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1 Supporting Text S1: Off-campus student household size

To gauge the typical sizes of off-campus student households, we used data from the Social Contact
Survey [1–3], a paper-based and online survey of 5,388 participants in Great Britain conducted in
2010.

We extracted records provided by 347 students. For these participants, we isolated contacts recorded
as occurring in the home setting and having a frequency in the highest category. We then increased
all numbers by one to obtain household sizes including the respondent. Respondents that reported
no daily household contacts we assumed to be in a household size of one. To generate the off-
campus households, we fit a lognormal distribution to the data (whose best-fit parameters were mean
0.979 and standard deviation 0.576) and sampled the size of each household from the associated
probability density function (Fig. S1). We subsequently assigned the required number of students to
that household.

Fig. S1: Off-campus household size probability mass functions. Red bars represent the empirical dis-
tribution. Blue bars show the probability density function produced by the lognormal(0.979,0.576) distribution.
To generate the off-campus households in our analysis, we used the fitted lognormal distribution.
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2 Supporting Text S2: Cohort data

We were provided with records of on-campus resident students for the 2019/2020 academic year from
a representative campus based university. Each student record had information on the department of
study and whether the student was in undergraduate or postgraduate study.

For computing the departmental distributions for those resident off-campus, we used high level faculty
proportion statistics for the 2018/2019 academic year to obtain the relative proportion of off-campus
residents within each faculty (i.e. accounting for the portions of each faculty population attributed
to on-campus residents). To simplify the calculation, we assumed all first-year undergraduates were
either resident on-campus or were distance learners and therefore not living in the local vicinity of the
university. We evaluated department specific allocations using the same fractions as given by the data
for on-campus residents.

In all, we retained 28 department labels. We calculated separate departmental breakdowns for those
resident on-campus (Fig. S2(a) and Table S1) and off-campus (Fig. S2(b) and Table S2) from the
available data.

Table S1: On-campus residence students stratified by department and study type (first year undergraduate,
non-first year undergraduate or postgraduate). Percentages are given to 2.d.p.

Faculty Label Department First year undergraduate Non-first year undergraduate Postgraduate

Arts LN Modern Languages 2.44 1.23 0.12
HA History of Art 0.53 0.04 0.00
HI History 4.13 0.26 0.03
TH Theatre Studies 0.28 0.01 0.26
EN English 2.50 0.18 0.22
GD Global development 1.69 0.35 0.00
CX Classics 0.72 0.09 0.01
FI Film and Lit. 0.85 0.03 0.03
IP Liberal Arts 0.46 0.00 0.00

Social Studies IB Business School 11.62 0.51 5.58
EC Economics 6.42 0.21 1.01
PO Politics 3.61 0.29 0.50
PH Philosophy 4.76 0.22 0.13
LA Law 3.63 0.21 0.31
SO Sociology 1.15 0.16 0.21
ET Applied Linguistics 0.84 0.06 0.54
FP Foundation Programme 0.62 0.00 0.00
IM Interdisciplinary Methods 0.00 0.00 0.43

Science & Engineering LF Life Sciences 4.67 0.35 0.34
MA Mathematics 4.89 0.37 0.16
CS Computer Science 4.45 0.21 0.46
ST Statistics 4.03 0.13 0.29
WM Manufacturing 0.75 0.01 4.82
ES Engineering 5.07 0.32 0.26
PS Psychology 2.67 0.18 0.25
PX Physics 3.16 0.13 0.03
CH Chemistry 2.13 0.26 0.09
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Table S2: Off-campus residence students stratified by department and study type (first year undergraduate,
non-first year undergraduate or postgraduate). Percentages are given to 2.d.p.

