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Abstract  42 

Leveraging the unique biological resource based upon the initial COVID-19 patients in Policlinico di 43 

Milano (Italy), our study provides the first metabolic profile associated with a fatal outcome. The 44 

identification of potential predictive biomarkers offers a vital opportunity to employ metabolomics in 45 

a clinical setting as diagnostic tool of disease prognosis upon hospital admission. 46 

 47 

Introduction 48 

As of February 2021, more than 100 million cases of coronavirus disease 2019 (COVID-19), caused 49 

by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, had been 50 

confirmed globally, with more than 2 million related deaths (https://covid19.who.int/). Although most 51 

individuals remain asymptomatic or display mild symptoms, 15-20% of patients exhibit severe 52 

symptoms, specifically respiratory distress, often requiring mechanical ventilation or/and intensive 53 

care (ICU) admission [1], with a mortality rate after ICU admission estimated around 40% [2].  54 

Multiple studies have identified profound underlying conditions that demonstrate increased 55 

susceptibility to a more severe prognosis and a higher risk of fatality, including the male gender, old 56 

age [3], or certain underlying medical conditions, such as hypertension, cardiovascular diseases, 57 

diabetes or obesity [4]. Additionally, patients infected with SARS-CoV-2 present metabolic 58 

dysregulation, possibly due to immune-triggered inflammation or other changes in the host 59 

physiology, and that these alterations often reflect the disease severity [1,5,6]. For instance, levels of 60 

particular amino acids positively correlated with severe COVID-19 cases [1,7]. Moreover, 61 

perturbations in energy metabolisms, TCA and urea cycle [6] and lipid metabolism [1,8] are correlated 62 

to disease prognosis. Thus, it is essential to assemble a complete metabolic signature correlated to 63 

disease severity to identify a set of biomarkers strongly associated with the patient outcome, with the 64 

final goal of employing them for diagnostics and therapeutic purposes.  65 

Our study retrospectively analyzes the metabolome profile of 75 COVID-19 patients with moderate 66 

and severe symptoms admitted to Policlinico di Milano (Lombardy region, Italy) following SARS-67 

CoV-2 infection between March and April 2020. Italy was the first Western country to experience 68 

COVID-19 disease, and the Lombardy region was the epicenter of the Italian COVID-19 pandemic. 69 
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This cohort shows a higher mortality rate compared to others; therefore, it represents a unique 70 

opportunity to investigate the underlying metabolic profiles of the first COVID-19 patients in Italy and 71 

to identify potential predictive biomarkers.  72 

 73 

Methods 74 

Plasma samples from 75 COVID19 patients were collected at the moment of admission to Policlinico 75 

di Milano (Italy) from March to April 2020 and SARS-CoV-2 positivity was confirmed by PCR 76 

(Ethical Clearance No. 462-2020-bis). Patients were initially classified based on the type of ventilation 77 

received: Nasal cannula (n=25) and VentMask (n=25) (moderate cases) or CPAP (n=25) (severe 78 

cases). 79 

Plasma untargeted metabolomics was performed by Global Metabolomics (HD4) in Metabolon, 80 

(USA) as previously described [9]. The metabolomics method is ISO 9001:2015 certified and the lab 81 

is accredited by the College of American Pathologist (CAP), USA. Clinical data was collected from 82 

the registries. 83 

Logistic regression was used to model associations of each biomarker with COVID-19-related in-84 

hospital mortality adjusting for age, gender, and body mass index (BMI). As BMI was missing for 85 

many patients, multivariate imputation by chained equations (MICE) was used (via the MICE R-86 

package) to impute BMI. Imputation was done in two stages, first including no biomarkers, and then 87 

including those biomarkers that were found to be significant under the original imputation. The 88 

resulting pooled estimates and inference were obtained using Rubin's rules. P-values were not adjusted 89 

in this analysis. 90 

Metabolomics data were log2 transformed and plotted using histograms with normal distribution 91 

superimposed. R package LIMMA was applied for differential abundance analysis between different 92 

mask types (Nasal cannula/VentMask/CPAP), outcome (survivors/non-survivors), and severity 93 

(moderate/severe). Adjustment for multiple testing was assessed using false discovery rate (FDR) 94 

