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Abstract

We present an agent based simulation model configured for exploring
the dynamics of disease spread in the context of agents that group to-
gether through homophily, the principle of “like attracts like”. To study
the properties of this model, we introduce two novel social network inter-
connectivity measures, “clumpiness” and “hoprank,” that are the same
basic concept defined at global and local levels, respectively. The measures
may be computed from samples of readily available demographic data, and
are useful for measuring probabilistic packet transmission through social
networks. In three studies we apply clumpiness to measure the effects,
on COVID-19 transmission, caused by social networks of both homophilic
physical proximity and homophilic information replication. The particu-
lar characteristic we are interested in about disease transmission is herd
immunity, the percentage of a population that has to be immune in order
to prevent infection from spreading to those who are not. Two studies
demonstrate innovations measuring herd immunity levels and predicting
future outbreak locations, procedures relevant to epidemiological control
policy. In the first study, we look at how homophilic physical proximity
networks form natural bubbles that act as frictive surfaces that affect
the speed of transmission of packets and influence herd immunity levels.
In the second study, we test clumpiness in homophilic proximity social
networks as a predictor of future infection outbreaks at the level of indi-
vidual schools, restaurants, and workplaces. Our third study demonstrates
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that protective social bubbles form naturally from homophilic information
replication networks, and enhance the natural bubbles that come from the
homophilic physical proximity networks. Accurate description of this in-
formation environment lays the foundation for epidemiological messaging
policy formation.

1 Introduction

We present an agent based simulation model configured for exploring the dy-
namics of disease spread in the context of agents that group together through
homophily, the principle of “like attracts like”. To study the properties of
this model, we introduce two novel social network interconnectivity measures,
“clumpiness” and “hoprank”, that are the same basic concept defined at global
and local levels, respectively. While contact tracing uses contact networks to
identify cases in an effort to interrupt disease progression, we use graphical net-
works to predict future transmission trajectories of individuals and groups of
individuals. In the study most similar to ours, Block et al. [5] advocate using
hop distance of shortest paths to relate social network structures to infection
transmission. We build upon this state of the art approach with a probabilis-
tic measurement of social connectivity that we call clumpiness. Our approach
uses the most probable path rather than the shortest path, a modification that
facilitates more accurate forecasting and more effective policy development.

With clumpiness, we attempt to precisely define a measure of population in-
teraction heterogeneity. Mathematically, we calculate a network average of node
proximities, by defining clumpiness as 1 - the network average of the reciprocal
of the number of hops necessary to cross the most probable path between indi-
viduals in the network (see definition 1.1.) As a result, for any network, we have
0 ¬ clumpiness ¬ 1. At one extreme, corresponding to clumpiness = 1, is the
case in which every individual is isolated from (i.e. has edge probability 0 to)
every other individual. At the other extreme, corresponding to clumpiness = 0,
everyone is connected, with edge probability 1, to everyone else. Such a measure
necessarily relies not just on population size and the number of communities,
but also on the size distribution of those communities, and on the distributions
of edges and edge weights.

Definition 1.1. Mathematically, if the number of nodes is N , then

clumpiness = 1− 1
N ∗ (N − 1)

∑
S

1
hop distance between nodei and nodej

,

where the set S is the set of all pairs (nodei, nodej) of node pairs i 6= j for which
a path exists from nodei to nodej .

For a given population size, a network with many small tightly-knit com-
munities, connected loosely to each other will usually be more clumpy than a
network consisting of a single large tightly-connected community. With a larger
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number of small communities, there will be more people outside one’s own com-
munity so that, on average, the number of hops separating individuals will also
be larger (see figures 1 and 2 ).

Figure 1: Low clumpiness with 30 nodes.

Figure 2: High clumpiness with 30 nodes.

Clumpiness is thus a network property that measures interconnectivity based
on social proximity. It is useful in epidemiological studies of physical viral trans-
mission as well as in sociological studies of memetic transmission. Clumpiness
has some characteristics of hop-distance measures such as “average shortest
path” and some characteristics of probabilistic measures like pagerank. Specif-

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.12.21255149doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.12.21255149
http://creativecommons.org/licenses/by-nc-nd/4.0/


ically, we can apply a probabilistic component to a distance based temporal
component to predict when packets are likely to arrive. Pagerank measures the
total probability of all possible paths but can not include a distance based tem-
poral component because it would be intractable to include path lengths in the
eigenvector calculation. Clumpiness makes the tradeoff, for tractability, of in-
cluding only the most probable path between two nodes. It nonetheless yields
good estimates of the arrival times of packets.

As a measure of interconnectivity of nodes with dynamic connections, in-
clusion of temporary disconnections is important to our clumpiness definition.
Including an individual’s disconnections and connections, both probable and
improbable, improves the measurement accuracy of an individual’s isolation.

A social proximity network connects persons to locations (physical or vir-
tual) that may be shared with other persons, weighted with the probability of
transmission of packets (e. g. viral or memetic) between persons at the same
location. Individuals frequenting specific locations help create a network that
is useful for prediction. To efficiently compute the maximally probable path we
use Dijkstra’s shortest path algorithm [9], applied to the negative logarithm of
the individual probabilities of transmission between agents. We consider per-
sons to be co-located if they pass through a common location during the same
day, though possibly at different times, by factoring any lack of simultaneity
into the probability weights. Such a flexible definition of co-location facilitates
the modeling of fomites or aerosols for viral transmission, enables easier data
collection, and allows the representation of potential transmission.

