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Abstract 
Victoria has been Australia’s hardest hit state by the COVID-19 pandemic, but was 

successful in reversing its second wave of infections through aggressive policy interventions. 

The clear reversal in the epidemic trajectory combined with information on the timing and 

geographical scope of policy interventions offers the opportunity to estimate the relative 

contribution of each change. We developed a compartmental model of the COVID-19 

epidemic in Victoria that incorporated age and geographical structure, and calibrated it to 

data on case notifications, deaths and health service needs according to the administrative 

divisions of Victoria’s healthcare, termed clusters. We achieved a good fit to epidemiological 

indicators, at both the state level and for individual clusters, through a combination of time-

varying processes that included changes to case detection rates, population mobility, school 

closures, seasonal forcing, physical distancing and use of face coverings. Estimates of the 

risk of hospitalisation and death among persons with disease that were needed to achieve 

this close fit were markedly higher than international estimates, likely reflecting the 

concentration of the epidemic in groups at particular risk of adverse outcomes, such as 

residential facilities. Otherwise, most fitted parameters were consistent with the existing 

literature on COVID-19 epidemiology and outcomes. We estimated a significant effect for 

each of the calibrated time-varying processes on reducing the risk of transmission per 

contact, with broad estimates of the reduction in transmission risk attributable to seasonal 

forcing (27.8%, 95% credible interval [95%CI] 9.26-44.7% for mid-summer compared to mid-

winter), but narrower estimates for the individual-level effect of physical distancing of 12.5% 

(95%CI 5.69-27.9%) and of face coverings of 39.1% (95%CI 31.3-45.8%). That the multi-

factorial public health interventions and mobility restrictions led to the dramatic reversal in 

the epidemic trajectory is supported by our model results, with the mandatory face coverings 

likely to have been particularly important. 
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Introduction 
The COVID-19 pandemic has had an unprecedented impact on human health and society,1,2 

with high-income, urban and temperate areas often the most severely affected.3–5 The 

impacts of the virus are felt through the direct effect of the virus, particularly through its 

considerable risk of mortality following infection6,7 and likely substantial post-infection 

sequelae,8 but also through the extreme lockdown measures often needed to achieve 

control.9 

Australia has been relatively successful in controlling COVID-19,10 with all jurisdictions of the 

country achieving good control of the first wave of imported cases through March and April. 

However, the southern state of Victoria suffered a substantial second wave of locally-

transmitted cases, reaching around 600 notifications per day, predominantly in metropolitan 

Melbourne in winter. 

In response to the pandemic, the Victorian Government implemented a number of 

recommendations and policy changes with the aim of reversing the escalating case numbers 

that had a severe impact on social and economic activities. Specific changes included 

stringent restrictions on movement, increased testing rates, school closures and face 

covering requirements. In metropolitan Melbourne face coverings were mandated from 23rd 

July and significantly more stringent movement restrictions were implemented from 9th of 

July (moving to “stage 3”) and from 2nd August (moving from “stage 3” to “stage 4”). Case 

numbers peaked in the final days of July and first days of August and declined thereafter. 

Understanding the relative contribution of each of these interventions is complicated by 

several interventions being implemented within a few weeks, along with policy differences 

between metropolitan and regional areas. Nevertheless, the clear reversal in the trajectory of 

the epidemic following the implementation of these policy changes offers the opportunity to 

explore the contribution of these factors to the epidemic profile. Indeed, the experience of 

Victoria’s second wave is virtually unique in that the pattern of substantial and escalating 

daily community cases was reversed following these policy changes, with elimination 
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subsequently achieved in November. We adapted our computational model to create a 

unified transmission model for the state and infer the contribution of the policy interventions 

implemented to changing the direction of the epidemic trajectory. 

