1	
2	Real-time PCR assay for detection and differentiation of <i>Coccidioides immitis</i> and
3	Coccidioides posadasii from culture and clinical specimens
4	
5	Sudha Chaturvedi ^{1,2*} , Tanya R. Victor ¹ , Anuradha Marathe ¹ , Ketevan Sidamonidze ^{1,#} ,
6	Kelly L. Crucillo ³ , and Vishnu Chaturvedi ^{1*}
7	
8	¹ Mycology laboratory, Wadsworth Center, New York State Department of Health,
9	Albany, NY
10	² Department of Biomedical Sciences, University at Albany, Albany, NY
11	³ Coccidioidomycosis Serology Laboratory, University of California School of Medicine,
12	Department of Medical Microbiology and Immunology, Davis, CA
13	
14	Species-specific real time PCR for <i>C. immitis</i> and <i>C. posadasii</i>
15	
16	
17	*Corresponding authors Email: <u>Sudha.Chaturvedi@health.ny.gov,</u>
18	<u>Vishnu.Chaturvedi@health.ny.gov</u>
19	
20	
21	
22	

#Present Address: Lugar Center for Public Health Research, 0184 Tbilisi, Georgia 2

3 ABSTRACT

4

5 6 Coccidioidomycosis (Valley Fever) is a pulmonary and systemic fungal disease with 7 increasing incidence and expanding endemic areas. The differentiation of etiologic 8 agents *Coccidioides immitis* and *C. posadasii* remains problematic in the clinical 9 laboratories as conventional PCR and satellite typing schemes are not facile. Therefore, 10 we developed Cy5- and FAM-labeled TaqMan-probes for duplex real-time PCR assay 11 for rapid differentiation of *C. immitis* and *C. posadasii* from culture and clinical 12 specimens. The RRA2 gene encoding proline-rich antigen 2, specific for Coccidioides 13 genus, was the source for the first set of primers and probe. Coccidioides immitis contig 14 2.2 (GenBank: AAEC0200002.1) was used to design the second set of primers and 15 probe. The second primers/probe did not amplify the corresponding *C. posadasii* DNA, 16 because of an 86-bp deletion in the contig. The assay was highly sensitive with limit of 17 detection of 0.1 pg gDNA/PCR reaction, which was equivalent to approximately ten 18 genome copies of *C. immitis* or *C. posadasii*. The assay was highly specific with no cross-19 reactivity to the wide range of fungal and bacterial pathogens. Retrospective analysis of 20 fungal isolates and primary specimens submitted from 1995 to 2020 confirmed 129 21 isolates and three primary specimens as C. posadasii and 23 isolates as C. immitis from 22 human coccidioidomycosis cases, while all eight primary samples from two animals 23 were confirmed as *C. posadasii*. A preliminary analysis of cerebrospinal fluid (CSF) and 24 pleural fluid samples showed positive correlation between serology tests and real-time

- 1 PCR for two of the 15 samples. The *Coccidioides* spp. duplex real-time PCR will allow
- 2 rapid differentiation of *C. immitis* and *C. posadasii* from clinical specimens and further
- 3 augment the surveillance of coccidioidomycosis.

INTRODUCTION

2 3

1

4 Coccidioidomycosis (Valley Fever) is a fungal disease caused by two closely 5 6 related pathogens: Coccidioides immitis and C. posadasii. Coccidioides immitis is endemic to 7 the San Joaquin Valley of California. *Coccidioides posadasii* is found in the desert regions 8 of the southwestern United States, including Arizona, Utah, New Mexico, and West 9 Texas, and parts of Mexico, Argentina, Paraguay, and Central America (1). Coccidioides 10 *immitis* is likely to present outside the recognized endemic area as evident from human 11 infections and DNA-positive soil samples from Washington state (2, 3). 12 13 The prevalence of *Coccidioides* infection has increased over the years; in year 2011, 14 more than 20,000 cases were reported in the US, twice as many cases as tuberculosis (4). Further documented increase in the number of cases in California and Arizona were 15 16 published in the recent updates (5, 6). It is believed that the fungus infects more than 17 150,000 people per year and many of whom are sick without knowing the cause or have 18 cases so mild that they are not detected (4). The rise in *Coccidioides* infection is attributed 19 to increased travel, relocation to endemic areas, and possible broader distribution of C. 20 *immitis* and *C. posadasii* than previously recognized (7). Arthroconidia produced by 21 these fungi are highly infectious, and climate change, including dry and hot weather 22 followed by dust storms makes these conidia easily air borne to cause pulmonary 23 infection (8). The lung infections typically resolves rapidly leaving the patient with a 24 robust acquired immunity to re-infection (9). However, in some individuals, the disease

1	may progress to a chronic pulmonary condition or to a systemic disease involving the
2	meninges, bones, joints, subcutaneous, and cutaneous tissues (10). Identifying
3	Coccidioides to the species level is likely beneficial in the proper treatment of the
4	patients and disease surveillance.
5	
6	Coccidioides immitis and C. posadasii are not easily differentiated in the clinical
7	laboratory on account of similar morphology. Coccidioides posadasii was first
8	differentiated from <i>C. immitis</i> by microsatellite analysis (11, 12). However, this approach
9	was time consuming and technically challenging. Subsequently, several real- time PCR
10	assays, based on LightCycler and TaqMan chemistries, were developed to differentiate
11	C. immitis from C. posadasii (13, 14). Both approaches rely on a single nucleotide
12	polymorphism in different regions of the target gene, and it may have limitations when
13	large number of strains of <i>C. immitis</i> and <i>C. posadasii</i> are tested. Umeyama et al (15)
14	described disparity PCR using species-specific primers designed from the Ci45815 PCR
15	fragment (GenBank AB597180). Contiguous deletion of 86-bp nucleotides in
16	corresponding C. posadasii contig Cp 45910 PCR fragment (GenBank AB597183) resulted
17	in convenient distinction of <i>C. immitis</i> from <i>C. posadasii</i> by conventional PCR. We
18	describe a TaqMan duplex real time PCR assay using PRA2 gene encoding proline-rich
19	antigen specific for the Coccidioides genus and C. immitis PCR fragment Ci45815 specific
20	for <i>C. immitis</i> . The first set of primers and probe targets the <i>PRA2</i> gene specific for
21	Coccidioides genus. The second set of primers and probe targets C. immitis contig (CiC)
22	2.2 (GenBank: AAEC02000002.1). The duplex real-time PCR assay was compared

against redesigned diagnostic conventional PCR with 100% concordance for culture
isolates. We show that duplex real-time PCR assay is highly sensitive (10 gene copies)
and identifies *C. immitis* and *C. posadasii* from culture and primary specimens. The
reliable, rapid and sensitive duplex real-time PCR assay will help diagnose and track
coccidioidomycosis, supplementing travel history, and obviating the need for complex
genotyping assays.