Clumpiness can be used to measure the drag the network puts on transmis-
sions since it measures the number of hops, and hence amount of time, packets
require to get from one person to another. A virus takes time to incubate, for ex-
ample, or memes may take time to be internalized by agents before they spread
it to others. In the case of viruses this drag affects the herd immunity level of
the society, the percentage of a population that has to be immune in order to
prevent infection from spreading to those who are not.

One key social force that we posit as causing social networks to be clumpy is
homophily; that is, people tend to stay in proximity to people most socially sim-
ilar to themselves 1. We purposely leave these features as abstract but they may
be construed as any social marker that others recognize, including race, gender,
generation, ethnicity, education level, wealth, religion, occupation, etc. We use
cosine similarity of feature vectors of these traits as the basis for computing the
level of homophily in the network.

Homophily is important in our measurements of infection as it can be used
to infer clumpiness. If sufficient data on the locations where individuals spend
time is not available, then information about types of locations where types of
individuals go can substitute. Clumpiness can be measured in real world data
available on social media platforms that profile persons and the locations that
they frequent. Homophily can be measured with the same data or, because
1In more complex studies, clumpiness could occur in conjunction with diversity, but for

this first simplistic study, communities consist of colocated individuals who share similar social
demographic traits.
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it is correlated with clumpiness, can be used to impute missing data. We use
homophily in our simulation studies to generate clumpiness.

We seek to describe a preexisting frictive social surface along which pack-
ets travel. While we can examine clumpiness as a network trait calculated via
measurements between individuals of the network, we can also characterize the
contribution of individuals or groups to the clumpiness of their network in a
measurement of their own isolation from other individuals and groups in their
network. We thus distinguish two levels of social interconnectivity: a global net-
work level and a local mutually exclusive sub-network level. The clumpiness
of a network is the average hoprank of its individuals. Hoprank is similar to
closeness centrality, with the most probable path replacing the shortest path
in measuring “closeness”. This change makes hoprank applicable regardless of
whether or not packets travel the shortest distance. Infection is one thing that
doesn’t necessarily travel on the shortest path, making most probable path a
better predictor.

If those hopranked subsets are individuals, we rank the time of packet arrival
to individual persons or locations. If the packets along the network are viruses,
then hoprank predicts the general order in which agents are likely to be exposed
to the virus. Hoprank itself doesn’t include the delay times for either virus
incubation or message interpretation, but can be multiplied by these for an
ETA. Like clumpiness, hoprank values range from zero to one. Agents with lower
hopranks are likely to be exposed sooner to the disease than are agents having
higher hopranks. Such information can be useful for prioritizing vaccinations.
We will show that hoprank is particularly effective when knowledge of infected
communities is taken into account. In such cases, individuals are hopranked
according to their distance from communities known to be infected.

2 Previous Studies on the Impact of Social Struc-
ture on Infection

2.1 Transmission and Modeling Population Heterogeneity

The classical approach to modeling epidemics uses compartment models, with
individuals passing between “compartments” of susceptible, infectious, and re-
covered/immune (SIR) partitions of the population, usually analyzed as a sys-
tem of differential equations. This sort of model can be expanded to account
for exposed but not yet infectious people (SEIR) or time limited immunity
(SIRS), with the order of letters corresponding to the flow of people through
the compartments. More recent work adds spatially and socially separated sub-
populations with variable levels of within group and between group mixing. For
example, Appolloni, et al. [4], analyze the early spread of H1N1 influenza virus
from Mexico to Europe in the 2009 pandemic using an age partition of youth
and adult groups. This subject stratification permits the model to account for
the increased tendency of children to mix preferentially with other children (ho-
mophily), while adults on average mix with both children and adults (assortative
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versus proportional mixing,) children having less preexisting immunity on av-
erage than adults, and adults traveling between spatially separate regions more
often than children.

Graph theory permits the modeling of epidemics with smaller compartments
allowing for the capture of greater population heterogeneity in the level of trans-
mission events between individuals. Stegehuis, et al [20], show that community
structures defined as clusters in real-world networks can accelerate or inhibit
spread among the network nodes by comparing percolation on random graphs
that preserve the edge density distribution defining the empirical community
clusters. They further conclude that inter- cluster edge density dominates in-
ternal community structure in determining global percolation behavior. Loyal
and Chen [16] use statistical network analysis to demonstrate the effects of pop-
ulation heterogeneity in the context of a standard SEIR compartment model
applied to contact networks. Using real contact data from a primary school
they model the potential decrease in disease transmission achieved by a simu-
lated intervention that divides the students into two groups attending school on
alternate days.

The ever-increasing availability of computing power provides an alternative
to traditional graph theoretical and statistical approaches: network diffusion
analysis via agent based modeling. Interactions among large populations with
individuals distinguished by many dimensions of heterogeneity can be simulated
in realistic environments to model complex nonlinear dynamics and predict the
effects of potential intervention strategies that are not tractable analytically.
Block, et al [5], use an agent based simulation to model strategies to limit social
interactions short of complete household isolation, thus potentially mitigating
the psychological and economic impacts of complete lockdown while preventing
health care capacity from becoming overwhelmed.

