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Abstract 1 

Background: There is growing interest in utilizing machine learning techniques for routine 2 

atherosclerotic cardiovascular disease (ASCVD) risk prediction. We investigated whether novel 3 

deep learning survival models can augment ASCVD risk prediction over existing statistical and 4 

machine learning approaches. 5 

Methods: 6,814 participants from the Multi-Ethnic Study of Atherosclerosis (MESA) were 6 

followed over 16 years to assess incidence of all-cause mortality (mortality) or a composite of 7 

major adverse events (MAE). Features were evaluated within the categories of traditional risk 8 

factors, inflammatory biomarkers, and imaging markers. Data was split into an internal 9 

training/testing (four centers) and external validation (two centers). Both machine learning 10 

(COXPH, RSF, and lSVM) and deep learning (nMTLR and DeepSurv) models were evaluated. 11 

Results: In comparison to the COXPH model, DeepSurv significantly improved ASCVD risk 12 

prediction for MAE (AUC: 0.82 vs. 0.79, P≤0.001) and mortality (AUC: 0.86 vs. 0.80, P≤0.001) 13 

with traditional risk factors alone. Implementing non-categorical NRI, we noted a 65% increase 14 

in correct reclassification compared to the COXPH model for both MAE and mortality (P≤0.05). 15 

Assessing the relative risk of participants, DeepSurv was the only learning algorithm to develop 16 

a significantly improved risk score criteria, which outcompeted COXPH for both MAE (4.07 vs. 17 

2.66, P≤0.001) and mortality (6.28 vs. 4.67, P=0.014). The addition of inflammatory or imaging 18 

biomarkers to traditional risk factors showed minimal/no significant improvement in model 19 

prediction. 20 

Conclusion: DeepSurv can leverage simple office-based clinical features alone to accurately 21 

predict ASCVD risk and cardiovascular outcomes, without the need for additional features, such 22 

as inflammatory and imaging biomarkers. 23 
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1.1 Introduction 1 

Coronary artery disease is the leading cause of morbidity and mortality in the United 2 

States [1]. There are multiple algorithms available such as the Framingham risk score (FRS) [2], 3 

Reynold risk score [3, 4], and Pooled Cohort Equation (PCE) [5] for risk stratification and to 4 

help guide preventive strategies. These algorithms use traditional risk factors to derive an 5 

individual’s cardiac risk. Traditional risk factors have commonly either underestimated or 6 

overestimated an individual’s risk of coronary disease, thus promoting a search for subclinical 7 

markers. Detection of subclinical calcified atherosclerosis, such as coronary artery calcium 8 

(CAC), has been shown to improve the performance of these risk prediction models [6-8]. While 9 

subclinical markers have provided additive benefit to risk prediction, there remains a limited 10 

understanding regarding the incremental value of these biomarkers to allow for cost-effective 11 

clinical predictions [9]. 12 

Traditionally, survival models have been used to investigate the relationships between 13 

patients’ features and adverse outcomes, such as cardiovascular events, mortality, etc. [10-12]. 14 

Standard survival models like the Cox proportional hazards model (COXPH) employ several 15 

linear assumptions that allow it to predict outcomes for an individual patient. While COXPH 16 

utilizes a standard statistical approach, it can be evaluated in the context of training and testing 17 

sets to provide predictive values and function as a machine learning algorithm. Recently, a 18 

modern COXPH model implementing deep neural networks, referred to as DeepSurv, has been 19 

suggested as an alternative method for solving survival analysis problems [13]. DeepSurv has the 20 

capacity to create more complex and abstract feature combinations by utilizing hidden layers. 21 

These hidden layers provide independent nodes of neural network development, allowing the 22 

algorithm to exhaust the potential of features and feature combinations for event prediction. 23 
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Additionally, DeepSurv is equipped with gradient descent optimization, providing an efficient 1 

means of minimizing the error of the algorithm through continual optimization of its parameters 2 

[13]. 3 

In this study we illustrate the value of DeepSurv over traditional models, such as 4 

COXPH, for predicting adverse cardiovascular events in the multiethnic study of atherosclerosis 5 

(MESA). Further, we assess the additive value of feature combinations by integrating traditional 6 

risk factors, inflammatory biomarkers, and imaging markers for deriving optimal risk 7 

stratification algorithms. Ultimately, we suggest a framework for the development, and use, of 8 

deep neural network risk scores in clinical medicine.  9 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.12.21255286doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.12.21255286
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