Faculty Department First year undergraduate Non-first year undergraduate Postgraduate

Arts Modern Languages 0 2.02 0.40
History of Art 0 0.31 0.00
History 0 2.41 0.10
Theatre Studies 0 0.16 0.89
English 0 1.47 0.74
Global development 0 1.12 0.00
Classics 0 0.44 0.05
Film and Lit. 0 0.48 0.10
Liberal Arts 0 0.25 0.00

Social Studies Business School 0 7.23 15.83
Economics 0 3.95 2.87
Politics 0 2.33 1.42
Philosophy 0 2.97 0.37
Law 0 2.28 0.87
Sociology 0 0.78 0.58
Applied Linguistics 0 0.53 1.54
Foundation Programme 0 0.37 0.00
Interdisciplinary Methods 0 0.00 1.21

Science & Engineering Life Sciences 0 3.05 0.79
Mathematics 0 3.20 0.38
Computer Science 0 2.83 1.06
Statistics 0 2.53 0.68
Manufacturing 0 0.46 11.23
Engineering 0 3.28 0.62
Psychology 0 1.73 0.58
Physics 0 2.00 0.07
Chemistry 0 1.45 0.21

Medicine All medical school 0 4.19 3.57

4



(a)

LN HA HI TH EN GD CX FI IP IB EC PO PH LA SO ET FP IM LF MA CS STWMES PS PX CH

Department label

0.00

0.02

0.04

0.06

0.08

0.10

0.12
P

ro
p
o
rt

io
n

Department distribution for students in on-campus residence

Arts Social sciences Science & Engineering

First year undergraduate

Non-first year undergraduate

Postgraduate

(b)

LN HA HI TH ENGDCX FI IP IB ECPOPH LA SO ET FP IM LFMACS STWMES PS PXCH N

Department label

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P
ro

p
o
rt

io
n

Department distribution for students in off-campus residence

Arts Social sciences Science & Engineering Med.

First year undergraduate

Non-first year undergraduate

Postgraduate

Fig. S2: Per residence location, the proportion of students within each department. Panels corre-
spond to: (a) Students resident on-campus; (b) Students living off-campus. In each panel, blue bars represent
first year undergraduate students, orange bars represent non-first year undergraduate students and yellow bars
represent postgraduate students. We list department labels in Table S1.
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3 Supporting Text S3: Parameterisation of contact risk

The data contained in the Social Contact Survey [1–3] included participants recording for each inter-
action its duration and whether it involved physical touch. We used these data attributes to scale the
transmission risk of contacts occurring in non-household settings relative to household contacts.

Explicitly, the contact survey found 80% of household contacts to involve touch. As a result, touch
contacts contributed 80% to the household secondary attack rate estimate. The remaining 20% of the
household secondary attack rate we attributed to non-touch contacts with a duration classification
above 0; of the non-touch contacts, 80% had duration classified above 0.

For contacts in non-household settings, relative to the central estimate of adjusted secondary attack
rate in the household setting against those aged 18-34 of 0.34 [4], the above procedure returned a
transmission risk value of 0.2414. The relative magnitude of that estimate was used to scale the
standard deviation, consequently set at 0.034. We applied these computed transmission risks for
contacts in the study (cohort) setting, dynamic social contacts and within sports clubs.

For societies, we assigned a lower transmission risk to reflect the implementation of COVID-secure
measures that would be required to permit these meetings to take place (mean 0.12, standard deviation
0.017).

For each individual, we drew the transmission potential across contacts in each respective setting from
normal distributions with the specified mean and standard deviation values.
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4 Supporting Text S4: Non-intervention scenario calibration

Model parameterisation

In the absence of isolation and contact tracing, we calibrated the system to return a 7-day moving
average Rt in the range of three to four in the early phase of the outbreak (Fig. S3). We achieved
this magnitude of spread by applying a scaling factor of 0.8 to the baseline transmission risk across a
contact in each setting.

Relative to the assumption made in the main manuscript of society and sports clubs being run in a
COVID-secure fashion, for the no intervention scenario considered here we consequently attributed
a higher risk of transmission for contacts occurring in these organised social groups. The baseline
transmission risk in societies matched that in non-household settings. In sports clubs, the baseline
transmission risk matched the central estimate of adjusted secondary attack rate in the household
setting against those aged 18-34 [4].