2.2 Empirical measures of social mixing

Read, et al. [19] provide a good overview of the problem of measuring pop-
ulation social interaction dynamics. Estimates of model parameters governing
patterns of communicable disease transmission have traditionally been based on
social contact surveys, in which members of a sample population from the area
under study are queried about their contact history during a specific time pe-
riod. Low-power radio proximity sensors have also been employed, though this
is only feasible in limited environments such as schools and other institutional
settings. More recently, in response to the Covid 19 epidemic, Google and Ap-
ple have made APIs available for myriad bluetooth based contact tracing apps
[1]. Secondary data analysis combines such individual-level measurements with
socio-demographic data to infer population level estimates for epidemic mod-
eling. A recent literature review by Hoang, et al. [12], found consistent results
across 65 studies, though most surveys were done in high-income countries. Age
strata, household size, and time scheduling (such as day of the week) were iden-
tified as major determinants of contact patterns. They note that a major source
of study variability is discrepancy across studies in the definition of contact.
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This includes differences in the minimal distance and modality (such as proxim-
ity or physical contact that define interaction.) These details are key to relating
contacts to potential for spread of specific infectious agents; such as contact via
droplet or aerosol transmission.

A notable investigation by Strömgren, et al, [21] develops a four category
typology of mixing sites from a cross-sectional contact diary survey of the
Swedish general population by clustering contact events by frequency of oc-
currence and average duration. They observe the most frequently occupied site
with the longest duration and highest chance of physical contact to be the fam-
ily home. The home, social network hubs (gathering sites for family and friends)
and fixed activity sites such as schools, work places, and sports venues had the
longest average duration of contact as well as high likelihood of physical contact,
while fixed activity sites and “trading plazas,” which included public transport,
restaurants and stores, had the greatest average number of contacts. One of
the largest studies to date is POLYMOD [17], which analyzes a representative
sample of 7,290 people from eight European countries who recorded a total of
97,904 contacts over a 24 hour period, specifying location and duration of con-
tact, and the age and sex of contact parties. This study offers a major validation
of age assortativity as a key structure in population mixing patterns. Prem, et
al. [18], expand the results to 152 countries by predicting age group by location
contact matrices using parameters from a Bayesian hierarchical model of the
POLYMOD results combined with other comprehensive regional study results
and data on household structure, age composition, labor force participation,
and school enrollment made available by other countries and used for extrap-
olative purposes. Large cross-sectional contact surveys are still relatively rare,
especially for low income countries, due to the significant resource requirements.

3 Agent-Based COVID-19 Model Description

To improve upon our current understanding of pandemic spread we have inte-
grated both demographic stratification and fundamental social interaction dy-
namics within our COVID-19 agent-based simulations, allowing us to fully test
our social network measures of clumpiness and hoprank in a simulated popula-
tion of agents. It is the interaction dynamics, determined by agent choices, that
leads to the particular course of pandemic spread across the network. While
in our current implementation, agent decisions are probabilistically determined
based on a set of particular parameter values, planned future implementations
would allow for truly intelligent reinforcement learning (RL) agents.

Few other agent based models adopt social structural and behavioral prin-
ciples from the social sciences as their focus, although some share the detailed
demographic stratification. The June model [6] uses detailed demographic and
survey data of the population of England, coupled with Bayesian emulation,
to calibrate a statistically similar population at a granular level. The Covasim
simulation [13] uses social network implementation of stratifications for efficient
computation. Other models have a few social features such as accounting for
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whether a contact is in the household [7, 15, 14]; accounting for the age and
clustering of contacts within the household [2, 7, 14]; and accounting for use of
schools and workplaces based on census and time-use data [2]. However, none
use social behavioral patterns such as social “herding” (the propensity to copy
one’s friends), risk tolerance or homophily, as causal processes.

Our model also allows tractable exploration and predictive modeling of the
differential impact of various policy decisions. The underlying simulations we
report here can be overlaid on maps of specific cities, states or nations. Coupled
with region-specific data streams that include demographic, economic, business,
governmental, educational, medical, transportation, and/or other infrastructure
information, our simulations can illustrate, in detail, the evolution of COVID-19
dynamics within particular regions. Please see appendix 1 and 2 for additional
details of our simulation setup.

4 Clumpiness Simulations and Results

4.1 Setup

In our simulation studies we generate various levels of clumpiness to test against
infection by creating relationships at corresponding levels of homophily. Differ-
ent societies have different amounts of population intermixing, and to cover them
we have modeled a continuum of homophily scenarios. We control the level of
homophily in the social networks of a simulation scenario with two tools: scikit
learn’s make blobs function to create blobs of feature vectors representing com-
munities of similar agents, and a choice function that assigns agents to social
relationships such as family, worker, school, and friend relationships. We then
relate homophily to clumpiness and clumpiness to infection outcomes.