7

8 MATERIALS AND METHODS

9

Coccidioides isolates and primary specimens. One hundred fifty two isolates of 10 11 Coccidioides species, 10 formalin-fixed paraffin-embedded tissues, three vials of Rhesus 12 monkey kidney (RhMK) cell (Lot # A491216B) (16), two cerebrospinal fluid (CSF), two 13 bronchial wash, and one whole blood sample, received as a part of reference service from 1995- to 2020, from various diagnostic laboratories of the New York State and 14 15 neighboring states' laboratories were part of this investigation. Thirteen known isolates of C. immitis and four known isolates of C. posadasii were tested when one of us (VC) 16 17 implemented this test at the Microbial Diseases Laboratory, California State Department 18 of Public Health. All cultures were stored as water and glycerol stocks at 30° C and -80° 19 C, respectively. Fifteen CSF and pleural fluids, which tested positive for 20 coccidioidomycosis by immunodiffusion and complement fixation at the University of 21 California Davis, were also included in the study.

22

1 **DNA extraction.** Extraction of DNA from *Coccidioides* spp. was carried out in the 2 biological safety cabinet-2 (BSC-2) in the biological safety level 3 (BSL 3) laboratory, and 3 DNA extraction from primary human and animal specimens was carried out in BSC-2 4 in the BSL 2 laboratory. Qiagen DNA minikit on the Qiacube automated extractor was 5 used for all DNA extraction. In brief, approximately 5 x 5 mm size of *Coccidioides* fungal mat grown on SDA slant for 7 to 10 days was removed by sterile loop and suspended in 6 7 lysis buffer containing approximately 0.2 g of glass beads and incubated for one h at 8 90°C. The heat-killed fungal mat was transferred to the BSL2 laboratory and 9 homogenized in the Precellys homogenizer at 6,500 rpm for 15 • sec each time (program 10 number 5; 6500-3x60-015). The homogenized suspension was transferred to a 2-ml 11 screw-cap tube, leaving behind the beads. DNA from homogenized samples was 12 extracted using the Qiagen DNA mini kit in the QiaCube semiautomated DNA 13 extractor, resulting in 50 • µl of eluted DNA. For the RhMK cell line, approximately 2 ml 14 medium containing fungal growth was first centrifuged at 12,000 RPM; the supernatant 15 was decanted, and fungal pellet was processed for DNA extraction as described above. 16 DNA from paraffin-embedded tissue was prepared by first sectioning the samples, and 17 then the paraffin was dissolved with 1 • ml of xylene, followed by two washes using 18 1•ml of 100% ethanol. The sample was then dried and extracted using the Qiagen DNA 19 mini kit as described above with an incubation temperature of 70°C instead of 90°C. For 20 other primary samples (blood, CSF, bronchial wash, and pleural fluid), approximately 21 400 µl of each samples was added to DNA extraction buffer containing beads, heated at 56°C for 10 min followed by bead beating and DNA extraction in QiaCube as described 22

1	above. All extracted DNAs were stored at -80° C. DNA of fungal species (yeasts and
2	molds) other than Coccidioides spp. were procured from the Wadsworth Center
3	Mycology Laboratory (WCML) DNA Collection Repository (Supplementary Table 1).
4	DNA from bacterial species included Bacillus megaterium, Escherichia coli, Nocardia
5	farcinica, Pseudomonas aeruginosa, and Streptococcus pneumonia was procured from the
6	Wadsworth Center Bacteriology Laboratory.
7	
8	Modified conventional PCR. A modification of conventional diagnostic PCR described
9	by Umeyama et al (15) was used. The primers were designed from the conserved
10	region of Ci45815 (GenBank No. AB597180.1) and Cp45810 (GenBank No. AB597183.1)
11	flanking the deleted region of <i>C. posadasii</i> . The nucleotide sequences of the diagnostic
12	primers were V2119 5'-CCGGGTACTCCGTACATCAC-3', and V2120 5'-
13	ATGCGTGAAGCCAATTCTTT-3' and the PCR conditions were initial denaturation at
14	95°C for 1 min followed by 30 cycles consisted of denaturation at 94°C for 1 min,
15	annealing at 55°C for 1 min, and extension at 68°C for 1 min followed by final extension
16	at 68°C for 3 min.
17	
18	Duplex Real-Time PCR Assay. The Prp2 gene and contig Ci41815 (15) were used to
19	design the duplex real-time PCR assay. The nucleotide sequences of primers and probe
20	for PRA2 gene target were forward primer V1753 5'GTGCGAGAAGTTGACCGACTT-
21	3', reverse primer V1754 5'AGGCGTGATCTTTCCTGGAA-3', probe V1755 5'-Cy5'-
22	AAGTGCCACTGCGCCAAGCCC-3BHQ and primers and probe for contig Ci41815

1	target were forward primer V2116 5'-GGTGAAATGCCCGAAAAGAG-3' reverse
2	primers V2118 5'-CCAATCCTTAGGTAACCGTGAG-3', and probe V2117
3	5'/56FAMTTGCACTTT/ZEN/CGTTGACTAGCCGC/3IABkFQ/-3'. Reaction for each
4	real-time PCR contained 1× PerfeCTa multiplex qPCR ToughMix (Quanta Biosciences),
5	a 1,000 \bullet nM concentration of primers and a 250 \bullet nM concentration of probes, and 2 \bullet \bullet l
6	of genomic DNA (approximately 1 to 10 \bullet ng) from isolates or 5 μl of tissue DNA
7	extracted from primary clinical specimens in a final volume of 20 $\mu l.$ Each PCR run also
8	included $2 \cdot 1 (1 \cdot ng)$ of positive extraction control (C735; <i>C. posadasii</i>), $2 \cdot 1 (1 \cdot ng)$ of
9	positive amplification controls (C735, <i>C. posadasii</i> and 249, <i>C. immitis</i>), and $2 \cdot \cdot 1$ of
10	negative extraction (extraction reagents only) and negative amplification (sterilized
11	nuclease-free water) controls. Parallel to each PCR assay, inhibitory PCR was also
12	performed by incorporating 1 ng of <i>Coccidioides</i> gDNA into each primary clinical DNA
13	sample. The unidirectional workflow kept the reagent preparation, specimen
14	preparation, and amplification and detection areas separate to avoid cross-
15	contamination. Cycling conditions on the ABI 7500 FAST system (Applied Biosystems,
16	Thermo Fisher Scientific Inc., Waltham, MA) were initial denaturation at 95°C for 20 s,
17	followed by 45 cycles of 95°C for 3 s and 60°C for 30 s. Based on the limit of detection
18	(LOD), a cycle threshold (C_{τ}) value of •38 was reported as positive; and >38 was
19	reported as negative. For all primary samples, specimens were reported as inconclusive
20	if PCR inhibition was observed for the primary specimens.
21	