<0.05. Heatmap was built using the R package ComplexHeatmap. Uniform Manifold Approximation 95 

and Projection (UMAP) representations were done using the R package UMAP. Metabolites with 96 

variance equal to zero were removed and positive significant pairwise correlations after Bonferonni 97 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.13.21255117doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.13.21255117
http://creativecommons.org/licenses/by-nd/4.0/


5 
 

correction (Spearman, adjusted p<0.00001) were used for association analysis. The strength of the 98 

connections was evaluated by plotting distribution of correlation coefficients in a graphical network 99 

using igraph (https://igraph.org/python/). The network was compared to a random network with 100 

similar dimensions to validate the structure of the network to be not due to chance. Community 101 

detection was performed using Leiden algorithm 102 

(https://leidenalg.readthedocs.io/en/stable/index.html). For each community large enough (n>30), 103 

metabolite set enrichment analysis (MSEA) with KEGG and Metabolon terms via the Python module 104 

gseapy was performed. The average degree and clustering coefficient were calculated for each 105 

community. The final network was build using Cytoscape and biomarkers that were significantly 106 

associated with death were highlighted. 107 

 108 

Results and discussion 109 

Among the 75 patients enrolled in this study, 24% (18/75) succumbed to death in the hospital 110 

(Supplementary Table 1) and a significantly higher rate of fatal outcomes was observed for severe 111 

cases compared to moderate cases (p=0.0218, Chi-square test). Among patients who died, 112 

comorbidities were nearly universally observed (94%, 17/18). Underlying conditions, like 113 

hypertension, were recorded for 46% (26/57) of the survivors and 50% (9/18) of the non-survivors, 114 

while cardiovascular diseases were significantly more common in non-survivors (p=0.0320, Fisher’s 115 

exact test) compared to survivors. Among the serological markers, lactate was significantly higher 116 

(p<0.0001, Mann-Whitney test) in non-survivors compared to survivors, confirming its tight link to 117 

disease severity [10]. 118 

In a logistic regression analysis (adjusted to age, gender, and BMI), 35 metabolites, among the >1000 119 

tested, were significantly associated with COVID-19 mortality (p<0.05, unadjusted), among which 10 120 

biomarkers were significant at the unadjusted 0.025 level (Figure 1A). Interestingly, cyclic adenosine 121 

monophosphate (cAMP) is significantly increased in non-survivors compared to survivors (OR: 7.4 122 

95% CI 1.5 - 37). cAMP is a well-known intracellular messenger that functions as a regulator of 123 

various cellular activities, including cell growth and differentiation, gene transcription, protein 124 

expression, and is intimately involved in mitochondrial dynamics [11]. As cAMP plays a role in 125 
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SARS-CoV-2 endocytosis in the initial phases of the infection [12], its involvement in disease 126 

progression is worthy of further investigations as a potential biomarker.  127 

Using UMAP, we observed that the distribution of the patients in the biomarker enrichment showed a 128 

separation between survivors and non-survivors (Figure 1B). No specific pattern or clustering was 129 

observed for comorbidities (Fig 1C), the number of comorbidities (Fig 1D), or diabetes (Fig 1E), 130 

indicating that these metabolite sets only differentiate related to the clinical outcome. 131 

To further understand the patterns of metabolic changes related to COVID-19, we performed a 132 

weighted correlation network analysis on the metabolomics dataset, using significant positive 133 

correlations (Spearman, adjusted p<0.00001). We identified 10 metabolites communities highly 134 

connected in a network of 916 nodes (metabolites) and 11453 edges (Figure 1F). Six predicted 135 

biomarkers (out of the 10 previously identified with p<0.025, unadjusted) were highly correlated and 136 

were present in the network and belong to the lipid pathways. These metabolites are also known to be 137 

associated with peroxisomal fatty acid oxidation disorders (3-hydroxysebacate) [13] or insuline 138 

resistance (5-dodecenate (12:1n7), tetradecadienoate (14:2)* and myristoleate (14:1n5)) [14]. 139 