4.2 The Choice Function

We used a choice function similar to the one used in Duong and Reilly [10] to
determine the amount of homophily between agents that frequent the same lo-
cations. Our choice function takes“temperature” parameter values ranging from
-1 (the frozen state) to 1 (the random state). A temperature of -1 dictates that
agents can only be chosen from an agent pool for collocation with other agents
that have an absolute maximal level of feature vector cosine similarity. A tem-
perature of 0 means choosing proportionally to feature vector cosine similarity
(also known as roulette wheel choice). A temperature of 1 denotes a random
uniform sample from the pool. Between temperatures 0 and 1, choices are de-
termined by a weighted-by-temperature average of uniform and roulette wheel
distributions. For temperatures T between -1 and 0, inclusively, choices are de-
termined via a random function for which the number of possible outcomes of
the random variable X(T) varies upper semi-continuously, with the set of pos-
sible outcomes at temperature T including only elements accounting for the
uppermost 1+T probabilities.

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.12.21255149doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.12.21255149
http://creativecommons.org/licenses/by-nc-nd/4.0/


Specifically, we first order the elements in decreasing order of their probabil-
ities, and include elements one-by-one until their accumulated probabilities first
reach 1+T, truncating any probability value of the last added element added in
excess of 1+T. We next renormalize these values for the chosen elements and
use the resultant probabilities in roulette wheel selection.

As an example, consider the case with three elements in which the elements
have probabilities 0.5, 0.3, and 0.2, and in which T = - 0.4, and hence 1 + T
= 0.6. The elements one through three are already listed in decreasing order of
their probabilities. We include only elements one and two, with portions of their
probabilities corresponding to 0.5 and 0.1 respectively. Upon renormalizing, the
probability of element 1 becomes 56 and that of element 2 becomes 16 . We then
use roulette selection to choose among those elements, proportionate to those
two probabilities.

In our simulation, we use scikit-learn’s make blobs function to assign a so-
cial marker feature vector of length nfeatures to each location (including homes,
schools, offices, restaurants, etc.) and to each agent. We use the choice func-
tion to group families of related agents as well as to assign agents with feature
vectors to locations. The blobs, as groups of feature vectors that are similar,
represent similar agents. Near the frozen state, all agents are maximally close
to the vector of the room and thus maximally close to each other. Tempera-
ture is an independent variable in our scenarios, creating homes, schools, offices
and restaurants of various levels of homophily and as a result, various levels of
clumpiness.

5 Clumpiness Simulation Experiments

We conducted experiments to study three separate but related phenomena. In
Study 1, we primarily explore the relationship between homophily and infection
outcomes, paying particular attention to tipping points in which small changes
in social behaviors can result in large changes in infection, so that policy efforts
may be more informed and better targeted. In our second study we explore
whether hoprank could provide better predictions than the current state-of-the-
art pagerank algorithm of the order in which the disease will arrive at particular
schools, workplaces, and restaurants. Such information could be useful in priori-
tizing groups for vaccination campaigns. Finally, in our third study, we examine
the effects of individual herding and risk tolerance behaviors on herd immunity
and infection levels.

5.1 Study 1: Homophily and Infection

To examine the relationship between homophily and infection rates, we first
generate scenarios at different homophily levels. We use 1000 agents, grouped
into 20 communities by similarity in each run. We have 80 home districts forming
4 school districts. We use 40 temperature values and conduct 20 runs at each
temperature to assure statistical significance.
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Figure 3 displays the exponential relationship between temperature and ho-
mophily, with homophily measured via cosine vector similarity. The figure sug-
gests that opening up social structure to allow more choice results in more in-
termixing. Each dot represents the average of 20 runs at the same temperature.
Intuitively, homophily decreases exponentially as temperature rises because each
new choice matters more when there are fewer choices than when there are al-
ready many choices. Here a choice is made when agents visit the same classroom,
office, home, or restaurant.

Figure 3: The relationship between temperature and homophily.

Our simulations show that both the peak of infection and the herd immunity
level decrease as homophily increases. Figure 4 displays an example graphical
output, including 95% confidence intervals, of a series of repeated runs with
identical parameter settings. We also estimate that herd immunity occurs at
roughly 20% of the population, as this is the height of the inflection point of the
cumulative recovered (green) curve. Figures 5 and 6 illustrate that homophily
levels in society have a strong effect on herd immunity near the homophily value
0.8 and on infection peak near the homophily value 0.7.
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Figure 4: The dark green curve represents the ratio of the population that has
recovered from Covid-19. The herd immunity level corresponds to the height
at which this curve first begins to flatten and the society becomes resilient
against exogenous infections. The dark grey curve represents the current number
of infections. All darker-hued curves are based on averaged outputs from 20
runs at the same parameter values, with light-hued envelopes representing 95%
confidence intervals. The peak of the grey infection curve and the inflection
point of the green curve, which provides an estimate of herd immunity, are the
dependent variables of the first study. While herd immunity occurs around 0.2,
more of the population are infected as the disease peters out.

Figure 5: The herd immunity level decreases drastically as homophily levels
reach a threshold of 0.8

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.12.21255149doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.12.21255149
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: The peak of infection (grey line in time series graphs) decreases dras-
tically as homophily passes the threshold value of 0.7.

We posit that the reason for these threshold effects is initial exponential
growth of the largest connected component in the network, called the “giant
component” in graph theory. We argue that nonlinear infection rates explode
beyond critical thresholds due to the creation of bridges between large, previ-
ously isolated sub-components. Creating a bridge between two isolated nodes
increases potential infection by one unit; creating a bridge between two isolated
node pairs by two units; creating a bridge between two isolated node foursomes,
by four units and so on. Thus, exponential increases result from the merging of
very large sub-components.