1.2 Methods 1 

1.2.1 Implementation of The Multi-Ethnic Study of Atherosclerosis (MESA) 2 

The MESA is a prospective study examining 6,814 men and women in the United States, 3 

with participants across an age range of 45 – 84 years old. The study was designed to include a 4 

multiethnic population of White/Caucasian (38%), Black/African American (28%), Hispanic 5 

(23%), and Chinese American (11%) participants. In the current study, information from 6 

participants obtained during the first exam (between the years 2000-2002) were used as features 7 

for event prediction using machine learning and deep learning approaches (Figure 1A). The 8 

primary outcomes included myocardial infarction, resuscitated cardiac arrest, congestive heart 9 

failure, coronary revascularization, or all-cause mortality as major adverse events (MAE). Time 10 

of the event was classified as death (mortality) or the time at which the first cardiovascular 11 

outcome variable was detected (MAE). Only participants without clinical cardiovascular disease 12 

at baseline were included in the study. 13 

 14 

1.2.2 Feature Selection 15 

To assess the strength of event prediction in the presence of features obtained from 16 

different clinical modalities, we selected features from three major categories, including 17 

traditional risk factors (Baseline Model), inflammatory biomarkers (Biomarkers), and left 18 

ventricular morphology, pericardial fat, and coronary artery calcium (CAC) (Imaging). Features 19 

included in each category were selected based on the following: 1) the feature was 20 

measured/assessed in greater than 70% of the participant cohort, 2) the feature has been shown to 21 

be correlated with clinical or subclinical findings, and 3) features exhibiting multicollinearity 22 

(correlation coefficient > 0.80) were removed except for one in each set of correlations 23 
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(Supplemental Figure 1). The R package corrplot 0.84 was used for multicollinearity 1 

correlations [14]. 2 

We utilized a linear proportional hazards model, without machine learning, to examine 3 

concordance index on the entire dataset. Imaging features provided higher concordance index 4 

scores (0.77 vs. 0.75 Baseline Model) for MAE, whereas Biomarkers provided higher 5 

concordance index scores (0.79 vs. 0.77 Baseline Model) for predicting mortality (Supplemental 6 

Figure 2A). The feature combinations suggest that factors shaping the ultrastructure of the left 7 

ventricle and coronary atherosclerosis, are the most influential toward correctly identifying 8 

MAE, while inflammatory biomarkers markers (homocysteine, IL6, plasmin antiplasmin, etc.) 9 

are involved more prominently with understanding mortality, which supports previous findings 10 

[7, 10, 15-17]. The R package pec 2019.11.03 provided concordance indexes, and curves, 11 

through COXPH [18]. 12 

 13 

1.2.3 Data Transformation and Data Distribution 14 

All non-binary features were given a normal, standard distribution using the 15 

preprocessing function in scikit-learn 0.23.1 [19]. Missing values were imputed with the median 16 

value of each column through the mlr 2.17.1 package in R 3.6.2 [20]. Data was split into an 17 

internal training/testing (~66%, 4,584 participants) and external validation (~33%, 2,230 18 

participants) set. The internal training/testing and external validation split was determined by the 19 

field center in which the participants were enrolled. In order to derive an external validation set 20 

of ~33%, field centers six (St. Paul, Minnesota) and seven (Chicago, Illinois) were allocated to 21 

the external validation group while field centers three (Forsyth County, North Carolina), four 22 

(New York, New York), five (Baltimore City and Baltimore County, Maryland), and eight (Los 23 
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Angeles County, California) were selected as the internal training/testing set. Demographic 1 

information for the internal training/testing and external validation sets are provided (Table 1). 2 

 3 

Table 1: Internal Training/Testing and External Validation Set Demographics 4 

Features 
Internal Training/Testing (Centers 

3,4,5,8) N = 4,584 [95% CI] 

External Validation 
(Centers 6,7) N = 2,230 

[95% CI] 

P-
Value 

Traditional Risk Factors 

Age (Years) 62.52 [62.23-62.82] 61.39 [60.96-61.82]* ≤0.001 

Gender (Male, %) 46.71 [45.26-48.15] 48.07 [46.00-50.15] 0.289 

BMI (kg/m2) 28.49 [28.33-28.65] 28.02 [27.80-28.25]* ≤0.001 

Education Status (0-8 scale) 4.52 [4.46-4.59] 5.20 [5.10-5.30]* ≤0.001 

Income Category (1-13 scale) 8.15 [8.05-8.26] 9.15 [9.00-9.30]* ≤0.001 

Race/Ethnicity (%) 
1. White/Caucasian 
2. Chinese American 
3. Black, African American 
4. Hispanic 

31.85 [30.50-33.20] 
10.89 [9.98-11.79] 
34.69 [33.31-36.06] 
22.58 [21.37-23.79] 