22 Analytical sensitivity, specificity, and reproducibility of the duplex real-time PCR

1 assay: The 10-fold serial dilutions of genomic DNA from one isolate each of *C. posadasii* 2 (C-735) and *C. immits* (249) were used to assess the analytical sensitivity of the duplex 3 real-time PCR assay. The assay specificity was assessed by using an extensive DNA 4 panel comprising various fungi both closely and distantly related to *Coccidioides* spp. 5 and few bacterial pathogens primarily responsible for causing pulmonary infection 6 (Supplementary Table 1). The assay reproducibility was determined by using varying 7 concentration of gDNA from three isolates each of C. posadasii and C. immitis, ran on 8 three different days in duplicate (inter-assay reproducibility), and on the same day in 9 triplicate (intra-assay reproducibility). The assay's precision was assessed using blinded 10 panel with varying concentration of gDNA from 20 isolates each of *C. posadassii* and *C.* 11 *immitis*, and 10 isolates of fungi other than *Coccidioides* spp.

12

Statistical analysis. The results were statistically analyzed using GraphPad Prism 8.0
software for macOS. The statistical significance was set at a *P* value of < 0.05. All the Ct</p>
values were averages of at least three repetitions for sensitivity, reproducibility assays
and average of two or three Ct values for duplex real-time PCR assay.

17 **RESULTS**

18

Modified conventional PCR assay: Initially, we modified conventional diagnostic PCR
assay using species-specific primers designed from the Ci45815 PCR fragment
(GenBank AB597180) described by Umeyama et al (15). The modification reduced the
amplicon length down to 200-bp for *C. immitis* and 114-bp for *C. posadasii*, yielding

better electrophoretic separation (Figure 1). Also, PCR efficiency was higher, with a
smaller amplicon size (data not shown). Of 152 isolates investigated, 129 were *C. posadasii*, and 23 were *C. immitis* by conventional PCR. This approach was not successful
for the analysis of *Coccidioides* DNA from primary specimens except for RhMK cell
samples (Table 1). Overall, our results showed that the conventional diagnostic PCR
could be used successfully to identify *C. immitis* and *C. posadasii* from culture isolates
but not from the primary specimens.

8

9 **Duplex real-time PCR assay sensitivity, specificity, and reproducibility:** We designed 10 a duplex real-time PCR assay with the first set of primers and probe targeting PRA2 11 gene identifying *Coccidioides* species, and the second set of primers and probe targeting 12 C. immitis contig Ci41815 (CiC) identifying C. immitis but not C. posadasii due to 86-bp 13 deletion in the corresponding *C. posadasii* contig Cp41810. The duplex real-time PCR 14 assay was highly sensitive, with the limit of detection was 0.1 pg gDNA/PCR reaction, 15 which was equivalent to approximately ten genome copies of *C. immitis* or *C. posadasii* 16 (Figure 2, and Table 2). None of the other fungal or bacterial DNA yielded any Ct value, 17 confirming the high specificity of the duplex real-time PCR assay (Supplementary Table 18 1). The assay was highly reproducible as it yielded correct ID for *C. immitis* and *C.* 19 posadasii when varying concentration of gDNA tested within the same day or on 20 different days (Supplementary Table 2 A and 2 B), and also when samples were blinded 21 by one operator and tested by another operator (Supplementary Table 3). Since 22 *Coccidioides* genus comprises only two species, positive results with both probes

identified *C. immitis* while the positive, negative results with *PRA2* and Ci41815 probes,
 respectively, identified *C. posadasii* (Table 3).

3

4 **Performance of the duplex real-time PCR assay:** The duplex real-time PCR assay 5 correctly identified all cultures of *Coccidioides* species to either *C. immitis* or *C. posadasii*, and the results were corroborated with modified diagnostic PCR assay, confirming the 6 7 high utility of the duplex real-time PCR assay. Of 152 human isolates of Coccidioides 8 received for reference testing, 129 were identified as C. posadasii, and 23 were identified 9 as C. immitis (Fig. 3). Of 17 isolates received from California, 13 were confirmed as C. 10 *immtits* and four were confirmed as *C. posadasii* (Table 4). Next, we assessed the duplex 11 real-time PCR assay's ability to detect *Coccidioides* species DNA from 17 primary 12 specimens. Nine of ten paraffin-embedded tissues and three vials of RhMK cells were 13 positive for *C. posadassi* DNA, while all other samples were negative for *Coccidioides* 14 DNA. The clinical samples negative for *Coccidioides* DNA were also negative for any 15 other fungal DNA by internal transcribed spacer (ITS) PCR and for fungal pathogens by 16 culture (Table 1). All of the three RhMK cell vials positive for C. posadasii DNA also 17 yielded *Coccidioides* in culture, and subsequently confirmed as *C. posadasii* (Table 1). We 18 also evaluated 15 archived CSF and pleural fluid samples, which were earlier tested 19 positive for coccidoidomycosis by immunodiffusion and complement fixations tests. Of 20 these samples, only two were positive for *C. posadasii* DNA by duplex real-time PCR 21 assay (Table 5).

22

23 **DISCUSSION**

1

2	PCR-based methods have been used increasingly due to their accuracy,
3	sensitivity, and speed of identification, and the use of DNA instead of highly infectious
4	live cultures. Microsatellite analysis has been the primary molecular method used to
5	distinguish the two species of <i>Coccidioides</i> (11, 12). However, this method is both time
6	consuming and technically challenging for clinical and reference laboratories. The light-
7	cycler PCR assay developed by Binnicker et al. (17) was highly sensitive and specific for
8	Coccidioides species, but this assay could not distinguish C. immitis from C. posadasii.
9	Umeyama et al. (15) described disparity PCR using species-specific primers that
10	resulted in different size amplicons for a convenient distinction of <i>C. immitis</i> from <i>C.</i>
11	posadasii by conventional PCR. In the present study, we modified the Umeyama et. al.
12	(15) disparity PCR, which led to the reduction in amplicon size of 200-bp for <i>C. immitis</i>
13	and 114-bp for <i>C. posadasii</i> . The conventional diagnostic PCR assay was excellent for the
14	identification of C. immitis and C. posadasii from culture, but it was not good for the
15	analysis of Coccidioides DNA from paraffin-embedded primary specimens. One reason
16	could be that the amount of <i>Coccidioides</i> DNA present in these samples were below the
17	threshold for detection by conventional PCR, or the template was degraded beyond the
18	capacity of the conventional PCR to yield a positive result. PCR allelic-discrimination
19	assay, referred to as CocciDiff, was developed using TaqMan chemistry (14). This assay
20	could effectively identify <i>Coccidioides</i> cultures and could accurately distinguish <i>C</i> .
21	immitis from C. posadasii based upon the presence of an individual highly informative
22	canonical SNP (14). CocciDiff has yet to be validated with clinical specimens. Although,