As homophily decreases, connections form between communities that have
never been connected before, such that when there are few connections between
communities, each new one matters more. Larger groups of people can infect
each other with each new connection when communities have few connections to
begin with, making the first bridges the most important. Bridging communities
is the reason why superspreader events can multiply the effects of diseases on a
society wide scale.

As illustrated in Figure 7, rapid growth of the giant component appears
to occur simultaneously with a sudden change of infection. This rapid growth
also appears to coincide with the functional behavioral thresholds we saw in
Figures 5 and 6. Figure 7 displays results with temperatures corresponding to
homophily levels spanning the threshold values. The figures display three sets
of 20 runs each, each with the same parameters except for very small changes
in temperature, and added information about the giant component. The giant
component grows more rapidly when there exist sufficient random links between
communities due to decreased homophily. The percentage of disconnections also
changes, decreasing from ∼25% to ∼0%, as does the herd immunity level, which
increases from ∼10% of the population below the threshold value to ∼40% above
the value.

This result has implications for public health protection strategies. Since
clumpiness is calculated from a location graph, it is best to not have labor
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(a) Below the threshold,
temperature = -0.998. Gi-
ant component size and
disconnections are moni-
tored daily, and bars oc-
cur on weekends when the
size increases. Giant com-
ponent size is 80%. Dis-
connections are near 25%,
while herd immunity is
around 10% and infection
peak near 2%.

(b) At the threshold,
temperature = -0.9975,
the giant component
increases to the upper
90% range, disconnec-
tions are less than 10%
and herd immunity rises
to around 25%. This
threshold corresponds to
the homophily threshold
of 0.8 in figure 5 and 0.7
in figure 6.

(c) Above the thresh-
old, temperature = -
.997. The giant compo-
nent now encompasses al-
most all nodes, with al-
most no disconnections.
The herd immunity level
rises significantly to ap-
proximately 40%. The in-
fection peak has risen
to approximately 15% as
well.

Figure 7: Giant component formation
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categories based on demographic characteristics such as race or ethnicity, as it
is crucial to protect those individuals who bridge across communities.

A closer look at the data suggests that homophily is nonlinearly correlated
with clumpiness (see figure 8), but that clumpiness affects infection and herd
immunity levels linearly (see figures 9 and 10). This result makes sense since
clumpiness is measured as a number of hops. Formation of the giant component
causes this number to increase quickly. The number of hops that separate people
is more directly related to infection ability, however, and so should rise only
linearly with infection.

Figure 8: Homophily above the 0.8 similarity level affects clumpiness, non-
linearly

Figure 9: Clumpiness affects the infection peak linearly.
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Figure 10: Clumpiness affects the herd immunity levels close to linearly.

The linearity with which clumpiness relates to infection makes it a good
monitor and predictor of infection. We can access data on which classes of
people typically visit which types of locations, and use this information to infer
the level of clumpiness resulting from homophily. Due to the linear relationship
between homophily and future infection, we can then predict infection in society.
Even in countries with good infection tracking, generalizing specific data into
propositions regarding types of persons in types of locations will help with the
use of data from specific locations to predict infection in similar locations (via
expression in terms of the clumpiness measure). Were we to use this information
to create charts similar to Figures 5 and 6, we would know to be patient and
continue policies that increase clumpiness near the tipping points. We would
know how to time policies for the greatest effect. Figure 11 shows an online
clumpiness dashboard, that tells the daily amount of clumpiness, including both
from natural homophily, and from policy changes.
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Figure 11: Clumpiness as a policy-maker’s online dashboard for the state of
social distancing during a lockdown. Clumpiness, the second graph, monitors the
scenario above it, which is zoomed in at the bottom. The spikes in clumpiness
represent weekends, when people in our simulation are less liklely to leave their
homes. The giant component and the percentage of disconnections, network
phenomena that measure clumpiness due to disconnected nodes, are shown. In
the twenty runs that these charts illustrate we see a lockdown ending on day
75. The lockdown causes clumpiness to increase. We see clumpiness decrease
back to its normal clumpiness value for its homophily level, once the lockdown
is removed.

Clumpiness is predictive. This dashboard can provide future forecasts and
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present maps of predicted future hot spots. The hot spots indicate predictions
of where the disease will show up next based on social structure.

5.2 Study 2: Clumpiness as a Predictor of Disease Spread

Our second study examines how the individual version of clumpiness, hoprank,
can help predict the trajectory of a disease on a fine-grained level. We explore,
in particular, whether we can use clumpiness to predict the order in which the
disease will arrive at particular schools, workplaces, and restaurants.

Hoprank is a measure of clumpiness on an agent/community-to-agent/community
basis. It is calculated by sampling the most probable path between persons,
locations, or groups to other non-overlapping persons, locations, or groups. Al-
though hopranking is a sampled and inexact form of contract tracing, involving
categories of individuals and locations, it can work without the thorough and
detailed data needed for full contract tracing.

We set up our runs so that 20 percent of the communities have active infec-
tions. We run tests with random samples of 100 other entities for each hopranked
entity, without knowledge of which communities have current infections, and
then with infected community samples of 100, 10 and 1 other entities for each
hopranked entity. While pagerank requires a complete model of the network,
hoprank needs only a number of samples which draw the most probable paths
between agents. The 10 and 1 sample runs demonstrate that the measure is
robust in conditions in which data availability is minimal. By varying tempera-
tures between -1.0 and -0.99, our study spans homphilly levels from low natural
levels of herd immunity to high levels.

