
Figure 6: A composite biomarker consisting of a tumor and an immune component outperforms single markers in a 444 
retrospective analysis of metastatic melanoma patients. 445 
(A) A linear classifier based on LDH level at baseline, a surrogate marker for tumor growth, classified 71% of all patients 446 
correctly as short survivors (<9 months) or long survivors (>9 months). With an accuracy of 78%, the I/P ratio – an immune 447 
marker – performs better in this cohort. A linear combination of both markers leads to an even better classification (86% 448 
accuracy) than either one alone. (B) A Cox proportional hazard model based on both markers fits the data better than models 449 
based on either marker as measured by the Bayesian Information Criterion (BIC) (the lower, the better, and differences above 450 
10 are considered strongly favoring one model over another).  451 

 452 

Second, we compared Cox proportional hazard models based on LDH alone and I/P ratio alone to a 453 

model including both markers. Both LDH (likelihood ratio test: p=4x10-7) and I/P ratio (p=3.6x10-7) 454 

explained survival better than chance on their own, but a bivariable model (p=9.3x10-10; 455 

Supplementary Table 7) provided the best fit to the data as measured by a Bayesian Information 456 

Criterion (BIC), which was lower by 11.6 compared to the LDH-only model and by 20.7 compared to 457 

the I/P ratio-only model. The Kaplan-Meier plots shown in Figure 6B illustrate the performance of each 458 

model by comparing the patients with the highest 50% estimated relative hazard to the lowest 50%. 459 

These results support our in silico-generated hypothesis that a combination of tumor and immune 460 

markers form a better basis for patient stratification than either marker on its own.  461 

Two important findings are derived from these observations: First, due to the non-linear tumor-462 

immune dynamics with respect to survival, it can be complicated for a single biomarker to predict a 463 

patients’ prognosis accurately. Since survival kinetics emerge from the interplay between a cancer and 464 
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the immune system, biomarkers from both systems need to be incorporated simultaneously into a 465 

biomarker panel to improve the predictive value. Second, biomarker measurements at baseline are 466 

merely a situational snapshot of the disease conditions at a specific point in time. Depending on the 467 

magnitude of the dynamics, it might become challenging or even impossible to predict the prognosis 468 

of patients from these biomarkers correctly.  469 

 470 

DISCUSSION 471 

This study investigated how tumor-immune dynamics relate to ICI-induced treatment responses and 472 

survival kinetics of patients. We predict that a tipping point is present in the tumor-immune 473 

interaction. This finding implies that underneath the intricate interplay between a developing 474 

malignancy and the immune system, two contrasting disease states determine disease outcome: a 475 

state where the immune system controls tumor outgrowth and a state in which a tumor escapes 476 

immune defense. A stable “steady state” in which tumor growth and the immune response perfectly 477 

balance each other for extended periods seems only plausible in a subclinical setting. We show that 478 

treatment with ICI can induce a survival benefit by shifting a patient over a tipping point, thereby 479 

tipping the balance in tumor-immune dynamics in favor of survival. In line with clinical observations of 480 

interpatient variability in disease courses, we found that dynamics in patient trajectories pose major 481 

challenges for treatment response prediction. Moreover, we showed how the tipping point in dynamic 482 

patient trajectories defies simple strategies for outcome prediction in biomarker discovery studies. In 483 

particular, when facing highly dynamic disease courses, adaptive treatment strategies based on 484 

continuous monitoring might be more promising than simple patient stratification at baseline.  485 

Tipping points are well-known in complex systems such as financial markets and ecosystems but are 486 

also present in medicine (46, 47). State transitions might progress gradually or abruptly. If a system 487 

balances around a critical threshold, small perturbations might induce an abrupt transition to a 488 

contrasting state. In oncology, phenomena like partial or complete radiologic responses during 489 

treatment or (hyper)progression after discontinuation of treatment suggest the presence of state 490 

transitions (48, 49). Based on these observations, a tipping point in cancer immunotherapy had been 491 

speculated upon (50). Experimentally, tipping points are most clearly represented by early preclinical 492 

work in the PD-1/PD-L1 axis. Consistent with our findings, dichotomous treatment responses arise in 493 

syngeneic DBA/2 mice inoculated with P815/PD-L1 cells (51). While genetically identical with similar 494 

tumor characteristics, anti-PD-L1 antibodies prolong survival in only a subset of the mice, likely due to 495 