52.11 [50.03-54.18]* 
13.68 [12.25-15.10]* 
13.54 [12.12-14.96]* 
20.67 [18.99-22.35] 

≤0.001 
≤0.001 
≤0.001 
0.075 

Diabetic (%) 14.77 [13.74-15.80] 10.54 [9.26-11.81]* ≤0.001 

Kidney Dysfunction (%) 10.12 [9.25-11.00] 8.16 [7.02-9.30]* 0.010 

Hypertensive (%) 47.08 [45.63-48.52] 37.00 [34.99-39.00]* ≤0.001 

Hyperlipidemic (%) 38.53 [37.12-39.93] 36.01 [34.02-38.00]* 0.044 

Metabolic Syndrome (%) 37.46 [36.05-38.86] 33.14 [31.18-35.10]* ≤0.001 

Smoking Status (%) 
1. Never 
2. Former 
3. Current 

51.64 [50.19-53.08] 
35.49 [34.11-36.88] 
12.87 [11.90-13.84] 

48.12 [46.04-50.19]* 
38.57 [36.54-40.59]* 
13.32 [11.91-14.73] 

0.006 
0.014 
0.607 

Family History of Heart 
Disease (%) 

42.61 [41.13-44.09] 43.04 [40.93-45.15] 0.744 

Inflammatory Biomarkers 

Homocysteine (µmol/L 9.33 [9.23-9.44] 9.33 [9.16-9.50] 0.586 

IL6 (pg/mL) 1.58 [1.54-1.62] 1.52 [1.47-1.57] 0.054 

Plasmin Antiplasmin (nM) 4.82 [4.76-4.88] 4.75 [4.65-4.85] 0.237 

Fibrinogen Antigen (mg/dL) 348.1 [346.0-350.3] 344.1 [341.1-347.1]* 0.021 

C Reactive Protein (mg/L) 3.88 [3.71-4.05] 3.58 [3.33-3.82]* ≤0.001 

D Dimer (µg/mL) 0.38 [0.36-0.41] 0.36 [0.33-0.40] 0.447 
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Factor VIII (%) 100.8 [99.65-101.9] 95.78 [94.31-97.24]* ≤0.001 

Left Ventricular Structure and Function 

LV Ejection Fraction < 50 (%) 1.37 [1.04-1.71] 0.99 [0.58-1.40] 0.176 

Left Ventricular Area (mm2) 4034 [4013-4055] 3985 [3955-4015]* 0.013 

Pericardial Fat (mm2) 78.18 [76.99-79.36] 82.47 [80.64-84.31]* ≤0.001 

Total Agatston Calcium Score 
(Phantom Adjusted) 

145.7 [133.4-158.0] 148.1 [131.1-165.1] 0.924 

Outcome Variables 

MAE (%) 28.40 [27.10-29.71] 26.23 [24.41-28.06] 0.060 

Mortality (%) 22.19 [20.98-23.39] 18.70 [17.08-20.33]* ≤0.001 

 1 

Table 1: Demographics and feature distribution of internal training/testing and external 2 

validation datasets. Data are statistically significant with a P ≤ 0.05 when denoted by a “*”. Data 3 

are represented as the mean and the 95% confidence interval. MAE = major adverse events, 4 

including all-cause mortality and cardiovascular outcomes. 5 

 6 

1.2.4 Machine and Deep Learning Models and Evaluation 7 

The framework for implementing and evaluating the machine and deep learning models 8 

is provided in the Supplemental Materials and Methods. Event prediction and feature importance 9 

were evaluated in three machine learning models (Cox Proportional Hazards Regression Model 10 

(COXPH), Random Survival Forest (RSF), Linear Support Vector Machines (lSVM)) and two 11 

deep learning models (Neural Multi-Task Logistic Regression (nMTLR) and Non-Linear Cox 12 

Proportional Hazards Deep Neural Network (DeepSurv)). Computations were performed in 13 

Python 3.7, all code is provided: https://github.com/qahathaway/MESA. 14 

 15 

1.2.5 Statistics 16 
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GraphPad Prism 8.4.3 and RStudio 3.6.2 were used for statistical analyses. For assessing 1 

two continuous variables, a two-tailed, unpaired Student’s t-test was employed when normally 2 

distributed. Normality was tested using the Shapiro-Wilk test. If non-Gaussian distribution, two 3 

continuous variables were assessed using the Mann Whitney test. For analyses of more than one 4 

group of continuous variables, a one-way analysis of variance (ANOVA) was used. Confidence 5 

intervals were calculated for ROC curves through the combined Wilson/Brown method. Relative 6 

risk (RR) was calculated through the Koopman asymptotic score. Significance of RR, positive 7 

predictive value (PPV), negative predictive value (NPV), and AUCs were determined through 8 

log transformation of mean and confidence intervals using a z-score distribution [21]. All data 9 

was considered statistically significant if the P-value was less than or equal to 0.05 (P ≤ 0.05). 10 