In this study we rank all agents in the network on day one with hoprank
and, for a baseline comparison, with pagerank. We choose pagerank because it
has the advantage of representing the probabilities of all possible packet paths,
but the disadvantage of not being able to represent time until arrival. These
rankings predict the order in which the disease will arrive at buildings. We let
the simulation play out, and see the order in which the disease actually shows
up in buildings. Since people tend to habitually attend the same places, their
early behavior in the simulation can be used to construct a model of where the
disease may travel later. Prediction capability with partial data is important in
vaccine prioritization.

We first compute hoprank to random other locations and persons in the
simulation, putting it on a level playing field with pagerank, since pagerank
does not take into account which communities are infected. Without knowledge
of the communities that are infected, hoprank and pagerank perform about the
same: Hoprank’s average rank correlation coefficient across all temperatures is
0.38 while Pagerank’s is 0.36. However, in the all the scenarios in which samples
are taken from the community where infection is known to occur (and not
necessarily of infected individuals in that community) our results demonstrate
that hoprank has a considerably stronger positive correlation between the rank
of predicted and actual orderings than does Pagerank (see Figure 12 and Table
1).
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Sample Size Sample Origin Hoprank Correlation Pagerank Correlation Pairwise t-Test p-value
100 random 0.388 0.366 0.450
100 infected community 0.456 0.341 0.006
10 infected community 0.498 0.307 0.010
1 infected community 0.484 0.392 0.243

Table 1: Hoprank’s Average Rank Correlation compared to the true order of
infection is consistently higher than that of Pagerank when Hoprank’s samples
are taken from infected communities, and is equal to Pagerank’s when they
are not. The averages are shown across temperatures. T test shows significant
results at the p= .01 level when a small sample size of 10 from members of the
infected community is taken, indicating that hoprank is robust to small samples
of community members whose individual infection state is unknown.

Figure 12: Pairwise comparisons of Hoprank’s and Pagerank’s Rank Correlation
Coefficients, at a variety of temperatures and sample sizes. Temperature is on
the horizontal axis and Rank Correlation Coefficient is on the vertical axis.
Hoprank performs better than pagerank when hoprank’s samples are taken from
the infected community. While runs are unique (for example, infection dies out
earlier in some than others) each individual pairwise comparison is significant
at an α = 0.99 level.
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Figure 13: Four runs comparing the Hoprank and Pagerank algorithms using
the data for Figure 12 corresponding to temperature -0.9975 and to multiple
sampling scenarios. Each dot represents a classroom, office or restaurant, with
the actual orders of infection occurrence along the horizontal axis, and predic-
tions, by both algorithms, of the orders of infection occurrence along the vertical
axis. With 100 random samples the rank correlation for hoprank is 0.21 and for
pagerank is 0.35. With 100 samples from the infected community the rank cor-
relation is 0.60 for hoprank and 0.38 for pagerank. In the 10 sample scenario,
the rank correlation coefficient is 0.52 for hoprank and 0.18 for pagerank, and
in the 1 sample scenario, the rank correlation coefficient is 0.55 for hoprank and
0.44 for pagerank.
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5.3 Study 3: Determine the effect of Homophily Behav-
ioral Networks on herd immunity level and on infec-
tion.

In this study we move from the physical proximity network to a network of ideas.
The similarity of agents and their friends depends on the scenario temperature,
and the number of those friends depends on the agents’ personal extroversion
parameters. Agents with a tendency to herd follow their friends’ risk tolerance
levels more than their own. Having a high risk tolerance might lead them to
break lockdowns and go to work or to bars and restaurants.

To study the relationship between herding and risk tolerance on compliance,
we test, for the agents of a scenario, high and low tendencies to herd against high
and low risk tolerance in a lockdown environment. We generate 20 runs of each
combination and at ten different temperatures. We find that herding has a strong
and significant protective effect in high risk scenarios under lockdown when
looking at all temperatures, with an effect size of 130% on the herd immunity
threshold, significant at the 0.000008 p level in a paired t test, and described as
a large effect size by Cohen’s equation. Table 2 shows the data by temperature
for herd immunity and table 3 shows the data by temperature for infection peak.
It also has an effect size of 122% on the infection peak, also significant at the
0.025 p level in a paired t test. In both cases, the effect appears to be stronger
at hotter temperatures, indicating that having friends that are different from
you allows the protective effect to spread to other communities.