Methods 
We adapted the transmission dynamic model that we had used to produce forecasts of new 

cases, health system capacity requirements and deaths for the Victorian Department of 

Health and Human Services (DHHS) at the health service cluster level (henceforward 

“cluster”). By incorporating geographical structure to represent clusters, we built a unified 

model of the COVID-19 epidemic in Victoria, and fitted the model to multiple indicators of 

epidemic burden in order to infer the effectiveness of each component of the response to the 

epidemic. Full methods are provided in the Supplementary Methods, key features of the 

model are illustrated in Figure 1 and all code is available at https://github.com/monash-

emu/AuTuMN. 

Base model 

Our model of COVID-19 epidemiology is a stratified, deterministic SEIR framework, with 

sequential compartments representing non-infectious and infectious incubation periods and 

early and late active disease (Figure 1A). The late incubation compartment and the two 

active compartments are stratified to simulate epidemiological considerations including 

asymptomatic cases,11 incomplete detection of symptomatic cases, hospitalisation and ICU 

admission (Figure 1B). All model compartments were then stratified by age, with 

susceptibility, the clinical fraction, hospitalisation risk and infection fatality rate modified by 

age group.6 We introduced heterogeneous mixing by age using the synthetic mixing matrix 

for Australia developed by Prem et al. 2017 (Figure 1D).12 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.03.21254866doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.03.21254866
http://creativecommons.org/licenses/by-nc/4.0/


Simulation of public health interventions 
We simulated movement restrictions (including school closures, business closures and 

working from home) by varying the relative contribution of three of four locations to the 

overall mixing matrix (Figure 1E) continuously over time. Using Google mobility data 

(https://www.google.com/covid19/mobility/) weighted to cluster, we scaled the work 

contribution with workplace mobility and the contribution from other locations (contacts 

outside of schools, homes, and work) with an average of mobility from the remaining Google 

mobility locations other than residential (Figure 1E). We simulated school closures by scaling 

the school contribution according to the proportion of children attending schools on site. We 

assumed that schools began transitioning to onsite learning from the 26th of May, at which 

time 400,000 of 1,018,000 students returned to onsite education. The remaining students 

were considered to return onsite from the 9th of June, before 90% of students moved to 

remote learning from the 9th of July, which continued until October. 

The term “micro-distancing” is used to refer to behavioural changes that reduce the risk of 

transmission given an interpersonal contact and so are not captured through data on 

population mobility (e.g. maintaining physical distance and use of face coverings). Micro-

distancing was assumed to reduce the risk of both transmission from index cases and the 

risk of infection of susceptible persons, with the effect of both physical distancing and face 

coverings applied to all three non-residential locations. Both the coverage and the 

effectiveness of each intervention were incorporated, with time-varying functions 

representing the proportion of the population complying with recommendations over time 

and constant calibration parameters scaling these functions to represent the effectiveness of 

the intervention. The profiles of compliance with these two recommendations was estimated 

by fitting to YouGov data, available at https://github.com/YouGov-Data/covid-19-tracker, with 

hyperbolic tan functions providing a good fit to data (Supplemental Figures 5 and 6). 

Because face coverings were mandated ten days later in regional Victoria than metropolitan 

Melbourne, the face coverings compliance function was delayed by this period for regional 

clusters, while the physical distancing function was identical for all clusters. 
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We defined the modelled case detection rate as the proportion of all symptomatic cases that 

were detected (Figure 1B). We related the case detection rate (CDR, Equation 1) to the 

number of tests performed using an exponential function, under the assumption that a 

certain per capita daily testing rate is associated with a specific case detection rate, with this 

relationship varied during calibration (Supplemental Figure 4): 

�������� 1: �������� � 1 � �������������	�
��� 

Seasonal forcing was incorporated using a transposed sine function, with maximum value at 

the winter solstice. 