stochastic differences in immune responses and TCR repertoire. Additional in vivo data supporting the 496 

theory of tipping points in oncology is derived from studies on dynamic network biomarkers, showing 497 

its relevance during the onset of metastasis in hepatocellular carcinoma (52) and the development of 498 
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treatment resistance in breast cancer (53). This study provides a potential mechanistic explanation for 499 

this phenomenon in immuno-oncology and shows its implications on the induction of long-term 500 

survival in clinical practice and biomarker discovery. From a biomechanistic perspective, such state 501 

transitions in cancer immunotherapy arise due to fundamental differences in proliferation kinetics 502 

between tumors and the immune system. While tumor cell proliferation is virtually unrestricted, 503 

immune cell proliferation is much more limited and tightly controlled. Our finding that tipping points 504 

affect not only natural disease courses but also treatment responses underlines the importance of 505 

these kinetics.  506 

Tipping points within tumor-immune dynamics have important implications for biomarker discovery. 507 

Biomarkers are developed to predict prognosis and steer clinical decision-making. Disease outcomes 508 

in cancer patients are essentially determined by the interplay between two complex systems: the 509 

tumor and the immune system. Our model predicts that factors from both systems should be 510 

considered to improve the predictive power of biomarkers. However, in contrast with this seemingly 511 

straightforward prediction, current research mainly focuses on factors derived from one of the two 512 

complex systems. Expression of programmed death ligand-1 (PD-L1) on tumor tissue illustrates this: 513 

while 45% of patients with PD-L1 positive tumors show objective responses to anti-PD(L)1 514 

immunotherapy, 15% of patients with PD-L1 negative tumors also show objective responses (54). 515 

Other explanations for this difference include heterogeneous intratumoral and inter-metastases 516 

expression patterns, positivity-threshold selection, and differences in immunohistochemical staining 517 

protocols. In that respect, tumor mutational burden (TMB) might prove to be a highly relevant 518 

biomarker. The mutation rate is a tumor-intrinsic factor associated with the phenotypical 519 

aggressiveness of tumors (55). Simultaneously, a high mutational burden might induce a plethora of 520 

neoantigens, linking this tumor-intrinsic factor directly to adaptive immunity. Clinical observations of 521 

a stronger association between TMB and response rates to anti-PDL1 immunotherapy compared to 522 

PD-L1 expression in patients with urothelial carcinoma support this hypothesis (56). Our research thus 523 

reinforces common calls to integrate multiple biomarkers for immunotherapy prediction outcomes 524 

(57, 58); at least, a combination of both immunological and tumor-related parameters should be the 525 

basis of any biomarker discovery effort. The strongly non-linear dynamics resulting from the tipping 526 

point mean that a one-dimensional approach will likely be insufficient. 527 

Our approach has to be interpreted in light of some limitations. Although the ‘coarse-grained’ nature 528 

of ODE models allows focusing on the major common underlying mechanisms in many cancers, it is 529 

also a potential pitfall. For example, metabolic processes such as hypoxia, immune-suppressive 530 

characteristics of the tumor microenvironment such as the presence of FoxP3+ regulatory T cells or 531 

expression of transforming growth factor b, the presence of other relevant effector cells such as 532 

natural killer cells, and the availability of nutrients are only implicitly represented by our model in a 533 
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single killing efficacy parameter. This simplification also holds for treatments. In this study, ICI was 534 

limited to its main mode of action: the augmentation of the T cell killing rate. While the ‘true’ 535 

mechanistic effects might be more widespread, sufficient data to correctly parameterize more 536 

complex models remains scarce. Furthermore, it should be emphasized that an ODE model contains 537 

limited spatial information; while we distinguish between lymphatic tissue and the tumor 538 

microenvironment, all cells within the microenvironment are identical, and all processes affect cells in 539 

the same manner. Although we do not expect that explicit incorporation of these processes or 540 

translation of the model into a spatial variant alters our central finding of a tipping point, it could 541 

nevertheless be of interest to verify these hypotheses in future research using more complex, spatial 542 

agent-based models.  543 

In conclusion, we used computational modeling to show that the clinical outcome of cancer patients 544 

is determined by tipping points in tumor-immune dynamics. A tipping point influences not only 545 

treatment response but also the prognosis of patients and has major implications for future biomarker 546 

research.   547 
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