For each replicate, we drew the probability of a case being asymptomatic from a Uniform(0.5,0.8)
distribution and the relative infectiousness of an asymptomatic from a Uniform(0.3,0.7) distribution.
All simulations had a duration of 77 days (11 weeks). We ran batches of 100 stochastic simulations on
different network configurations, as well as a run of 1,000 simulations whose realisations consisted of 50
separate networks (with 20 runs performed using each network). All individuals began susceptible, with
the exception of ten individuals seeded as initial infecteds (five symptomatic, five asymptomatic).

Results summary

For the early stages of the outbreak, in our simulations batches we typically obtained a distribution
for the 7-day moving average Rt whose 50% prediction interval lay in the range 3 to 4 (for an example,
see Fig. S3).

Across our simulated collection of mean generation times the median value was roughly seven days
(Fig. S4). In the absence of interventions, a mean generation time estimate in the region of seven
days corresponds with findings from an analysis of transmission pair data from mainland China by
Ali et al. [5], which found serial intervals were on average 7.8 days in mid-January 2020 (prior to the
implementation of nonpharmaceutical interventions).

In general, up to 95% of the student population was infected by the conclusion of autumn term. The
contribution of static contacts to infection was greatest in dynamic social contacts, followed by cohort
contacts and household contacts. Organised society and sports club meeting, that occur less fre-
quently, provided a smaller contribution to overall transmission. Finally, we observed a non-negligible
proportion of infection occurring due to dynamic contacts in accommodation blocks (Fig. S5).
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(a) (b) (c)

Fig. S3: Effective reproductive ratio temporal profiles for specified centralised moving average
widths. In each panel, the solid line represents the median estimate, with shaded regions illustrating the 50%,
90% and 99% prediction intervals, respectively (transitioning from darkest to lightest). We display temporal
profiles of Rt with centralised moving averages of: (a) 7 days; (b) 14 days; (c) 28 days. Note, the y-axis scales
differ across panels.

Fig. S4: Distribution of mean generation times from 100 replicates. Each panel was produced with
the random number generator passed a different seed. The vertical line designates the median value, with the
corresponding value (to 2 d.p.) stated alongside the line. We obtained a median value for the mean generation
time of roughly seven days.
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(a) (b)

(c) (d)

Fig. S5: Outbreak temporal profiles and associated probability distributions in the absence of
interventions. (a-c) Estimated from three separate batches of 100 stochastic simulations, each on a different
network realisation. (Row one) Daily Rt estimate using a 7-day moving average. (Row two) Proportion of
individuals infected after eleven weeks have elapsed. (Row three, left) Average number of individuals infected
by the initial ten nodes. (Row three, right) Mean generation time. (Row four, left) Proportion of infections
occurring in each setting. (Row four, right) Average (mean) amount of new daily infections in each setting. (d)
Outputs summarised from 1,000 simulations (consisting of 50 network realisations and 20 runs per network).
Panels match those presented in rows one, two and four for (a-c).
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5 Supporting Text S5: Initial seeding of infected and recovered in-
dividuals

We initialised the number of incoming infected students (stratified by latent and asymptomatic states)
and incoming students that had previously been infected (assumed recovered) by multiplying the
number of incoming students to the university from a UK region by the percentage of the incoming
student population from that region estimated to be of that COVID-19 disease status (distribution of
sampled values shown in Fig. S6). For each individual initialised in the latent infected or asymptomatic
disease state, we also sampled the time they had already spent in the respective disease state.

To inform the student flows, we used rounded figures provided from HESA via Jisc on the number
of students at each HE provider who are domiciled in the different English regions and the devolved
administrations. These numbers were from the 2019/2020 academic year, and excluded distance-
learning students and students on industrial placements (https://github.com/magicicada/simple epi
calculations/tree/main/basic arriving student calculations).