Incorporation of health service clusters 
We further stratified the above model to Victoria’s nine health service clusters, including four 

clusters which together constitute metropolitan Melbourne (North, West, South, South East 

Metro) and five regional clusters which together constitute the rest of Victoria (Barwon South 

West, Gippsland, Grampians, Hume, Loddon-Mallee). We split the estimated age-specific 

population for Victoria (Figure 1C) according to historical patterns of accessing health 

service clusters provided by DHHS. The infectious seed was split across the compartments 

representing current infection and assigned evenly across the metropolitan clusters, with the 

remainder of the population assigned to the susceptible compartments. The force of infection 

in each cluster was calculated as a weighted average of the age-specific force of infection 

for each cluster, with the index cluster having the greatest weight and all non-index clusters 

having equal weight. The final model included 2,592 compartments interacting through a 

dynamic mixing matrix of dimensions 144 x 144 (16 age groups and nine geographical 

patches), with each matrix element scaling over time to reflect changes to population mixing 

in response to changes in mobility and pandemic-related policy decisions as introduced 

above. 

Calibration 
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Because of the high-dimensional parameter space, we calibrated the model to reproduce 

local COVID-19 dynamics during Victoria’s second wave using an adaptive Metropolis 

algorithm, which is non-Markovian but retains ergodic properties (Table 1; Supplement).13 

For the prior distributions of epidemiological calibration parameters, we used uniform priors 

for highly uncertain quantities and truncated normal distributions for quantities informed by 

epidemiological evidence. We included adjusters in our calibration parameters to modify the 

proportion of symptomatic individuals, proportion of symptomatic individuals hospitalised, 

and the infection fatality rate. The parameters are multiplicative factors that are applied to 

the odds ratio equivalent to the proportion parameter, rather than directly to the parameter 

value itself; thus ensuring that the adjusted value lies between zero and one. 

The likelihood function was constructed by first incorporating Poisson distributions with rate 

parameters equal to each of the state-wide daily time-series for notifications, 

hospitalisations, ICU admissions and deaths. This was then multiplied by terms for the daily 

time-series of notifications for each cluster, smoothed with a four-day moving average, using 

normal distributions. As there is no requirement for individuals living in a cluster catchment to 

attend that health service, we allocated each cluster a proportion of each notification 

according to the historical tendency of persons from each Local Government Area (LGA) to 

attend a hospital from that cluster (such that daily cluster-specific notification and death 

counts are not integer-valued).  
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Results 

Calibration fit 
We achieved good calibration fits to all calibration targets (Figures 2-4), along with close 

matches to cluster-specific indicators not used for calibration (Supplemental Figures 7-10) 

under the framework of a single state-wide model. The epidemic peaks in the regional 

clusters occurred somewhat later than in the metropolitan clusters, which is attributable to 

the modelled infection first being seeded in the metropolitan regions before triggering 

epidemics outside of Greater Melbourne and is consistent with historical reality. These fits 

were associated with a post-wave proportion of the population recovered of around 1-2%, 

with higher proportions in metropolitan regions and young adults (Figure 9). 

Parameter estimation 
The posterior estimates of model calibration parameters are presented in Table 1. Several 

epidemiological parameters with good evidence from international studies showed posteriors 

that were consistent with prior beliefs. This prevented overfitting, reduced the degree of 

freedom and provided better estimates of key free parameters including the effect of time-

varying processes, allowing insights into the dynamics of the epidemic. The unadjusted risk 

of transmission per contact (specifically the risk of transmission per contact between a 

susceptible person aged 15-64 years and a symptomatic infectious person not in isolation) 

was estimated at 2-5%. This needed to be adjusted for each cluster modelled, with the 

modifiers applied to the metropolitan clusters reaching values up to double that for the 

regional clusters (other than Barwon South West). The extent of mixing between 

geographical patches was low, with around 1-2% of the total force of infection contributed by 

regions other than the index patch. 

Estimates of the incubation period, the infectious period, the period prior to ICU admission 

and the duration in ICU were similar to our prior estimates derived from the literature. 

Likewise, the estimated proportion of incident cases resulting in symptomatic disease was 
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similar to our prior estimate. However, the risk of hospitalisation (and hence ICU admission) 

and of death given infection were considerably greater than our age-specific prior estimates 

obtained from the literature. This likely reflects higher rates of exposure and infection in 

population groups at particularly high risk of adverse outcomes, including residents of aged 

care facilities. 