Herd Immunity Herd Immunity
Temperature High Herd Low Herd Effect Size

-1 0.015 0.020 1.33
-0.999 0.16 0.020 1.25
-0.998 0.017 0.020 1.18
-0.9975 0.018 0.025 1.39
-0.997 0.020 0.030 1.50
-0.996 0.017 0.025 1.47
-0.995 0.028 0.035 1.25
-0.994 0.025 0.030 1.20
-0.993 0.025 0.030 1.20
-0.992 0.020 0.025 1.25

mean 0.020 0.026 1.30
stdev 0.004 0.005 0.12

Table 2: At eight out of ten temperatures, low herding has a higher herd immu-
nity threshold, which we use the recovered peak statistic to represent. Its effect
size is over 130%, significant at the p=0.000008 level, in a paired t test.
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Infected Peak Infected Peak
Temperature High Herd Low Herd Effect Size

-1 0.0210 0.0230 1.10
-0.999 0.0280 0.0280 1.00
-0.998 0.0230 0.0290 1.26
-0.9975 0.0280 0.0320 1.14
-0.997 0.0250 0.0290 1.16
-0.996 0.0210 0.0330 1.57
-0.995 0.0270 0.0250 0.93
-0.994 0.0260 0.370 1.42
-0.993 0.0270 0.0260 0.96
-0.992 0.0270 0.0450 1.67

mean 0.0253 0.0307 1.22
stdev 0.0027 0.0065 0.26

Table 3: Infected peak is greater in low herd than high herd scenarios, for eight
out of ten temperature values, with an effect size of 122% significant at the p=
0.025 level in a paired t test.

Somewhat counterintuitively, communities that are low risk in a high risk
population are able to protect themselves by copying each other, but high risk
individuals do not recruit low risk relations into adopting high risk behavior
in equal measure. There was no significant difference between groups in the
lower risk scenarios, meaning that low risk individuals can only recruit high
risk individuals if they are in the majority. Perhaps the fact that in order to be
copied agents must have recent behavioral histories, and high risk individuals
take themselves out of commission by getting sick at higher rates than do low
risk individuals. We should expect a similar phenomenon in the real world where
infections run rampant, as they do at high temperatures in the simulated world.

6 Conclusion and Future Work

We introduce a simulation to demonstrate the usefulness of a novel metric,
clumpiness, and offer results that show predictive power of social-behavioral
variables on epidemiological ones. The results also suggest the importance of
bridges that make a case for changing the infection state directly through chang-
ing homophily by protecting bridges between communities. We further show how
to use clumpiness to indirectly change the state by using it to predict and adjust
vaccination prioritization. We create a dashboard that can help policymakers
by alerting them to social distancing states and projecting the disease trajec-
tory. We also look at natural protection afforded by homophilic communities
where memetic behavior is concerned. Such knowledge is necessary for effective
messaging campaigns.
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Importantly, this measure of clumpiness is a general social network mea-
sure that describes the frictive surface upon which packets may travel, be they
viruses in a physical proximity network or memes in a proximity social network.
Looking at the speed of packet reproduction along these networks is a frame-
work of analysis for problematic polarizing social networks as well as a potential
framework for formulation of solution.

One possible direction for future research is to use intelligent agents to model
epidemiological messaging. We would give agents a “mind” with features that
are important to modelling sense making, such as cognitive dissonance and re-
inforcement learning. By enabling more realistic models of belief and behavior
dissemination through networks, both naturally and in the presence of informa-
tion operation campaigns, the use of such agents would allow us to model how
information operation campaigns convince and incentivize victims.

Such information would allow us to tackle one of the most important issues
affecting epidemiological public policy: adversarial disinformation campaigns.
By accessing real world data on social media platforms, we could match detailed
profiles with locations. In the current study, we describe a general highway upon
which packets may travel and demonstrate that this highway is useful for pre-
dicting where and when a virus may travel. Similar highways could help predict
paths for idea transmission and map the spread of divisive disinformation.

For example, adversaries may exploit the information highway by causing
small increases in homophily that result in large changes in transmission, creat-
ing information bubbles that isolate ideas into different groups, so that there is a
different reality for each group. If public policy makers were to see the informa-
tion highways of social media in this light, they might be able to better regulate
social media companies to protect the public against information warfare.

Appendices
A Demographic Stratification

It is now clear that COVID-19 strikes particular demographic strata much
harder than others. To better model this phenomenon, we have explicitly in-
corporated the following key factors in the initial implementation of our model:

• Multiple classes of individuals:

– Infants and toddlers

– K-12 school aged children

– Working-age adults

– Elders

• Sub-classes for working-age adults:
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– Office workers (have a work location but can work from home)

– House-bound individuals (whether they work from home, are trophy
househusbands, etc. seems not to matter much)

– Factory workers (can’t work from home but don’t meet non-coworkers
during their work hours)

– Retail workers (can’t work from home AND meet non-coworkers dur-
ing their work hours)

– Essential workers

– Teachers

– Hospital workers

• Location classes including:

– Houses;

– Apartments in a building;

– Offices in a building;

– Schools;

– Hospitals (along with hospital system capacity)

– Factories

– And multiple restaurant types

∗ Fast food restaurants;
∗ Full-service restaurants;
∗ Bars.

• Economic impact modeling that factors in the above classes and sub-
classes.

We have also incorporated into our models a reasonable diversity of relatively
simple personality characteristics of the simulated agents. While assuming that
everyone will follow social distancing guidelines isn’t realistic so is randomly
deciding who doesn’t. To obtain expected individual behaviors, we endow each
simulated individual with an extensible set of personality parameters including:

• A risk tolerance parameter;

• And a ”herding behavior” parameter that makes agents more or less likely
to adopt given behavior(s) (in compliance or defiance of official policies)
based on the behavior of their peers.
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A.1 A Flexible and Extensible Framework

We designed our simulation framework to be flexible and extensible. Most no-
tably, we architectured our system with the introduction of intelligent and adap-
tive agents in mind. When the time comes, the various personality parameters
will form key inputs to each learning agent’s utility function.