For estimating the proportion of the student population that resided in each disease compartment upon
commencement of the university term, we drew on projections from a pre-existing SARS-CoV-2 ODE
transmission model [6]. Values were taken from 26th September, corresponding with the beginning of
welcome week.

We assumed no students arrived with symptomatic infection. In addition, we only accounted for
infection arriving from students domiciled in the UK. We make a simplifying assumption that non-UK
students would not contribute to the initial infected count, with an argument that argue that the
majority of international students would be required to quarantine for 14 days after entering the UK.
However, we did apply a generalising assumption of the proportion of international-based students
initialised in the recovered state to match the estimated proportion of arriving UK-based students in
the recovered state.

(a) (b) (c)

Fig. S6: Distributions of the number of students with the given COVID-19 disease status at
the beginning of welcome week. We produced the displayed histograms from 100 simulations. (a) Latent
infected; (b) asymptomatic infecteds; (c) previously infected (assumed recovered).
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6 Additional tables

Table S3: Summary statistics for proportion infected and proportion of time adhering individuals spend in
isolation dependent upon both the residence location and the probability an individual adheres to intervention
measures. We present median estimates and give 95% prediction intervals in parentheses, produced from 1000
simulation replicates. All values given to 2 s.f. − − − corresponds to a scenario where the specified metric is
not relevant.

Proportion adhering
Proportion infected 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

On-campus
0.77

(0.67,0.82)
0.75

(0.64,0.80)
0.73

(0.61,0.79)
0.71

(0.57,0.77)
0.68

(0.53,0.75)
0.65

(0.47,0.73)
0.62

(0.42,0.71)
0.57

(0.36,0.68)
0.52

(0.29,0.65)
0.45

(0.21,0.61)
0.37

(0.14,0.57)

Off-campus
0.66

(0.51,0.74)
0.64

(0.48,0.72)
0.61

(0.44,0.69)
0.58

(0.40,0.66)
0.54

(0.34,0.63)
0.49

(0.28,0.60)
0.43

(0.23,0.55)
0.37

(0.18,0.51)
0.30

(0.13,0.46)
0.23

(0.085,0.41)
0.16

(0.048,0.35)

All
0.69

(0.56,0.76)
0.67

(0.53,0.74)
0.65

(0.49,0.72)
0.62

(0.45,0.70)
0.58

(0.40,0.67)
0.54

(0.34,0.64)
0.49

(0.29,0.60)
0.43

(0.23,0.56)
0.36

(0.18,0.51)
0.29

(0.12,0.46)
0.22

(0.076,0.41)

Proportion of time isolated

On-campus —
0.31

(0.22,0.36)
0.32

(0.22,0.37)
0.33

(0.22,0.38)
0.33

(0.21,0.39)
0.33

(0.20,0.39)
0.32

(0.19,0.39)
0.31

(0.17,0.39)
0.30

(0.15,0.38)
0.27

(0.13,0.36)
0.24

(0.10,0.33)

Off-campus —
0.11

(0.056,0.15)
0.13

(0.067,0.17)
0.14

(0.074,0.19)
0.15

(0.078,0.20)
0.15

(0.075,0.21)
0.15

(0.073,0.22)
0.15

(0.065,0.21)
0.14

(0.06,0.20)
0.13

(0.05,0.19)
0.11

(0.038,0.17)

All —
0.17

(0.10,0.21)
0.18

(0.11,0.23)
0.19

(0.12,0.24)
0.20

(0.12,0.26)
0.20

(0.11,0.26)
0.20

(0.11,0.27)
0.20

(0.096,0.26)
0.19

(0.086,0.25)
0.17

(0.074,0.24)
0.15

(0.057,0.22)

Table S4: Summary statistics under various isolation adherence assumptions. We present median estimates
and give 95% prediction intervals in parentheses, produced from 1000 simulation replicates. All values given to
2 s.f. −−− corresponds to a scenario where the specified metric is not relevant.