The case detection rate associated with a testing rate of one test per 1,000 population per 

day was estimated at 33.0% (95%CI, 22.4-45.3), such that peak rates of detection of 

symptomatic infections were estimated at greater than 60%. 

To understand the reasons behind the epidemic curve plateauing at the start of August and 

beginning to decline thereafter, we were particularly interested in parameters governing the 

effect of time-varying processes. We estimated that physical distancing behaviours and face 

coverings were both important in achieving control of Victoria’s second wave, with face 

coverings estimated to have reduced transmission and infection risk by around 31 to 46%, 

while fitting to data provided little information on the effect of seasonal forcing (around 9 to 

45%). Physical distancing behaviour was estimated to have reduced risk of 

transmission/infection by around 6 to 28%, although the smaller changes in reported 

adherence to this intervention (Supplemental Figure 5) meant that this had a lesser impact 

on the epidemic profile. For the behavioural changes in particular, the posterior probability 

density was substantially more informative than the prior and had negligible density around 

the value of zero, consistent with an effect of each of these interventions in reversing the 

epidemic trajectory. Additionally, the posterior probabilities of the parameters were only 

moderately collinear (Figure 8), supporting independent effects for each process. 

Counterfactual scenarios 

Figure 10 presents four counterfactual scenarios in addition to the baseline scenario. The 

effect of re-opening schools from 9th July (the date that stage 3 restrictions were imposed) 

was projected to be modest, with daily case rates peaking around 200 higher than under 

baseline conditions, but with the epidemic profile otherwise broadly similar. The effect of not 
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mandating face coverings was projected to be dramatic, with case numbers in the thousands 

for several months under the counterfactual of face coverings usage remaining at the 

baseline level of 13.0%. Returning to full mobility from 9th July resulted in a similarly poorly 

controlled epidemic, under the assumption that face coverings usage could not then have 

reached the baseline estimate of >90% compliance in all workplaces and other locations if 

industries such as hospitality were fully re-opened. An epidemic unmitigated by any 

movement and behavioural restrictions was projected to substantially overwhelm expanded 

ICU capacity. 

Discussion 

We found that the improvement in Victoria’s second wave of COVID-19 cases could be well 

captured in our transmission model through a combination of time-variant processes that 

included: testing rates, population mobility, use of face coverings, physical distancing and 

seasonal forcing. The lower rates of COVID-19 observed in regional clusters were captured 

with the introduction of the infectious seed through the metropolitan clusters only, without 

needing to unrealistically manipulate the risk of transmission by cluster. Risk of infection in 

metropolitan areas was estimated to be up to double that of regional areas, consistent with 

international findings of a moderate correlation between population density and epidemic 

severity.5 Although Barwon South West showed transmission rates that were more 

comparable to metropolitan Melbourne, this region includes Victoria’s second largest city of 

Geelong. Interaction between populations of different clusters was low in the context of 

significant restrictions on movement between regions. Each of the time-varying processes 

modelled appeared to be important to the observed dynamics, with both face coverings and 

behavioural changes associated with a significant reduction in transmission risk per contact. 

However, face coverings had a considerably greater effect on reversing the epidemic, which 

was observable due to the sharp transition in the extent of their use when they were 

mandated. 
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Victoria’s second wave of cases was dramatically different from its first autumn wave, which 

was driven by importations and during which time the effective reproduction number was 

consistently estimated to be below one.14,15 Victoria’s second wave was initiated by 

quarantine escape, from which widespread community transmission soon followed. 

Progressively more extensive lockdown measures were then implemented, with local 

targeting of specific residential blocks and then postcodes, which were insufficient to reverse 

the epidemic trajectory. 