Data are reported as the mean with the 95% confidence interval (CI).  11 
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1.3 Results 1 

1.3.1 Characteristics of the Internal Training/Testing and External Validation Sets 2 

The data was split into an internal training/testing (~66%) and external validation (~33%) 3 

set, which was determined by the field center/county in which the participants were assessed 4 

(Table 1). Both the external validation and internal training/testing sets were of similar age, 5 

though statistically different (61.39 vs. 62.52 years old, P≤0.001), with no differences in gender 6 

(48.07% vs. 46.71% male, P=0.289). The external validation set compared to the internal 7 

training/testing set contained a higher percentage of White/Caucasians (52.11% vs. 31.85%, 8 

P≤0.001) and Chinese Americans (13.68% vs. 10.89%, P≤0.001), with a lower percentage of 9 

Black/African Americans (13.54% vs. 34.69%, P≤0.001). The external validation set exhibited a 10 

lower risk of experiencing mortality (18.70% vs. 22.19%, P≤0.001) but similar risk of MAE 11 

(26.23% vs. 28.40%, P=0.060) compared to the internal training/testing set, respectively. Of 12 

note, coronary artery calcium (CAC) was not significantly different in the external validation 13 

group (148.1 Phantom Adjusted) compared to the internal training/testing (145.7 Phantom 14 

Adjusted) (P=0.924). 15 

 16 

1.3.2 Evaluation Metrics of Model Performance and Prediction Accuracy 17 

The cumulative/dynamic AUC provides a means for plotting the ROC curve at any time 18 

throughout the survival analysis to assess predictions on which participants have, and do not 19 

have, the outcome at that time. With traditional risk factors, only linear Support Vector Machines 20 

(lSVM) and the Non-Linear Cox Proportional Hazards Deep Neural Network (DeepSurv) had 21 

significantly higher AUCs for both MAE and mortality in the Baseline Model and for All 22 

Features, compared to COXPH (Table 2). DeepSurv had the highest performance criteria across 23 
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all feature combinations and endpoints. Compared to COXPH, DeepSurv provided significant 1 

improvement with traditional risk factors for MAE (0.82 vs. 0.79, P≤0.001) and mortality (0.86 2 

vs. 0.80, P≤0.001) as well as improved prediction with all features for MAE (0.85 vs. 0.81, 3 

P≤0.001) and mortality (0.87 vs. 0.84, P≤0.001). DeepSurv further outperforms COXPH in 4 

defining outcomes in racial/ethnic groups, indicated by prediction of MAE for White/Caucasians 5 

(0.82 vs. 0.80, P=0.005), Chinese Americans (0.82 vs. 0.77, P=0.001), Black/African Americans 6 

(0.77 vs. 0.74, P≤0.001), and Hispanics (0.81 vs. 0.78, P≤0.001) and mortality for 7 

White/Caucasians (0.85 vs. 0.83, P=0.034), Chinese Americans (0.84 vs. 0.70, P≤0.001), 8 

Black/African Americans (0.81 vs. 0.75, P≤0.001), and Hispanics (0.88 vs. 0.81, P≤0.001), using 9 

traditional risk factors alone (Supplemental Table 1). 10 

 11 

Table 2: Cumulative/Dynamic Time-Dependent AUC 12 

MAE 

Features Baseline Model Baseline + 
Biomarkers 

Baseline + 
Imaging 

All Features 

COXPH [95% 
CI] 

0.79 [0.78-0.80] 0.78 [0.77-0.79] 0.79 [0.79-0.80] 0.81 [0.80-0.82] 

nMTLR [95% 
CI] 

0.78 [0.77-0.80] 
(P=1.000) 

0.79 [0.78-0.79] 0.81 [0.80-0.82] 0.80 [0.80-0.81] 
(P=0.4077) 

RSF [95% CI] 
0.80 [0.79-0.82] 

(P=0.314) 
0.80 [0.79-0.82] 0.83 [0.82-0.84] 0.83 [0.82-0.84]* 

(P=0.040) 

lSVM [95% CI] 0.81 [0.80-0.82]* 
(P=0.014) 

0.81 [0.80-0.82] 0.83 [0.82-0.84] 0.83 [0.82-0.84]* 
(P=0.042) 

DeepSurv [95% 
CI] 

0.82 [0.81-0.83]* 
(P≤0.001) 