1 the CocciDiff assay appears to be quite promising, the assay specificity based on 2 canonical SNP can be problematic if such mutations are not consistently present in a 3 given strain of *Coccidioides*. In the present study, while developing a duplex real-time 4 PCR assay, we used more stringent conditions where first set of primers and probe 5 targeting PRA2 gene identified Coccidioides to the genus level, and the second set of 6 primers and probe targeting *C. immitis* contig, Ci41815 (CiC), identified *C. immitis* but 7 not *C. posadasii* due to a deletion of 86-bp sequence in the corresponding Cp41810 8 contig. Since there are only two species within the *Coccidioides* genus, the positive 9 results with both probes of the duplex assay allowed the identification of C. immitis 10 while positive, negative results with probes *PRA2* and Ci41815, respectively, led to the 11 identification of C. posadasii.

12

13 Of 129 C. posadasii, 117 isolates were from patients from New York, followed by 14 eight isolates from patients from New Jersey, two isolates each from patients from 15 Pennsylvania and Arizona, one isolate from a patient from Washington DC. All 23 C. 16 *immitis* isolates were from patients from NY. Since *Coccidioides* is not found in the soil of 17 New York and other states in the northeast region, the positive isolates suggested that 18 the patients acquired *Coccidioides* infection while travelling to the area of endemicity. 19 These findings are consistent with our earlier study where travel history to endemic 20 areas for *Coccidioides* was linked to positive clinical cases from New York (18). In the 21 present study, we confirmed five-fold more isolates as C. posadasii than as C. immitis; 22 this observation supports a previous publication on possible larger population size and

1	more diverse distribution of <i>C. posadasii</i> vis-a-vis <i>C. immitis</i> (19). Among a smaller
2	sampling of isolates from California, we found four C. posadasii isolates. Also, positive
3	RhMK cell samples came from a monkey housed in California were also identified as C
4	posadasii. These results raised the possibility that a small niche of C. posadasii exists in
5	California or patients might have traveled to areas where <i>C. posadasii</i> is endemic.
6	Further studies are needed to delineate the geographic distribution of <i>C. immitis</i> and <i>C.</i>
7	<i>posadasii</i> and the areas of overlap if any.
8	
9	Serology tests are the mainstay of coccidioidomycosis diagnosis (20, 21). Our
10	study included a small sample size of serology-positive clinical specimens, but the
11	findings do not permit firm correlation with real-time PCR test. The gold standard for
12	the diagnosis of coccidioidomycosis is the culture of the organism from primary
13	specimens. Culture is highly sensitive, and the DNA probe for confirmatory testing of
14	culture isolates has yielded excellent specificity (22, 23). However, growth in culture
15	may take several days to weeks resulting in a delay in diagnosing and initiating
16	treatment in infected individuals. The highly infectious nature of arthrospores
17	produced by Coccidioides species presents a safety risk to the laboratory personnel if a
18	culture is not quickly identified and handled appropriately under biosafety level 3
19	containment. It is important to note that laboratory-acquired infections due to
20	Coccidioides species have been reported in the literature (24). In summary, our modified
21	diagnostic conventional PCR assay was excellent for the culture identification of C.
22	immitis and C. posadasii, and the new duplex real time PCR assay had broader utility for

1	identifying two Coccidioides species from culture and primary specimens. The
2	Coccidioides spp. duplex real-time PCR will allow rapid differentiation of C. immitis and
3	C. posadasii from clinical specimens and further augment coccidioidomycosis
4	surveillance.
5	
6	
7	
8	
9	ACKNOWLEDGEMENTS
10	
11	We acknowledge the Wadsworth Center (WC) Tissue Culture & Media, and the

12 Applied Genomic Technologies Cores for media and sequencing services. Dr. Wallace, 13 Milwaukee Zoo, thanked for providing Rhino tissues suspected of coccidioidomycosis. 14 Dr. Kimberlee McClive-Reed provided editorial comments on the draft manuscript. We 15 thank YanChun Zhu for assistance with the reference testing of Coccidioides spp. VC 16 thanks Dr. Edward Desmond and other staff members at the California Department of 17 Public Health for assistance with implementation of *Coccidioides* real-time PCR test. This 18 work was supported partly by funds from the WC, the New York State Department of 19 Health (NYSDOH), and the Centers for the Disease Control and Prevention (CDC) 20 grant number NU50CK000516. The contents of this manuscript are solely the 21 responsibility of the authors and do not necessarily represent the official views of the 22 NYSDOH or the CDC.

1

2 AUTHOR CONTRIBUTIONS

3

5	
4	SC conceived the study, designed primers and probes for duplex and conventional PCR
5	assays, supervised experiments, and wrote the manuscript. TV, AM, and KS
6	standardized, validated single-plex, duplex real-time, and conventional PCR assays.
7	KLC contributed to the clinical specimen selection, helped in data interpretation, and
8	approved final draft. VC contributed to the study design, procured Coccidioides isolates
9	and primary specimens from other agencies and edited the draft manuscript.
10	
11	
12	FIGURE LEGEND
13 14	
15	Fig. 1. A modified conventional diagnostic PCR assay. A modification of assay
16	described by Umeyama et al. (2006) allowed generation of smaller amplicons while
17	maintaining test accuracy. Lane 1, and 10; 100-bp DNA ladder; lane 2 non-template
18	control (NTC), lanes 3, 5, 7, and 9 C. posadasii; lanes 4, 6, 8 C. immitis. The identity of the
19	isolates was also confirmed by Sanger sequencing.
20	
21	Fig. 2. Coccidioides spp. duplex real-time PCR assay sensitivity. Genomic DNA from
22	two control strains of Coccidioides species, C. immitis (249) and C. posadasii (C-735) were
23	serially diluted and tested in duplicate in duplex real-time PCR assay. The assay was
24	linear over 6 orders of magnitude and the limit of detection was 0.001 ng or 1 picogram

1	gDNA/PCR reactions at 45 PCR cycles confirming high sensitivity. As indicated, the
2	assay targeting CiC gene did not yield Ct values against C. posadasii DNA. The test was
3	repeated with similar results.
4	
5	Fig. 3. Human coccidioidomycosis cases from 1995 to 2020. Isolates received from
6	various facilities from New York and neighboring states were analyzed retrospectively
7	by newly developed duplex real-time PCR assay. Of 152 cases, 129 were confirmed as
8	being caused by <i>C. posadasii</i> , and 23 were caused by <i>C. immitis</i> . The predominance of <i>C.</i>
9	posadasii over C. immitis observed in the isolates analyzed.
10	