As noted previously, stage 3 restrictions were associated with a reduction in the effective 

reproduction number,16 although significant case rates persisted throughout July, and further 

reductions in mobility were observed with stage 4. An agent-based model with detailed 

social networks consideration of multiple intervention types and without geographical 

structure was calibrated to the Victorian epidemic.17 This model emphasised the importance 

of associations between individuals who would not otherwise be in regular contact to the 

epidemic. By contrast to previous work, our model captures the temporal and spatial 

implementation of the policy changes in Victoria to allow inference of the effect of each 

intervention. As concern increased that epidemic control had not been achieved over the 

course of July, policy changed rapidly in an attempt to bring the epidemic under control. 

Testing numbers increased following a nadir in early June and lockdown measures were 

implemented differently in twelve Melbourne postcodes, the remaining postcodes of Greater 

Melbourne, Mitchell Shire (immediately north of Greater Melbourne) and the remainder of 

regional Victoria. We captured these complicated geographical patterns of restriction by 

scaling our mixing matrices using Google mobility data, which are available at the LGA level 

for Victoria. School closure and face covering policy changes were captured according to the 

dates of policy changes. 

Most of the inferred parameters were consistent with previous evidence, including a 

potentially important effect of seasonal forcing in terms of the absolute reduction in virus 

transmissibility.18 The minimal information provided on seasonal forcing is likely attributable 

to our simulation period spanning less than four months and so covering a small proportion 
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of the cycling period, such that the effect could represent other secular changes during the 

period modelled. Sensitivity analysis (not presented) with seasonal forcing set to zero 

throughout the simulations made a negligible difference to the estimates for the other 

parameters of interest. The effect of face coverings was greater than is typically estimated at 

the individual level,19 but is consistent with the dominant importance of the respiratory route 

to transmission.20 The finding was also not unexpected given the marked shift in population 

use of face coverings at this time and the timing of the policy change in late July relative to 

the dramatic reversal in case numbers occurring around one week later. The significant 

estimated effect of behavioural changes suggests that reductions in interpersonal 

associations (macro-distancing) alone were insufficient to achieve the dramatic reversal in 

the epidemic trajectory observed. However, the Google mobility functions used to capture 

macro-distancing simulated falls in attendance at workplaces and other non-household 

locations to considerably below baseline values in several clusters (Figure 1), emphasising 

their importance. The dramatic effect of each of these interventions on the epidemic 

trajectory is partly attributable to our implementation of these processes as applying to both 

the infectious cases and the exposed individual. This approach is analogous to simulating 

the use of bed-nets for malaria control, where the overall effect of the intervention is 

quadratic, as it affects both the disease vector and the infection reservoir.21 

Despite the complexity of our model, it is inevitably a simplification of reality. Although we 

assumed that asymptomatic cases were undetectable, this was addressed by varying two 

epidemiological parameters pertaining to these patients, and the posterior estimate of the 

infectiousness of asymptomatic cases suggested around threefold lower infectiousness per 

unit time. Our findings relating to the impact of time-varying interventions could be proxies 

for other effects. For example, although we considered that the effectiveness of case 

detection scaled with the number of tests performed, changes in the effectiveness of tracing, 

testing and isolation activities during the course of the epidemic wave may also have been 

important. 
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Victoria’s second wave is known to have had particularly dramatic effects on residents of 

aged care facilities and health care workers, which we did not explicitly capture except by 

varying parameters relating to disease severity. Because of this, it was necessary to scale 

international estimates of the age-specific infection fatality rate around two- to three-fold. 

Although this factor seems extreme, age-specific infection fatality rate estimates increase 

dramatically with age,7 and it should be noted that the age-specific infection fatality rate 

parameters we used increase up to three-fold with each successive decade of age.6 

Therefore, an age distribution of the infected population that is one decade higher than that 

simulated would be expected to have a comparable effect. Our age-specific estimates of the 

risk of hospitalisation given symptomatic COVID-19 do not fully capture the consideration 

that hospital admission is driven by factors other than disease severity, including infection 

control and workforce capacity and staff isolation requirements in residential aged care 

facilities, which were particularly important to this epidemic wave. 