0.82 [0.81-0.83] 0.84 [0.83-0.85] 
0.85 [0.84-0.86]* 

(P≤0.001) 

Mortality 

COXPH [95% 
CI] 

0.80 [0.79-0.81] 0.81 [0.80-0.83] 0.83 [0.82-0.83] 0.84 [0.83-0.85] 

nMTLR [95% 
CI] 

0.83 [0.82-0.84] 
(P=0.003) 

0.83 [0.82-0.84] 0.84 [0.83-0.85] 
0.84 [0.83-0.85] 

(P=0.858) 

RSF [95% CI] 0.84 [0.83-0.85]* 0.84 [0.83-0.85] 0.85 [0.84-0.86] 0.85 [0.84-0.86] 
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(P≤0.001) (P=0.250) 

lSVM [95% CI] 
0.85 [0.84-0.86]* 

(P≤0.001) 
0.86 [0.84-0.87] 0.86 [0.85-0.87] 0.86 [0.85-0.87]* 

(P=0.010) 

DeepSurv [95% 
CI] 

0.86 [0.85-0.87]* 
(P≤0.001) 

0.86 [0.85-0.87] 0.86 [0.85-0.87] 
0.87 [0.86-0.88]* 

(P≤0.001) 

 1 

Table 2: Cumulative/dynamic time-dependent AUCs for the COXPH, RSF, lSVM, nMTLR, and 2 

DeepSurv models. Data are statistically significant with a P ≤ 0.05 when denoted by a “*”. Data 3 

are represented as the mean and the 95% confidence interval. MAE = major adverse events, 4 

including all-cause mortality and cardiovascular outcomes, Baseline Model = traditional risk 5 

factors, Biomarkers = inflammatory biomarkers, Imaging = left ventricular structure and 6 

function, All Features = traditional risk factors, inflammatory biomarkers, and left ventricular 7 

structure and function, COXPH = Cox Proportional Hazards Regression Model, RSF = Random 8 

Survival Forest, lSVM = Linear Support Vector Machines, nMTLR = Neural Multi-Task 9 

Logistic Regression, DeepSurv = Non-Linear Cox Proportional Hazards Deep Neural Network. 10 

 11 

The use of concordant pairs in survival analyses provides a metric to determine the point 12 

along the survival curve at which a subject is predicted to experience an outcome. Examining the 13 

concordance index for traditional risk factors, only DeepSurv performed significantly better in 14 

predicting concordant pairs (Supplemental Table 2) and concordant pairs adjusted for the 15 

inverse probability of censoring weights (IPCW) (Supplemental Table 3) for both MAE and 16 

mortality. DeepSurv provided the highest concordance score for MAE (0.78) and mortality 17 

(0.83) for traditional risk factors compared to COXPH (0.74 and 0.78, respectively). The 18 

integrated brier score (Supplemental Table 4) indicates the differences between predicted and 19 
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observed probabilities, which was generally similar between machine and deep learning models 1 

for MAE and mortality. 2 

 3 

1.3.3 Feature Importance 4 

To determine which features contributed to the composition of each of the machine and 5 

deep learning models, permutation importance (COXPH, lSVM, nMTLR, DeepSurv) and mean 6 

decrease Gini (RSF) were employed (Figure 2). When examining all of the features, participant 7 

age was one of the top five predictors for predicting MAE and mortality. CAC was one of the top 8 

five predictors in all models predicting MAE, while biomarkers of inflammation were more 9 

important for predicting mortality (Figure 2). To further understand how individual features 10 

contributed to the construction of the machine and deep learning models, the best and worst 11 

predictive features were assessed. 12 

 13 

The top five performing features across all models with non-binary values were selected 14 

(Figure 2) with each model being trained on the internal training/testing set and fit with the 15 

external validation set. The cumulative/dynamic AUC for MAE (Supplemental Figure 4) and 16 

mortality (Supplemental Figure 5) for the top five performing features revealed minimal 17 

changes across all models. This suggests that the utility of these features are being completely 18 

exhausted by each of the machine and deep learning algorithms, with little, to no, room for 19 

improvement. To understand if features which comprise the worst predictors for each model 20 

performed similarly to the top predictors, the cumulative/dynamic AUCs were repeated for MAE 21 

(Supplemental Figure 6) and mortality (Supplemental Figure 7). In this case, there were 22 

marked differences between the ROC curves for mortality and MAE, with the AUCs of COXPH 23 
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(0.46 and 0.44), RSF (0.54 and 0.55), lSVM (0.55 and 0.55), nMTLR (0.55 and 0.55), and 1 