1 **REFERENCES**

3	1.	Galgiani JN, Ampel NM	Blair JE,	Catanzaro A,	Johnson RH,	Stevens DA,	Williams PL.
---	----	-----------------------	-----------	--------------	-------------	-------------	--------------

- 4 2005. Coccidioidomycosis. Clin Infect Dis 41:1217-1223.
- 5 2. Marsden-Haug N, Goldoft M, Ralston C, Limaye AP, Chua J, Hill H, Jecha L, Thompson
- GR, 3rd, Chiller T. 2013. Coccidioidomycosis acquired in Washington State. Clin Infect
 Dis 56:847-50.
- 8 3. CDC. 2014. Notes from the Field: *Coccidioides immitis* Identified in Soil Outside of Its
 9 Known Range Washington. MMWR 23:450.
- 10 4. CDC. 2013. Increase in Reported Coccidioidomycosis United States, 1998–2011.
- 11 Morbidity and Mortality Weekly Report 62:217-221.
- 12 5. Cooksey GS, Nguyen A, Knutson K, Tabnak F, Benedict K, McCotter O, Jain S, Vugia
- 13 D. 2017. Notes from the Field: Increase in Coccidioidomycosis California, 2016.
- 14 MMWR Morb Mortal Wkly Rep 66:833-834.
- 15 6. Bezold CP, Khan MA, Adame G, Brady S, Sunenshine R, Komatsu K. 2018. Notes from
- 16 the Field: Increase in Coccidioidomycosis Arizona, October 2017-March 2018. MMWR
- 17 Morb Mortal Wkly Rep 67:1246-1247.
- 18 7. Kirkland TN, Fierer J. 2018. Coccidioides immitis and posadasii; A review of their
- 19 biology, genomics, pathogenesis, and host immunity. Virulence 9:1426-1435.
- 20 8. Tong DQ, Wang JXL, Gill TE, Lei H, Wang B. 2017. Intensified dust storm activity and
- Valley fever infection in the southwestern United States. Geophysical research letters
 44:4304-4312.

1	9.	Malo J, Luraschi-Monjagatta C, Wolk DM, Thompson R, Hage CA, Knox KS. 2014.
2		Update on the Diagnosis of Pulmonary Coccidioidomycosis. Annals of the American
3		Thoracic Society 11:243-253.
4	10.	Laniado-LaborÌn R, Alcantar-Schramm JM, Cazares-Adame R. 2012.
5		Coccidioidomycosis: An Update. Current Fungal Infection Reports 6:113-120.
6	11.	Fisher MC, Koenig GL, White TJ, Taylor JW. 2002. Molecular and phenotype
7		description of Coccidioides posadasii sp. nov., preciously recognized as the non-
8		Californian population of Coccidioides immitis. Mycologia 94.
9	12.	Jewell K, Cheshier R, Cage GD. 2008. Genetic diversity among clinical Coccidioides
10		spp. isolates in Arizona. Medical Mycology 46:449-455.
11	13.	Bialek R, Kern J, Herrmann T, Tijerina R, Cecenas L, Reischl U, Gonzalez GM. 2004.
12		PCR assays for identification of Coccidioides posadasii based on the nucleotide sequence
13		of the antigen 2/proline-rich antigen. J Clin Microbiol 42:778-783.
14	14.	Sheff KW, York ER, E.M. D, Barker BM, Rounsley SD, Waddell WD, Bectrom-
15		Sternberg SM, Bectrom-Sternberg JS, K.P. K, Engelthaler DM. 2010. Development of a
16		rapid, cost-effective TaqMan Real-Time PCR Assay for identifi cation and differentiation
17		of Coccidioides immitis and Coccidioides posadasii. Medical Mycology 48:466-469.
18	15.	Umeyama T, Sano A, Kamei K, Niimi M, Nishimura K, Uehara Y. 2006. Novel
19		Approach to Designing Primers for Identification and Distinction of the Human
20		Pathogenic Fungi Coccidioides immitis and Coccidioides posadasii by PCR
21		Amplification. Journal of Clinical Microbiology 44:1859-1862.
22	16.	Ginocchio CC, Lotlikar M, Li X, Elsayed HH, Teng Y, Dougherty P, Kuhles DJ,
23		Chaturvedi S, St. George K. 2013. Identification of Endogenous Coccidioides posadasii

1		Contamination of Commercial Primary Rhesus Monkey Kidney Cells. J Clin Microbiol
2		51:1288-1290.
3	17.	Binnicker MJ, Buckwalter SP, Eisberner JJ, Stewart RA, McCullough AE, Wohlfiel SL,
4		Wengenack NL. 2007. Detection of Coccidioides species in clinical specimens by real-
5		time PCR. J Clin Microbiol 45:173-178.
6	18.	Chaturvedi V, Ramani R, Gromadzki S, Rodeghier B, Chang H, Morse DL. 2000.
7		Coccidioidomycosis in New York State Emerging Infectious Diseases 6(1):25-29.
8	19.	Teixeira MM, Barker BM. 2016. Use of Population Genetics to Assess the Ecology,
9		Evolution, and Population Structure of Coccidioides. Emerg Infect Dis 22:1022-30.
10	20.	Pappagianis D, Zimmer BL. 1990. Serology of coccidioidomycosis. Clin Microbiol Rev
11		3:247-68.
12	21.	McHardy IH, Dinh BN, Waldman S, Stewart E, Bays D, Pappagianis D, Thompson GR,
13		3rd. 2018. Coccidioidomycosis Complement Fixation Titer Trends in the Age of
14		Antifungals. J Clin Microbiol 56.
15	22.	Padhye AA, Smith G, Standard PG, McLaughlin D, Kaufman L. 1994. Comparative
16		evaluation of chemiluminescent DNA probe assays and exoantigen tests for rapid
17		identification of Blastomyces dermatitidis and Coccidioides immitis. J Clin Microbiol
18		32:867-870.
19	23.	Stockman L, Clark KA, Hunt JM, Roberts GD. 1993. Evaluation of commercially
20		available acridinium ester-labeled chemiluminescent DNA probes for culture
21		identification of Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus
22		neoformans, and Histoplasma capsulatum. J Clin Microbiol 31:845-850.