With the state’s explicit objective of achieving no community transmission in Victoria (and 

therefore across Australia) within a few months,22,23 our findings emphasise that multiple 

interacting components of the public health interventions were required to achieve this within 

the modelled period.24,25 Consistent with findings from elsewhere,26–28 without reductions in 

contacts outside the home and mandating the use of masks, there would have been no 

reasonable prospect of driving transmission to zero within a time period tolerable to the 

community, given the starting point of the epidemiological situation in late July. The small 

effect of school closures was also consistent with findings from overseas,25,29 although if 

schools had remained open throughout the epidemic wave, some additional weeks would 

likely have been required for transmission to decline to the point that elimination was an 

immediate prospect. Nonetheless, it is encouraging that in a low transmission scenario, 

school closures are likely not necessary to gain control in the presence of other effective 

population-level restrictions, including masks. 

In conclusion, we found that Victoria’s major second wave of COVID-19 was brought under 

control through a combination of policy interventions that were synergistic and together 
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contributed substantially to the dramatic reversal in the observed epidemic trajectory. In 

particular the considerable individual-level effect of face coverings was critical to achieving 

epidemic control, and so should be a cornerstone of any public health response given the 

much lesser inconvenience associated with their use compared to restrictions on mobility. 

Rates of hospitalisation and death were higher than anticipated given international estimates 

of parameters pertaining to these quantities, likely reflecting the concentration of the 

epidemic in high-risk groups, particularly residents of aged care facilities. As vaccination is 

rolled out as a more targeted intervention, protection of high-risk settings, including aged 

care will be critical, particularly in regions with low or negligible population immunity that 

remain at risk of explosive epidemics. 
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Parameter (units) Prior distribution 2.5th 
centile 

Median 97.5th 
centile 

Unadjusted risk of transmission 
per contact 

Uniform, 
support: [0.015, 0.06] 

0.0254 0.0364 0.0497 

Incubation period (days) Truncated normal, 
mean: 5.5, 
standard deviation: 0.97 
support: [1, infinity) 

3.70 4.68 5.79 

Duration of active disease 
(days) 

Truncated normal, 
mean: 6.5, 
standard deviation: 0.77 
support: [4, infinity) 

4.89 5.88 7.10 

Pre-ICU period (days) Truncated normal, 
mean: 12.7, 
standard deviation: 4 
support: [3, infinity) 

5.47 11.2 17.9 

Symptomatic proportion 
adjuster 

Truncated normal, 
mean: 1, 
standard deviation: 0.2, 
support: [0.5, infinity) 

0.715 0.984 1.35 

Infection fatality rate adjuster Uniform, 
support: [0.5, 4] 

1.66 2.48 3.32 

Hospitalisation rate adjuster Uniform,  
support: [0.5, 3] 

1.44 2.31 2.90 

Infectiousness of asymptomatic 
persons multiplier 

Uniform, 
support: [0.3, 0.7] 

0.234 0.348 0.527 

Starting infectious population 
(persons) 

Uniform, 
support: [10, 30] 

25.0 40.7 61.3 

Seasonal forcing Uniform, 
support: [0, 0.5] 

0.0926 0.278 0.447 

Case detection rate at one test 
per 1,000 per day (proportion) 

Uniform,  
support: [0.2, 0.5] 

0.224 0.330 0.453 

Inter-cluster mixing (%) Uniform, 
support: [0.005, 0.05] 

0.67 1.41 2.88 

Effect of physical distancing Uniform, 
support: [0, 0.5] 

0.0569 0.125 0.279 

Effect of face coverings Uniform, 
support: [0, 0.5] 

0.313 0.391 0.458 
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Cluster-specific contact rate multipliers 

North Metro Truncated normal, 
mean: 1, 
standard deviation: 0.5, 
support: [0.5, infinity) 