Proportion adhering
No room isolation 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Proportion infected
0.69

(0.56,0.76)
0.67

(0.53,0.74)
0.65

(0.49,0.72)
0.62

(0.45,0.70)
0.58

(0.40,0.67)
0.54

(0.34,0.64)
0.49

(0.29,0.60)
0.43

(0.23,0.56)
0.36

(0.18,0.51)
0.29

(0.12,0.46)
0.22

(0.076,0.41)

Proportion of time isolated
0.00

(0.00,0.00)
0.17

(0.10,0.21)
0.18

(0.11,0.23)
0.19

(0.12,0.24)
0.20

(0.12,0.26)
0.20

(0.11,0.26)
0.20

(0.11,0.27)
0.20

(0.096,0.26)
0.19

(0.086,0.25)
0.17

(0.074,0.24)
0.15

(0.057,0.22)

Proportion tested
0.00

(0.00,0.00)
0.022

(0.011,0.032)
0.042

(0.021,0.061)
0.060

(0.029,0.087)
0.074

(0.035,0.11)
0.085

(0.039,0.13)
0.093

(0.041,0.14)
0.094

(0.039,0.15)
0.091

(0.036,0.15)
0.085

(0.031,0.14)
0.073

(0.023,0.12)

Maximum proportion isolated
0.00

(0.00,0.00)
0.041

(0.023,0.055)
0.086

(0.048,0.11)
0.13

(0.073,0.17)
0.17

(0.097,0.22)
0.21

(0.12,0.27)
0.24

(0.13,0.31)
0.26

(0.14,0.34)
0.27

(0.14,0.36)
0.27

(0.13,0.37)
0.25

(0.10,0.37)

Proportion infected at end of term
0.0098

(0.0014,0.084)
0.013

(0.0022,0.093)
0.019

(0.0041,0.095)
0.027

(0.0063,0.10)
0.036

(0.01,0.10)
0.045

(0.016,0.10)
0.053

(0.022,0.097)
0.059

(0.031,0.088)
0.057

(0.038,0.077)
0.052

(0.036,0.069)
0.044

(0.019,0.062)

With Room isolation

Proportion infected
0.69

(0.56,0.76)
0.67

(0.52,0.74)
0.64

(0.48,0.72)
0.61

(0.43,0.69)
0.57

(0.37,0.66)
0.52

(0.31,0.63)
0.47

(0.25,0.59)
0.40

(0.19,0.54)
0.33

(0.13,0.50)
0.26

(0.082,0.45)
0.19

(0.047,0.39)

Proportion of time isolated
0.00

(0.00,0.00)
0.17

(0.10,0.21)
0.18

(0.11,0.23)
0.19

(0.12,0.24)
0.20

(0.11,0.26)
0.20

(0.10,0.26)
0.20

(0.096,0.26)
0.19

(0.087,0.26)
0.18

(0.07,0.25)
0.16

(0.057,0.23)
0.13

(0.041,0.20)

Proportion tested
0.00

(0.00,0.00)
0.022

(0.011,0.032)
0.042

(0.021,0.061)
0.059

(0.029,0.086)
0.072

(0.034,0.11)
0.082

(0.035,0.13)
0.087

(0.036,0.14)
0.087

(0.033,0.14)
0.083

(0.026,0.14)
0.073

(0.023,0.12)
0.061

(0.016,0.11)

Maximum proportion isolated
0.00

(0.00,0.00)
0.041

(0.023,0.055)
0.085

(0.048,0.11)
0.13

(0.072,0.17)
0.17

(0.093,0.22)
0.20

(0.11,0.26)
0.23

(0.12,0.30)
0.24

(0.12,0.33)
0.25

(0.11,0.35)
0.24

(0.099,0.35)
0.22

(0.071,0.35)

Proportion infected at end of term
0.0098

(0.0014,0.084)
0.014

(0.0023,0.092)
0.020

(0.0042,0.10)
0.028

(0.0067,0.11)
0.039

(0.011,0.11)
0.050

(0.017,0.10)
0.058

(0.025,0.097)
0.061

(0.034,0.086)
0.057

(0.037,0.078)
0.050

(0.022,0.068)
0.040

(0.010,0.063)