1	24.	Stevens DA, Clemons KV, L. HB, Pappagianis D, Baron EJ, Hamilton JR, Deresinski
2		SC, Johnson N. 2009. Expert Opinion: What To Do When There Is Coccidioides
3		Exposure in a Laboratory. Clinical Infectious Diseases 49:919-923.
4		

Table 1. Detection of *Coccidioides* species DNA from primary human and animal specimens

$\boldsymbol{\mathcal{I}}$	
1	
4	

<u> </u>	Source	Culture	Histopath -logy	Diagnostic PCR (bp)	Duplex R PC	ceal-Time CR	
Sample type					Mean Ct (Cy5)	Mean Ct (FAM)	
Whole blood	Human (case 1)	Negative	NA	Negative	0	0	Final ID
Tongue tissue (PB)	Human (case 2)	NA	Positive	Negative	0	0	Negative
Tongue tissue (PB)	Human (case 2)	NA	Positive	Negative	31.86	0	C. posadasii
Lung tissue (PB)	Human (case 3)	NA	NA	Negative	34.45	0	C. posadasii
Tissue (PB)	Human (case 4)	NA	NA	Negative	37.58	0	C. posadasii
Tissue (PB)	Human (case5)	NA	NA	Negative	31.84	0	C. posadasii
Cerebrospinal fluid	Human (case 6)	Negative	NA	Negative	0	0	Negative
Cerebrospinal fluid	Human (case 7)	Negative	NA	Negative	0	0	Negative
Bronchial wash	Human (case 8)	Negative	NA	Negative	0	0	Negative
Trachobronchial lymph node (PB)	Rhino (case 1)	NA	Positive	Negaitve	32.44	0	C. posadasii
Left lung (PB)	Rhino (case 1)	NA	Positive	Negative	35.72	0	C. posadasii
Left liliac lymph node (PB)	Rhino (case 1)	NA	Positive	Negative	36.86	0	C. posadasii
Left Supramammary	Rhino (case 1)	NA	Positive	Negative		-	
lymph node (PB)	Rhino	ΝΔ	Positiva	Negative	34.82	0	C. posadasii
Synoviam (PB)	(case 1)				34.42	0	C. posadasii
RhMK cell vial 1	(case 1)	Positive		114	18.56	0	C. posadasii
RhMK cell vial 2	Monkey (case 1)	Positive	INA	114	19.35	0	C. posadasii
RhMK cell vial 3	Monkey (case 1)	Positive	NA	114	22.15	0	C. posadasii

5 NA = Not available; PB = Paraffin block

3

I		

_	
~	
,	
~	

gDNA dilutions ng/PCR reaction	Probe	C. posadasii		C. immitis			
		Ct 1	Ct 2	Mean Ct	Ct 1	Ct 2	Mean Ct
100	PRA2 (Cy5)	18.66	18.86	18.76	19.04	19.14	19.09
10		22.36	22.28	22.32	23.16	23.58	23.16
1		26.34	25.96	26.15	27.00	27.17	26.88
0.1		29.80	30.05	29.92	30.83	30.75	30.63
0.01		33.21	33.47	33.34	33.97	33.69	34.12
0.001		36.38	35.25	35.81	37.37	36.65	37.01
0.0001		0.0	0.0	0.0	0.0	0.0	0.0
100	CiC (FAM)	0.0	0.0	0.0	19.40	19.47	19.43
10		0.0	0.0	0.0	23.58	23.50	23.54
1		0.0	0.0	0.0	27.17	27.40	27.28
0.1		0.0	0.0	0.0	30.75	31.40	31.07
0.01		0.0	0.0	0.0	33.69	34.78	34.23
0.001		0.0	0.0	0.0	37.83	37.50	37.66
0.0001		0.0	0.0	0.0	0.0	0.0	0.0

Table 2. Duplex real-time PCR Assay Sensitivity

2 Table 3. Test interpretation of real-time PCR assay for *Coccidioides* species

Test Intermetation	Probe			
rest interpretation	<i>Prp2</i> (Cy5)	CiC (FAM)		
Coccidioides immitis	Positive	Positive		
Coccidioides posadasii	Positive	Negative		
Other Fungi	Negative	Negative		
Bacteria	Negative	Negative		

2 Table 4. Results of real-time PCR testing of *Coccidioides* spp. isolates from California

No.	Initial	Conventional PCR (size in	Duplex P	Real-Time CR	Final Interpretation	
	identification	bp)	Mean Ct (Cy5)	Mean Ct (FAM)	-	
497-97	C. immitis	200	24.33	31.09	C. immitis	
498-97	C. immitis	114	20.19	0	C. posadassii [#]	
662-98	C. immitis	200	23.02	22.25	C. immitis	
664-98	C. immitis	200	32.24	32.61	C. immitis	
665-98	C. immitis	114	24.74	0	C. posadassii [#]	
666-98	C. immitis	114	18.76	0	C. posadassii [#]	
667-98	C. immitis	200	29.8	28.66	C. immitis	
669-98	C. immitis	114	27	0	C. posadassii [#]	
243-09	C. immitis	200	18.56	19.98	C. immitis	
244-09	C. immitis	200	28.59	30.18	C. immitis	
245-09	C. immitis	200	26.2	27.6	C. immitis	
246-09	C. immitis	200	21.81	20.87	C. immitis	
247-09	C. immitis	200	25.17	25.81	C. immitis	
248-09	C. immitis	200	36.08	37.73	C. immitis	
249-09	C. immitis	200	17.62	17.73	C. immitis	
250-09	C. immitis	200	19.92	21.28	C. immitis	
251-09	C. immitis	200	22.95	21.74	C. immitis	

[#] Confirmed by Sanger sequencing.

1

Table 5. Evaluation of archived CSF and pleural fluid samples by real time PCR for *Coccidioides species.*

Sample	Serology Test Results			Duplex real-time PCR Test Results			
ID	Immuno-	Complement-	Interpretation	Mean	Mean	Bicoid	Interpretation
	diffusion	Fixation		Ct	Ct	Ct	
				(Cy5)	(FAM)		
C15	IgG	1:2	POSITIVE	Undet	Undet	25.93	NEGATIVE
C16	IgG	1:16	POSITIVE	Undet	Undet	23.79	NEGATIVE
C18	IgG	1:4	POSITIVE	Undet	Undet	24.92	NEGATIVE
C26	IgG	1:16	POSITIVE	Undet	Undet	24.23	NEGATIVE
C43	IgG	1:128	POSITIVE	Undet	Undet	23.63	NEGATIVE
C49	IgG	1:32	POSITIVE	Undet	Undet	23.62	NEGATIVE
P6	lgM	Negative	NEGATIVE	Undet	Undet	23.94	NEGATIVE
P10	lgG	Negative	NEGATIVE	Undet	Undet	24.97	NEGATIVE
P12	lgG, lgM	1:16	POSITIVE	Undet	Undet	23.88	NEGATIVE
P18	lgG, lgM	Negative	NEGATIVE	Undet	Undet	24.20	NEGATIVE
P25	lgG, lgM	1:8	POSITIVE	37.93*	Undet	26.42	POSITIVE
P31	lgG	Negative	NEGATIVE	Undet	Undet	23.57	NEGATIVE
P36	lgM	Negative	NEGATIVE	36.89	Undet	23.65	POSITIVE
P39	lgG	Negative	NEGATIVE	Undet	Undet	23.90	NEGATIVE
P43	lgG, lgM	1:4	POSITIVE	Undet	Undet	23.80	NEGATIVE

- ^{*}The Ct values of this sample could only be obtained by diluting sample 10-fold, which
- 2 still revealed some PCR inhibition as mean Ct values for inhibition control (Bicoid) was
- 3 almost one log higher than the mean Ct values for other samples investigated.