0.768 1.24 1.83 

West Metro 0.924 1.46 1.99 

South Metro 0.659 1.07 1.55 

South East Metro 0.630 1.10 1.53 

Barwon South West 0.635 0.988 1.47 

Other regional clusters 0.533 0.679 0.996 

Table 1. Prior distributions and posterior estimates of all calibrated 
epidemiological model parameters. 
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Figure 1. Age-structured COVID-19 model with population distribution, 
age-specific contact rates, and mobility inputs. (A) Unstratified model structure. (B) 
Stratification by infection and detection status. (Note that age stratification consists of further 
stratifying all compartments 16 times.) (C) Starting population age distribution. (D) Heterogeneous 
mixing matrices by age in the absence of non-pharmaceutical interventions. (E) Macro-distancing 
adjustments to the mixing matrices for each cluster smoothed with 7-day moving average. Black, 
workplace mobility for metropolitan clusters; green, other locations mobility for metropolitan clusters; 
blue, workplace mobility for regional clusters; brown, other locations mobility for regional clusters. 
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Figure 2. Calibration fits to daily state-wide time series of notifications, 
hospital admissions, ICU admissions and deaths. Daily confirmed cases (black 
dots) overlaid on the median modeled detected cases (dark blue line), with shaded areas representing 
the 25th to 75th centile (mid blue), 2.5th to 97.5th centile (light blue) and 1st to 99th centile (faintest 
blue) of estimated detected cases. Timing of restrictions applied to metropolitan Melbourne indicated 
in the upper left panel. 
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Figure 3. Calibration fits to daily time series of notifications for each 
metropolitan health service cluster. Daily confirmed cases (black dots) overlaid on the 
median modeled detected cases (dark blue line), with shaded areas representing the 25th to 75th 
centile (mid blue), 2.5th to 97.5th centile (light blue) and 1st to 99th centile (faintest blue) of estimated 
detected cases. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.03.21254866doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.03.21254866
http://creativecommons.org/licenses/by-nc/4.0/


 

Figure 4. Calibration fits to daily time series of notifications for each 
regional health service cluster. Daily confirmed cases (black dots) overlaid on the median 
modeled detected cases (dark blue line), with shaded areas representing the 25th to 75th centile (mid 
blue), 2.5th to 97.5th centile (light blue) and 1st to 99th centile (faintest blue) of estimated detected 
cases. 
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Figure 5. Posterior density histograms for key state-wide epidemiological 
parameters from accepted model runs. Red histograms, model posterior estimates; 
blue lines, prior distributions for same parameters (all are uniform or truncated normal distributions). 
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Figure 6. Posterior histograms for other state-wide epidemiological 
parameters. Red histograms, model posterior estimates; blue lines, prior distributions for same 
parameters (all are uniform or truncated normal distributions). 
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Figure 7. Posterior histograms for cluster-specific contact rate modifier 
parameters. Red histograms, model posterior estimates; blue lines, prior distributions for same 
parameters (all are uniform or truncated normal distributions). 
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Figure 8. Correlation matrix for key state-wide epidemiological 
parameters. 
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Figure 9. Estimated proportion of population recovered from COVID-19 
at 1st October 2020, by age group and health service cluster. Point estimates 
with associated 50% credible intervals. Values are negligibly different from attack rates, except that 
deaths are excluded from the denominator. 
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Figure 10. Counterfactual scenarios compared against baseline 
calibration and data. Scenarios are: purple, schools re-opened from 7th 
July; green, face coverings not mandated (on 23rd July); yellow, work, 
schools and other locations mobility return to baseline levels from 7th 
July with 60% face coverings compliance; brown, return to normal 
mobility with baseline use of face coverings. Data (black dots), median modelled 
estimates (lines), shaded areas 25th to 75th centile (darkest shading), 2.5th to 97.5th centile 
(intermediate shading depth) and 1st to 99th centile (faintest shading) of each indicator for each 
scenario. 7th July chosen as the date that stage 3 restrictions were imposed. We considered that full 
compliance with mandatory face coverings would be impractical if workplaces and other locations 
returned to full capacity (for example, if hospitality was fully re-opened, patrons would not wear masks 
in all other locations). Base and surge ICU capacity for Victoria presented on lower left panel.30 
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