Students rehoused
0

(0,0)
81

(42,122)
158

(85,232)
228

(119,334)
290

(144,428)
342

(166,512)
372

(170,573)
384

(158,598)
378

(138,622)
346

(112,582)
300

(81,519)

Table S5: Measures of relative case load and isolation burden under the considered adherence probabilities
and mass testing options compared to a scenario where no mass test was performed. All values are specified to
2 d.p.

Relative
proportion infected

Relative time
adhering student isolated

Adherence Test strategy All On-campus Off-campus All On-campus Off-campus

Low
(probability: 0.2)

Day 21 0.99 1.00 0.99 1.26 1.13 1.16
Day 63 1.00 1.00 1.00 1.25 1.07 1.19
Fortnightly 0.94 0.97 0.95 1.98 1.46 1.72
Weekly 0.91 0.95 0.93 2.46 1.75 2.11

Moderate
(probability: 0.5)

Day 21 0.97 0.98 0.98 1.16 1.07 1.09
Day 63 0.97 0.99 0.98 1.24 1.09 1.17
Fortnightly 0.77 0.90 0.85 1.59 1.30 1.44
Weekly 0.61 0.84 0.76 1.75 1.46 1.63

High
(probability: 0.8)

Day 21 0.86 0.94 0.93 1.01 1.03 1.03
Day 63 0.91 0.96 0.94 1.24 1.10 1.17
Fortnightly 0.37 0.73 0.66 0.94 1.06 1.11
Weekly 0.13 0.60 0.52 0.56 1.02 1.08
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Table S6: Median and 95% prediction intervals for end of term infection prevalence under the tested combi-
nations of isolation, test and tracing adherence, mass test day and mass test coverage. All values are specified
to 2 s.f. Fields containing −−− designate non-applicable combinations of test day and coverage.

Mass testing coverage

Adherence Test day None All On-campus Off-campus

0.2

None
0.020

(0.0042,0.10)
— — —

Day 21 —
0.026

(0.0064,0.11)
0.023

(0.0050,0.11)
0.023

(0.0057,0.11)

Day 63 —
0.018

(0.0038,0.088)
0.019

(0.0038,0.095)
0.018

(0.0039,0.090)

Fortnightly —
0.030

(0.0072,0.11)
0.026

(0.0057,0.11)
0.026

(0.0062,0.10)

Weekly —
0.035

(0.0089,0.12)
0.029

(0.0071,0.11)
0.029

(0.0074,0.10)

0.5

None
0.050

(0.017,0.10)
— — —

Day 21 —
0.071

(0.032,0.12)
0.059

(0.023,0.11)
0.061

(0.027,0.11)

Day 63 —
0.036

(0.012,0.073)
0.045

(0.016,0.090)
0.039

(0.013,0.081)

Fortnightly —
0.070

(0.036,0.10)
0.064

(0.027,0.10)
0.060

(0.028,0.094)

Weekly —
0.071

(0.033,0.098)
0.069

(0.033,0.10)
0.060

(0.031,0.088)

0.8

None
0.057

(0.037,0.078)
— — —

Day 21 —
0.077

(0.035,0.10)
0.066

(0.039,0.088)
0.067

(0.037,0.088)

Day 63 —
0.030

(0.018,0.040)
0.045

(0.029,0.058)
0.038

(0.025,0.051)

Fortnightly —
0.032

(0.0047,0.057)
0.055

(0.018,0.072)
0.045

(0.020,0.063)

Weekly —
0.0093

(0.00,0.050)
0.049

(0.013,0.071)
0.038

(0.014,0.053)

Table S7: Performance of inclusion of mass testing, relative to a scenario where no mass test was performed,
measured by end of term prevalence metrics. All values are specified to 2 d.p.