Fig. 1. A modified conventional diagnostic PCR assay.

Fig. 2. *Coccidioides* species duplex real-time PCR assay sensitivity.

Supplementary Table 1. Specificity Panel								
ISOLATE No.	ORGANISM	SOURCE	PRA2	CiC				
-	NTC	-	NEGATIVE	NEGATIVE				
Closely related n	nold species							
M808	Blastomyces dermatitidis	MCC, NYSDOH [*]	NEGATIVE	NEGATIVE				
M809	Blastomyces dermatitidis	MCC, NYSDOH	NEGATIVE	NEGATIVE				
18461-12	Blastomyces dermatitidis	MCC, NYSDOH	NEGATIVE	NEGATIVE				
20694-12	Histoplasma capsulatum	MCC, NYSDOH	NEGATIVE	NEGATIVE				
22276-12	Histoplasma capsulatum	MCC, NYSDOH	NEGATIVE	NEGATIVE				
M109	Sporothrix schenckii	MCC, NYSDOH	NEGATIVE	NEGATIVE				
K10	Sporothrix schenckii	MCC, NYSDOH	NEGATIVE	NEGATIVE				
12998-12	Chrysosporium sp.	MCC, NYSDOH	NEGATIVE	NEGATIVE				
M1512 (K25)	Chrysosporium sp.	MCC, NYSDOH	NEGATIVE	NEGATIVE				
M1542 (K33)	Paracoccidioides bransiliensis	PHL, U.K. ^{**}	NEGATIVE	NEGATIVE				
Distantly related mold species								
17452-12	Trichophyton rubrum	MCC, NYSDOH	NEGATIVE	NEGATIVE				
K2	Trichophyton mentagrophyte	MCC, NYSDOH	NEGATIVE	NEGATIVE				
19616-12	Trichophyton interdigitale	MCC, NYSDOH	NEGATIVE	NEGATIVE				
K3	Microsporum gypseum	MCC, NYSDOH	NEGATIVE	NEGATIVE				
1304101	Geomyces pannorum	MCC, NYSDOH	NEGATIVE	NEGATIVE				
K5	Geomyces destructans	MCC, NYSDOH	NEGATIVE	NEGATIVE				
16341-12	Aspergillus fumigatus	MCC, NYSDOH	NEGATIVE	NEGATIVE				
15817-12	Aspergillus versicolor	MCC, NYSDOH	NEGATIVE	NEGATIVE				
15822-12	Aspergillus terreus	MCC, NYSDOH	NEGATIVE	NEGATIVE				
13071-12	Aspergillus nidulans	MCC, NYSDOH	NEGATIVE	NEGATIVE				
12745-12	Wangiella dermatitidis	MCC, NYSDOH	NEGATIVE	NEGATIVE				
10461-12	Penicillium pururogenm	MCC, NYSDOH	NEGATIVE	NEGATIVE				
13041-12	Penicillium funiculosum	MCC, NYSDOH	NEGATIVE	NEGATIVE				
13446-12	Fusarium spp	MCC, NYSDOH	NEGATIVE	NEGATIVE				
M831 (K12)	Epidermophyton floccosum	MCC, NYSDOH	NEGATIVE	NEGATIVE				
Distantly related	yeast species			1				
NIH444	Cryptococcus gattii	ATCC90028	NEGATIVE	NEGATIVE				
NIH12	C. neoformans var. neoformans	MCC, NYSDOH	NEGATIVE	NEGATIVE				
H99	C. neoformans var. grubii	MYCC, NYSDOH	NEGATIVE	NEGATIVE				
K16	<i>C. albidus</i>	MYCC, NYSDOH	NEGATIVE	NEGATIVE				
M49 (K17)	Candida albicans	ATCC22019	NEGATIVE	NEGATIVE				
K19	Candida tropicalis	ATCC750	NEGATIVE	NEGATIVE				
K18	Candida parapsilosis	ATCC22019	NEGATIVE	NEGATIVE				
K19	Candida tropicalis	ATCC750	NEGATIVE	NEGATIVE				
M146	Candida krusei	ATCC6258	NEGATIVE	NEGATIVE				

M165	Candida glabrata	MCC, NYSDOH	NEGATIVE	NEGATIVE		
M157	Candida dubliniensis	MCC, NYSDOH	NEGATIVE	NEGATIVE		
M277	Geotrichum candidum	MCC, NYSDOH	NEGATIVE	NEGATIVE		
771-07	Trichosporon asahii	MCC, NYSDOH	NEGATIVE	NEGATIVE		
M161 (K22)	Rhodotorula mucilaginosa	MCC, NYSDOH	NEGATIVE	NEGATIVE		
M78 (K24)	Saccharomyces cerevisiae	MCC, NYSDOH	NEGATIVE	NEGATIVE		
Bacterial Species						
S-1	Mycoplasma pneumoniae	BCC, NYSDOH	NEGATIVE	NEGATIVE		
S-2	Pseudomonas aeruginosa	BCC, NYSDOH	NEGATIVE	NEGATIVE		
S-3	Nocardia farcinica	BCC, NYSDOH	NEGATIVE	NEGATIVE		
S-4	Streptococcus pneumoniae	BCC, NYSDOH	NEGATIVE	NEGATIVE		
C-735 (Co)	C. posadasii	MCC, NYSDOH	POSITIVE	POSITIVE		
MYC249-09 (Co)	C. immitis	MCC, NYSDOH	POSITIVE	POSITIVE		

ATCC = American Type Culture Collection; MCC = Mycology Culture Collection, New York 1

State Department of Health (NYSDOH); BCC = Bacterial Culture Collection (NYSDOH), PHL,