DeepSurv (0.56 and 0.56) revealing diverse handling of the predictors, respectively. 2 

 3 

1.3.4 Predicted Risks for Clinical Decision Making 4 

Machine and deep learning models were used in event prediction and risk stratification of 5 

patients by generating a risk score from the predicted risks of each model. Non-categorical net 6 

reclassification improvement (NRI) applied to the risk scores of traditional risk factors highlights 7 

the improved reclassification of nMTLR, RSF, lSVM, and DeepSurv compared to COXPH for 8 

MAE and mortality (Table 3). DeepSurv had the highest percent reclassification and correctly 9 

classified cases for MAE (65% and 67%, P≤0.05) and mortality (65% and 72%, P≤0.05), While 10 

lSVM had the highest percent correctly classified controls (69% and 69%, P≤0.05) for MAE and 11 

mortality, respectively. Similar reclassification was seen when applied to all features 12 

(Supplemental Table 5). To determine why DeepSurv can better identify patients who 13 

succumbed to MAE or mortality, we performed a categorical NRI using cutoffs derived from the 14 

Pooled Cohort Equation (PCE) estimated 10-year risk for atherosclerotic cardiovascular disease 15 

(ASCVD); this allowed for defining estimated risk score cutoffs of 5% (0.27, low risk), 7.5% 16 

(0.36, intermediate risk), and 20% (0.78, high risk). DeepSurv provided the most significant 17 

reclassification between the low risk and intermediate risk categories for MAE and mortality 18 

(Supplemental Table 6), suggesting that DeepSurv can better identify individuals with 19 

outcomes in this “borderline” category than can COXPH. 20 

 21 

Table 3: Reclassification – Baseline Model 22 

 
Non-Categorical NRI 

(%) [95% CI] 
Cases – Increased Risk 
Category (%) [95% CI] 

Controls – Decreased Risk 
Category (%) [95% CI] 
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MAE 

Risk 
Scores 

Baseline Model [95% CI] 

COXPH 0.00 50.00 50.00 

nMTLR 
30.78 [19.77-40.83]* 

(P≤0.05) 
58.93 [54.70-62.94] 56.46 [53.60-58.68] 

RSF 
44.34 [31.63-57.22]* 

(P≤0.05) 
57.06 [51.20-59.43] 65.11 [62.80-68.43] 

lSVM 
62.64 [51.71-77.33]* 

(P≤0.05) 
55.17 [52.11-59.72] 69.15 [65.10-72.93] 

DeepSurv 
64.97 [58.11-71.43]* 

(P≤0.05) 
67.18 [62.97-70.38] 65.31 [63.02-68.44] 

Mortality 

Risk 
Scores Baseline Model [95% CI] 

COXPH 0.00 50.00 50.00 

nMTLR 
20.73 [13.35-31.15]* 

(P≤0.05) 
64.67 [61.43-69.00] 45.69 [43.18-48.45] 

RSF 
35.09 [24.63-44.53]* 

(P≤0.05) 
62.22 [56.54-66.05] 55.33 [53.16-57.35] 

lSVM 
63.05 [30.74-83.97]* 

(P≤0.05) 
62.47 [46.93-71.34] 69.05 [66.34-73.11] 

DeepSurv 
65.31 [52.94-72.80]* 

(P≤0.05) 
72.21 [67.06-76.50] 60.44 [58.20-62.81] 

 1 

Table 3: Non-categorical net reclassification improvement (NRI) and the percentage of 2 

participants moving up and down risk categories for the COXPH, RSF, lSVM, nMTLR, and 3 

DeepSurv models. Analyses performed on the Baseline Model. Data are statistically significant 4 

with a P ≤ 0.05 when denoted by a “*”. Data are represented as the mean and the 95% 5 

confidence interval. MAE = major adverse events, including all-cause mortality and 6 

cardiovascular outcomes, Cases = participant with an event, Controls = participants without an 7 

event, Baseline Model = traditional risk factors, COXPH = Cox Proportional Hazards Regression 8 

Model, RSF = Random Survival Forest, lSVM = Linear Support Vector Machines, nMTLR = 9 
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Neural Multi-Task Logistic Regression, DeepSurv = Non-Linear Cox Proportional Hazards Deep 1 

Neural Network. 2 

 3 

The PCE ASCVD risk score classifies individuals with a score greater than 20% as being 4 

at high-risk for an event in the subsequent 10 years [22]. Using this criterion, 20% was set as a 5 

cutoff for determining relative risk (RR) of patients for mortality and MAE events in the 6 

machine and deep learning model risk scores. Using traditional risk factors alone, DeepSurv 7 

provided the highest increasing in RR and positive predictive value (PPV) for MAE (4.07 vs. 8 