Probability mass testing
reduces end of term prevalence

Relative
end of term prevalence

Adherence Test day All On-campus Off-campus All On-campus Off-campus

0.2
Day 21 0.03 0.14 0.09 1.29 1.15 1.18
Day 63 0.92 0.73 0.90 0.90 0.97 0.92
Fortnightly 0.07 0.13 0.17 1.52 1.29 1.31
Weekly 0.04 0.06 0.11 1.74 1.48 1.44

0.5 Day 21 0.01 0.03 0.04 1.42 1.18 1.23
Day 63 1.00 0.98 1.00 0.72 0.90 0.78
Fortnightly 0.20 0.15 0.26 1.41 1.29 1.21
Weekly 0.26 0.15 0.29 1.43 1.39 1.20

0.8 Day 21 0.12 0.13 0.15 1.35 1.15 1.17
Day 63 1.00 1.00 1.00 0.53 0.78 0.67
Fortnightly 0.90 0.61 0.86 0.56 0.95 0.79
Weekly 1.00 0.71 0.96 0.16 0.86 0.66
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7 Additional figures
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Fig. S7: Epidemiological model disease states and transitions. We stratified the population into
susceptible (S), exposed (E, infected but not yet infectious), presymptomatic infectious (Ip), symptomatic
infectious (IS), asymptomatic infectious (IA), and recovered (R) states. Solid lines denote transitions between
disease states. A susceptible individual (S) becomes infected due to infectious pressure (λ) exerted by having
contact with an infectious individuals, which can lead to onward transmission of the virus. Upon infection,
individuals enter the exposed state (E). Upon leaving the exposed period, the individual enters the infectious
state on one of two pathways: (i) with probability α ∈ [0.3, 0.7] they enter the asymptomatic state (IA), with the
parameter τ ∈ [0.5, 0.8] denoting the relative infectiousness of an asymptomatic versus a symptomatic case and
presymptomatic cases that will become symptomatic; (ii) with probability 1-α they enter the presymptomatic
state (Ip), before becoming symptomatic (IS) after four days. Upon resolution of infection individuals move to
the recovered (R) state. Infectious individuals leave the infectious state after 14 days, meaning infectious cases
that went on to become symptomatic remain in the symptomatic state for 10 days.
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(a) (b)

Fig. S8: Temporal profiles of epidemiological measures over the autumn term under differing levels
of adherence to nonpharmaceutical interventions. Outputs produced from 1,000 simulations (with 20
runs per network, for 50 network realisations) for three levels of adherence to nonpharmaceutical interventions:
0% (grey), 50% (blue), 100% (red). Solid lines depict the median profile and shaded regions the 50% prediction
interval. Patterns of infection prevalence and proportion of the student community in isolation demonstrated
trade-offs between case numbers and the need for portions of the population to isolate. (a) Proportion infected.
(b) Proportion isolated.
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Fig. S9: Infection epidemiological measures over the autumn term under differing levels of ad-
herence to NPIs using a single network structure. Outputs summarised from 20 simulations on a single
network realisation. In all the violin plots, the white markers denote medians and solid black lines span the 25th
to 75th percentiles. We observe a large amount of variability in outcomes, which results from differences in epi-
demiological properties between simulations runs, such as the distribution of initial infections, the asymptomatic
probability, and the relative infectiousness of an asymptomatic case (all of which were randomly generated at
the start of each simulation). (a) Over the duration of the autumn term, distributions relative to students
resident on-campus only (green violin plots), students resident off-campus only (orange violin plots) and to the
overall student population (purple violin plots) for proportion infected. (b) Proportion of students infected at
the end of the autumn term. (c) Under each level of adherence, we display the median proportion of the student
population in latent (blue), asymptomatic (orange), presymptomatic (yellow), symptomatic (purple) infected
states at the end of the autumn term; for a given adherence value the height of the bar in panel (c) corresponds
to the median point in panel (b).
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(a)

(b) (c)