Finally, to further discriminate the subset of metabolites significantly associated with a fatal clinical 140 

outcome, we selected all the biomarkers and their first neighbors in the network analysis previously 141 

described (238 metabolites). Based on these data, we found a clear clustering of non-survivors in 142 

opposition to survivors (Fig 1G). No clustering according to mask type was observed, indicating that 143 

the metabolic signature associated with mortality appears to be independent of the oxygen demand at 144 

the moment of hospitalization, providing the first identified correlation between a metabolite profile 145 

and disease severity in COVID-19 patients. 146 

It is important to consider that when this study was planned (March-April 2020), there was little 147 

knowledge about the COVID-19. Therefore, several clinical data were missing. Despite that, this is the 148 

first set of biomarkers identified from high throughput metabolomics data that are associated with 149 

mortality and are not confounded by other preexisting conditions. 150 

 151 

Conclusions 152 
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Our analysis has identified metabolic biomarkers that in our data differentiate between COVID-19 153 

survivors and non-survivors and that may be predictive of death from COVID-19, from the early stage 154 

of the epidemic, independently from oxygen demand at the moment of diagnosis. Our results on high 155 

throughput metabolomics contribute to a better understanding of COVID-19-related metabolic 156 

disruption and may represent a useful starting point for the identification of independent prognostic 157 

factors to be employed in the therapeutic practice.  158 
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Table 1: Characteristics of the study population 246 

 Survivors Non-survivors p value 

Number 57 18  

Gender   0.1169 

- Male (%) 17 (30.4%) 9 (50%)  

- Female (%) 40 (69.4%) 9 (50%)  

Age in years, median (IQR) 62 (52-73.5) 76.5 (68.5-82) 0.0013 

BMI, median (IQR)* 26.3 (24.4-29.5) 29.6 (27-32.2) 0.1697 

SpO2, median (IQR)* 97 (94.25-98) 95 (89.25-98) 0.0768 

pH, median (IQR)* 7.48 (7.45-7.5) 7.49 (7.45-7.53) 0.6672 

Lactate, median (IQR)* 0.9 (0.7-1.1) 1.5 (1.1-1.8) <0.0001 

Comorbidities (%): 38 (66.7%) 17 (94%) 0.0297 

- Hypertension 26 (46.4%) 9 (50%) 0.7913 

- Diabetes  9 (16%) 3 (16.7%) NS 

- Lung disease 4 (7.1%) 1 (5.6%) NS 

- COPD 4 (7.1%) 2 (11.1%) 0.6257 

- Obesity 8 (14.3%) 6 (33%) 0.0867 

- Renal disease 4 (7.1%) 3 (16.7%) 0.3481 

- Liver disease 1 (1.8%) 1 (5.6%) 0.4249 

- Cardiovascular disease 7 (12.5%) 7 (38.9%) 0.0320 

- Cerebrovascular 

disease 
2 (3.6%) 0 NS 

- Others** 14 (24.6%) 11 (61.1%)  

Number of comorbidities 

(listed above): 
  0.0047 

- None 19 (33.4%) 1 (5.6%)  

- One 16 (28%) 3 (16.7%)  

- Two 9 (15.8%) 6 (33%)  

- Three or more 13 (22.8%) 8 (44.4%)  

Disease severity§:   
0.0218 

 

- Moderate 

- Severe 

42 (73.7%) 

15 (26.3%) 

8 (44.4%) 

10 (55.6%) 
 

* Calculated from the available data 
** Gastrointestinal reflux, dyslipidemia, neoplasia, dementia 
§ Based on the masks 
 247 
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Figure legends: 248 

Figure 1: 10 metabolites are significantly associated with COVID-19 related in-hospital 249 

mortality. 250 

A. All biomarkers that were significant at the 0.05 level, after adjustment of age, gender, and BMI, 251 

were included in the plot and order by the value of the odds ratio. Color coding for lower p-values is 252 

presented in the legend. 253 

B-E. UMAP visualization of patients’ data after selecting the 10 death biomarkers. Patients were 254 

labeled for the B. outcome, C. presence of comorbidities, D. amount of comorbidities and E. diabetes. 255 

F. Global weighted network after communities’ detection. Biomarkers with COVID-19 related 256 

mortality belong to communities 4 and 5 (labeled). The size of the bubble represents the connectivity 257 

of each metabolite. 258 

G. Heatmap of potential biomarkers and first neighbors in patients. Outcome (survivors/non-survivors) 259 

and mask type is indicated. Data were log-transformed. 260 

 261 

 262 
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