2.66, P≤0.001, and 66% vs. 51%, P≤0.001) and mortality (6.28 vs. 4.67, P=0.014, and 57% vs. 9 

50%, P=0.027), compared to COXPH (Table 4). Similar RR, PPV, and negative predictive 10 

value (NPV) were seen when applied to all features (Supplemental Table 7). 11 

 12 

Table 4: Predicted Risk – Baseline Model 13 

 
Relative Risk [95% 

CI] 
Positive Predictive Value (%) 

[95% CI] 
Negative Predictive Value (%) 

[95% CI] 

MAE 

Risk 
Scores 

Baseline Model [95% CI] 

COXPH 2.66 [2.33-3.02] 51.48 [46.98-55.95] 80.63 [78.71-82.41] 

nMTLR 
3.28 [2.89-3.72]* 

(P=0.025) 58.32 [53.77-62.72]* (P=0.036) 82.22 [80.37-83.83] (P=0.220) 

RSF 
3.57 [3.14-4.02]* 

(P≤0.001) 
60.86 [56.35-65.19]* (P=0.004) 82.94 [81.11-84.62] (P=0.076) 

lSVM 
3.91 [3.42-4.47]* 

(P≤0.001) 
58.67 [54.59-62.64]* (P=0.021) 84.98 [83.18-86.62]* (P≤0.001) 

DeepSurv 
4.07 [3.59-4.61]* 

(P≤0.001) 65.71 [61.22-69.94]* (P≤0.001) 83.85 [82.07-85.49]* (P=0.013) 

Mortality 

Risk 
Scores Baseline Model [95% CI] 
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COXPH 4.67 [3.96-5.49] 49.67 [45.09-54.26] 89.36 [87.84-90.71] 

nMTLR 
5.02 [4.26-5.92] 

(P=0.541) 
50.87 [46.32-55.40] (P=0.716) 89.87 [88.38-91.19] (P=0.619) 

RSF 
5.90 [4.98-6.97] 

(P=0.051) 
54.59 [50.01-59.09] (P=0.137) 90.74 [89.30-92.00] (P=0.170) 

lSVM 
5.87 [4.85-7.10] 

(P=0.074) 
48.38 [44.35-52.42] (P=1.000) 92.03 [90.62-93.24]* (P=0.007) 

DeepSurv 
6.28 [5.30-7.44]* 

(P=0.014) 57.02 [51.94-61.00]* (P=0.027) 91.08 [89.67-92.32] (P=0.085) 

 1 

Table 4: Relative risk (RR), positive predictive value (PPV), and negative predictive value 2 

(NPV) for the COXPH, RSF, lSVM, nMTLR, and DeepSurv models. Analyses performed on the 3 

Baseline Model. Data are statistically significant with a P ≤ 0.05 when denoted by a “*”. Data 4 

are represented as the mean and the 95% confidence interval. MAE = major adverse events, 5 

including all-cause mortality and cardiovascular outcomes, Baseline Model = traditional risk 6 

factors, COXPH = Cox Proportional Hazards Regression Model, RSF = Random Survival 7 

Forest, lSVM = Linear Support Vector Machines, nMTLR = Neural Multi-Task Logistic 8 

Regression, DeepSurv = Non-Linear Cox Proportional Hazards Deep Neural Network. 9 
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1.4 Discussion 1 

The progression from traditional statistics to machine learning to deep neural networks 2 

continue a trend of identifying ever more complex networks of features and maximizing the 3 

value that each feature has in contributing to building of a model. The current study proposes a 4 

role for deep neural networks to augment current survival analysis pipelines. DeepSurv, which is 5 

a COXPH model that builds on the nonlinear aspect of deep neural networks [13], provides a 6 

more robust time-to-event prediction of both mortality and a composite of cardiovascular 7 

outcomes. Moreover, this study is one of the first to provide an in-depth examination of the 8 

additive value of cardiovascular biomarkers in machine and deep learning survival networks. 9 

While we see incremental improvements with the addition of features, the DeepSurv algorithm 10 

suggests that traditional risk factors alone are sufficient to provide significant improvement over 11 

routine statistical approaches, such as COXPH, and that addition of other features outlined in this 12 

study may not be necessary. 13 

Because this is a prospective, survival network spanning 16-years, age discriminates well 14 

across both MAE and mortality, likely limiting the impact of other features, such as CAC. 15 

Nevertheless, we continue to confirm small, yet significant improvement in model performance 16 

with the addition of coronary artery calcium (CAC) confirming previous observations regarding 17 

improvements of AUC [23] and NRI [8, 12, 24] with CAC. Examining the MESA cohort, 18 