Fig. S10: Non-infection epidemiological measures over the autumn term under differing levels of
adherence to NPIs using a single network structure. Outputs summarised from 20 simulations on a
single network realisation. In all the violin plots, the white markers denote medians and solid black lines span
the 25th to 75th percentiles. We observe a large amount of variability in outcomes, which results from differ-
ences in epidemiological properties between simulations runs, such as the distribution of initial infections, the
asymptomatic probability, and the relative infectiousness of an asymptomatic case (all of which were randomly
generated at the start of each simulation). (a) Over the duration of the autumn term, distributions relative to
students resident on-campus only (green violin plots), students resident off-campus only (orange violin plots)
and to the overall student population (purple violin plots) for proportion of time adhering students spend in
isolation. (b) Maximum proportion of students isolated on a single day. (c) Proportion of population infected
by SARS-CoV-2 and tested during the autumn term.
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Fig. S11: Infection prevalence and isolation temporal profiles of with mass testing of all students.
Outputs produced from 1,000 simulations (with 20 runs per network, for 50 network realisations) for no mass
testing (grey), a single mass test instance on day 63 (magenta) and weekly mass testing (green). In all panels,
solid lines depict the median profile and shaded regions the 50% prediction interval. We display outcomes of:
(Column one) proportion infected; (Column two) proportion isolated. We used the following underlying
probabilities of adhering to isolation measures: (Row one) 0.2; (Row two) 0.5; (Row three) 0.8. We found
end of term prevalence was similar or lower for the one-off use of mass testing (on day 63) compared to weekly
mass testing.
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Fig. S12: Infection prevalence and isolation temporal profiles of with mass testing of students
resident on-campus. Outputs produced from 1,000 simulations (with 20 runs per network, for 50 network
realisations) for no mass testing (grey), a single mass test instance on day 63 (magenta) and weekly mass testing
(green). In all panels, solid lines depict the median profile and shaded regions the 50% prediction interval. We
display outcomes of: (Column one) proportion infected; (Column two) proportion isolated. We used the
following underlying probabilities of adhering to isolation measures: (Row one) 0.2; (Row two) 0.5; (Row
three) 0.8. We found end of term prevalence was similar or lower for the one-off use of mass testing (on day
63) compared to weekly mass testing.
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Fig. S13: Infection prevalence and isolation temporal profiles of with mass testing of students
resident off-campus. Outputs produced from 1,000 simulations (with 20 runs per network, for 50 network
realisations) for no mass testing (grey), a single mass test instance on day 63 (magenta) and weekly mass testing
(green). In all panels, solid lines depict the median profile and shaded regions the 50% prediction interval. We
display outcomes of: (Column one) proportion infected; (Column two) proportion isolated. We used the
following underlying probabilities of adhering to isolation measures: (Row one) 0.2; (Row two) 0.5; (Row
three) 0.8. We found end of term prevalence was similar or lower for the one-off use of mass testing (on day
63) compared to weekly mass testing.
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Fig. S14: Proportion infected at the end of the academic term under differing mass testing
strategies. Mass testing was either not used (baseline scenario), a single instance took place at the end of week
two or week eight of the academic term (corresponding to simulation day numbers 21 and 63, respectively),
or regular mass testing was performed on a fortnightly or weekly basis. In each panel, we summarise outputs
from 1000 simulations for mass testing covering all eligible students (red), on-campus only (blue), off-campus
only (grey). Panels (a-c) compare the distributions of end of term infection prevalence with no mass testing
(black) with outcomes for the various mass testing strategies. Panels (d-f) show the average scale of end of term
infection prevalence for the given mass testing strategy relative to the scenario where no one-off mass testing
event took place. The dashed line signifies parity between the scenarios. We used the following underlying
probabilities of adhering to isolation measures: (a,d) 0.2; (b,e) 0.5; (c,f) 0.8. For a listing of values, see Tables
S6-S7. End of term prevalence was minimised with a single one-off mass testing instance a fortnight before the
term ended.
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