2 3 U.K; Public Health Laboratory, United Kingdom

Supplementary Table 2A- Inter-Assay Reproducibility								
Organisms	Isolate		<u> PRA2-Cy5</u>		<u>CiC-FAM</u>			
	No. (ng/PCR	Day 1	Day 2	Day 3	Day 1	Day 2	Day 3	
	rxn)	Ct1/Cy2	Ct1/Cy2	Ct1/Ct2	Cy1/Ct2	Ct1/Ct2	Ct1/Ct2	
C. immitis	13-7701(10)	22.61/22.78	22.67/22.80	22.05/21.98	22.04/21.96	21.60/21.91	22.59/22.20	
	13-2789 (10)	23.81/23.65	23.31/23.53	23.94/23.85	22.04/21.96	22.99/23.17	22.54/22.78	
	664-98 (0.1)	29.45/29.45	30.56/30.25	30.23/31.84	30.15/30.39	30.09/30.40	30.84/30.09	
C. posadasii	14-1599 (100)	18.84/18.99	18.70/18.68	19.37/19.89	0.0	0.0	0.0	
	13-2793 (10)	24.03/23.82	23.61/23.67	22.53/22.43	0.0	0.0	0.0	
	13-4872 (1)	27.81/27.70	27.00/26.96	26.90/29.29	0.0	0.0	0.0	

3

4	

Supplementary Table 2B- Intra-Assay Reproducibility								
Organisms	Isolate	<u></u>	RA2-C	<u>v5</u>	<u>CiC-FAN</u>		M	
_	No. (ng/PCR rxn)	Ct1	Ct2	Ct3	Ct1	Ct2	Ct3	
C. immitis	13-7701 (1)	24.81	24.52	24.44	24.66	24.60	24.68	
	13-2789 (10)	22.55	22.66	22.58	22.49	22.43	22.54	
	664-98 (0.1)	29.97	29.77	29.79	29.49	30.65	30.84	
C. posadasii	14-1599 (100)	19.37	19.89	19.84	0.0	0.0	0.0	
	13-2793 (10)	22.53	22.43	22.84	0.0	0.0	0.0	
	13-4872 (1)	26.23	26.50	26.90	0.0	0.0	0.0	

6

Supplementary Table 4. Blinded Panel									
Blinded	Blinded DNA PRA2		42	CiC		Interpretation	Mycology No		
No.	ng/PCR	Ct1	Ct2	Ct1	Ct2				
	reaction								
1	1.0	0.0	0.0	0.0	0.0	Cryptococcus grubii	M1356		
2	1.0	0.0	0.0	0.0	0.0	Penicillium spp	10461-12		
3	1.0	0.0	0.0	0.0	0.0	Aspergillus fumigatus	16341-12		
4	1.0	0.0	0.0	0.0	0.0	Trichophyton interdigitale	19616-12		
5	1.0	0.0	0.0	0.0	0.0	Paracoccidioides brasiliensis	K34		
6	10.0	0.0	0.0	0.0	0.0	Aspergillus versicolor	15817-12		
7	10.0	0.0	0.0	0.0	0.0	Chrysosporium spp	12898-12		
8	1.0	0.0	0.0	0.0	0.0	Sporothrix schenckii	M109		
9	10.0	0.0	0.0	0.0	0.0	Histoplasma capsulatum	20694-12		
10	1.0	0.0	0.0	0.0	0.0	Blastomyces dermatitidis	M809		
11	1.0	27.13	27.15	0.0	0.0	Coccidioides posadasii	IDR12-6370		
12	10.0	23.44	23.33	0.0	0.0	Coccidioides posadasii	IDR12-6062		
13	10.0	22.27	22.02	0.0	0.0	Coccidioides posadasii	819-96		
14	10.0	22.83	24.18	0.0	0.0	Coccidioides posadasii	801-04		
15	1.0	25.27	26.12	0.0	0.0	Coccidioides posadasii	588-97		
16	10.0	23.85	23.82	0.0	0.0	Coccidioides posadasii	750-95		
17	10.0	23.19	24.49	0.0	0.0	Coccidioides posadasii	815-97		
18	1.0	25.45	25.41	0.0	0.0	Coccidioides posadasii	IDR11-32674		
19	10.0	22.68	22.88	0.0	0.0	Coccidioides posadasii	IDR11-32415		
20	1.0	25.74	25.48	0.0	0.0	Coccidioides posadasii	IDR11-1613		
21	10.0	23.13	23.66	0.0	0.0	Coccidioides posadasii	IDR11-5193		
22	10.0	23.32	23.37	0.0	0.0	Coccidioides posadasii	IDR11-417		
23	1.0	23.16	24.00	0.0	0.0	Coccidioides posadasii	IDR11-4299		
24	10.0	22.40	23.10	21.07	21.76	Coccidioides immitis	131-96		
25	1.0	24.20	25.41	22.95	23.93	Coccidioides immitis	MYC90247		
26	0.1	29.18	29.24	28.41	28.78	Coccidioides immitis	MYC90245		
27	0.01	31.54	31.55	31.00	31.32	Coccidioides immitis	MYC90244		
28	1.0	25.66	25.71	25.05	25.02	Coccidioides immitis	MYC90243		
29	1.0	24.11	24.14	23.39	23.51	Coccidioides immitis	MYC90242		
30	10.0	21.45	21.16	20.21	19.98	Coccidioides immitis	MYC90246		
31	0.1	28.79	28.49	27.82	27.72	Coccidioides immitis	MYC90251		
32	10.0	22.80	23.60	21.50	22.27	Coccidioides immitis	MYC90250		
33	0.1	29.00	29.01	28.12	28.36	Coccidioides immitis	669-98		
34	10.0	23.30	23.97	22.03	22.68	Coccidioides immitis	667-98		
35	10.0	18.66	18.55	17.24	17.19	Coccidioides immitis	MYC90249		
36	10.0	20.73	20.70	19.54	19.53	Coccidioides immitis	MYC90249		
37	10.0	21.96	21.79	20.73	20.52	Coccidioides immitis	MYC90248		
38	0.0	0.0	0.0	0.0	0.0	Water	-		
39	0.1	28.81	28.50	27.78	27.72	Coccidioides immitis	646-99		
40	0.1	28.43	28.71	33.31	33.21	Coccidioides immitis	779-97		
41	10.0	21.84	22.24	20.61	20.87	Coccidioides immitis	662-98		
42	10.0	22.31	24.81	23.62	20.87	Coccidioides immitis	366-96		
43	0.1	29.92	29.46	29.02	28.35	Coccidioides immitis	664-98		
44	1.0	25.04	25.50	24.41	24.85	Coccidioides immitis	IDR11-21091		

45	10.0	23.27	22.50	22.38	21.83	Coccidioides immitis	IDR11-8302
Co-Cp	0.1	30.52	30.54	0.0	0.0	Coccidioides posadasii	C-735
Co-Ci	0.1	29.51	29.32	30.39	30.39	Coccidioides immitis	MYC249-09