Future versions will also include individual health attributes – most simply
modeled via an overall health parameter, which can be reduced by the pres-
ence of comorbidities and immuno-suppressed individuals and increased for fit
individuals.

Our modular architecture will further allow for easy and quick implementa-
tion of periodically-updated region-specific demographic data, and inclusion of
additional locations such as:

• Retail shops;

• Grocery Stores;

• Hospitals (along with hospital system capacity);

• Factories;

• And recreational gathering spots.

B Parameters of Interest

B.1 Disease Parameters

Prior to setting our agent-based disease parameters, we found the most current
COVID-19 data we could. Most of this data, for example for R0, pertained di-
rectly to macro-scale modeling and hence could not be used directly within our
agent-based approach. To handle this situation, we adjusted agent-level param-
eters so that such macro-scale social-level parameter values emerged naturally.

We display disease and hospital capacity parameter settings in tables 4 and
5.

Parameter Distribution
Latency Period Gamma( Shape = 3, Scale = 1)

Incubation Period Gamma( Shape = 6, Scale = 1)
Mild Period Duration Gamma( Shape = 14, Scale = 1)

Hospitalization Period Duration Gamma( Shape = 14, Scale = 1)
Spreading Rate Normal( Mean = 3.155, Std Dev = 1.7)

Table 4: Essential Pandemic Default Parameters
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Parameter Probability
Initial Infection Rate 0.01

Immune Rate 0.01
Hospitalization Capacity 0.05

ICU Capacity 0.03
Symptomatic Isolation Rate 0.0

Asymptomatic Contagion Probability 0.1

Table 5: Disease and Medical Facility Probabilities

B.2 Distancing and Behavioral Parameters

Our model also includes a variety of parameters to control for individual agent
behaviors such as risk tolerance and herding behavior; and for government policy
control measures including partial lock-downs and building occupancy measures.
We display default parameter settings for these groups of parameters in tables
6 and 7.

Parameter Value
Allowed Restaurant Capacity 0.25, 0.5, or 0.75 of normal occupancy

Table 6: Building Occupancy Parameters

Parameter Probability or Distribution
Mask User Rate 0.9
Mask Efficacy 0.6
Risk Tolerance Beta(Mean = 0.7, Std. Dev = 0.2)

Herding Behavior Beta(Mean = 0.7, Std. Dev = 0.2)

Table 7: Behavioral Parameters

Our model also allows for different contagion probabilities, depending upon
multiple factors including building and business locations and types (e.g. offices,
bars, sit-down restaurants, fast-food restaurants;) and social distancing effects
of imposed occupancy limits (e.g. 25%, 50%, 75% of normal limits.) Finding
specific values in the literature for the macro-level reproductive number R0
proved challenging, partially due its evolving nature as individuals responded
to the pandemic. Two meta-analyses [11, 3] provide mean values of 3.15 and 3.32
and 95% CIs of (2.41, 3.90) and (2.81, 3.82) respectively. Applying the effects
of physical distancing described in Chu, et al., [8] we obtain rough values for
the reproductive number at a distance of one-meter as follows: mean 0̃.6; 95%
(actually 97.5%) CI ∼ [0.22, 1.48]. We also obtain values at a distance of two
meters having mean ∼ 0.3, and a 95%CI of ∼ [0.11, 0.74].

Investigating US state reopening rules for restaurants, many states (e.g.
Colorado) have rules allowing for the lower of 50% occupancy levels or occupancy
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level to support a minimum distance between parties of 6 feet. With this in mind,
a 50% occupancy level is being used as a proxy for maintenance of 6-foot social
distancing. Calculating distancing corresponding to 25% and 100% occupancy
involves simple multiplication or division, respectively, of the 6-foot distance by
Sqrt(2) 1.414. Applying the rules in the Lancet physical distancing article then
gives the following table of rough estimates:

Percent Occupancy Level Distancing Mean R0 R0 95% CI
25% ∼ 17 feet 0.21 (0.08, 0.5)
50% ∼ 6 feet 0.3 (0.11, 0.74)
75% ∼ 4 feet 0.5 (0.19, 1.23)

Table 8: Restaurant Contagion Levels

C The Role of Propaganda

A network G exhibiting a high degree of clumpiness can be viewed as consisting
of separate subgraphs Si connected by bridge(s) as illustrated in figures 14 and
15.

Figure 14: Social Subgraphs

Figure 15: Bridge β12 Connecting subgraphs S1 and S2

Contagion spreads may be disconnectedly joined by bridges, such that β12 :
S1 ∩ S2, β34 : S3 ∩ S4, etc.

26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.12.21255149doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.12.21255149
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 16: Contagion Connections

However, the most acute peril is posed by superspreads:

Figure 17: Superspreads

Each community Si exhibits one or more mimetic behavioral practices, which
may be motivated by homophily and/or polarization. Behavior as such deter-
mines the emergent percolative properties of the spread with respect to some
critical threshold πc. Contending mimetic influences may produce within a
spread a mixture distribution M =

∑n
k wkPk (π) .

We have instituted a Propaganda class in our simulation code to study the
effects of such mimetic behaviors that more strongly manifest themselves via
high risk, high herding individuals.
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