Folsom et al. revealed an increase in the AUC when transitioning from traditional risk factors 19 

alone to risk factors including CAC for cardiovascular disease (0.772 vs. 0.811) and coronary 20 

heart disease (0.771 vs. 0.824) [23]. In the current study, prediction of MAE for traditional risk 21 

factors alone (0.82) and those including CAC (0.85) show a similar progression in improvement. 22 

Though, overall, the deep learning algorithms presented in this study are capable of achieving 23 
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much higher levels of prediction compared to standard statistical approaches. While both the 1 

current study and previous research have shown improvements with the addition of CAC, the 2 

data presented here provides one of the first examples of how features can be used progressively 3 

in machine learning driven survival networks, with the findings indicating modest, at best, 4 

improvements with the addition of features beyond traditional risk factors. This concept holds 5 

true for not only DeepSurv, but also the other machine and deep learning models tested. 6 

While each of the models may perform comparably with the features that most heavily 7 

influence the construction of the model, such as participant age and CAC, the machine and deep 8 

learning algorithms differ in the utility they can derive from other less “important” features. 9 

DeepSurv outperformed the other models across all features, but DeepSurv’s ability to rely on 10 

the traditional risk factors within the feature sets may be its most important attribute. DeepSurv, 11 

as hyperparameter optimized in this study, can provide a robust risk score criteria on traditional 12 

risk factors alone, significantly improving the classification of true positives. Both NRI and RR 13 

highlight the ability of DeepSurv to augment ASCVD prediction and provide a generalizable 14 

criterion for risk stratification of patients. This suggests that while all the models show 15 

incremental improvement with the addition of features, DeepSurv has the capacity to establish a 16 

higher baseline AUC, with a better predictive algorithm for traditional risk factors. 17 

In examining the MESA data, this is the first study to examine both support vector 18 

machines (lSVM) as well as deep learning algorithms (nMTLR and DeepSurv) in cardiovascular 19 

event prediction for survival analysis. The lSVM provided the second highest prediction scores 20 

for both classification of mortality and MAE, acting in a similar fashion to neural networks. 21 

SVM functions by employing hyperplanes and n-dimensional spaces, similar to the hidden layers 22 

in neural networks [25]. One of the major differences is that SVM work in a linear fashion, 23 
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whereas neural networks are non-linear algorithms. The strengths of both the lSVM and 1 

DeepSurv models presented here likely come from the multi-dimensional structuring of these 2 

models, improving their predictive capacity. It is important to note that while DeepSurv provided 3 

the best prediction in this study, further hyperparameter optimization of DeepSurv or parameter 4 

tuning of the other machine learning models, including lSVM, could increase their predictive 5 

power. 6 

The current study is limited by a lack of true optimization for all of the machine and deep 7 

learning models. DeepSurv was the only algorithm optimized for the current studies, whereas the 8 

other machine and deep learning algorithms were used with the “out-of-the-box” functions. This 9 

warrants a disclaimer that improvement in prediction of these algorithms can likely be made, 10 

even in the case of DeepSurv, which could undergo further hyperparameter optimization. 11 

Though machine and deep learning provide progressive leaps for clinical medicine, unlike 12 

traditional statistical methods, parameter optimization for each dataset is needed to unlock the 13 

algorithm’s complete potential.  14 
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1.5 Conclusions 1 

In the MESA cohort, we provide an examination of machine and deep learning 2 

approaches applied to survival analysis. We highlight the ability of deep neural networks to 3 

modestly increase the predictive capacity of our endpoints, including cardiovascular outcomes 4 

and death. DeepSurv has the ability to gain additional information from traditional risk factors 5 

within the model and leverage its ability to form new, non-linear connections, providing unique 6 

associations within the dataset. Ultimately, these machine and deep learning models can be 7 

implemented as risk scores, creating generalizable models that can inform clinical prognoses. 8 
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Figure Legends: 1 

Figure 1: Methodological and data considerations for the Multi-Ethnic Study of Atherosclerosis 2 

(MESA). (A) Schematic detailing the flow of information through the survival analysis pipeline. 3 

Briefly, features from 6,814 participants in the MESA cohort were selected from three major 4 

categories: traditional risk factors (Baseline Model), inflammatory biomarkers (Biomarkers), and 5 

left ventricular structure/function (Imaging). Features exhibiting multicollinearity were removed, 6 

data was standardized and imputed. Classification of endpoints (mortality and MAE) were 7 

trained (internal training/testing set) and tested (external validation) using the machine learning 8 

models COXPH, RSF, and lSVM and deep learning models nMTLR and DeepSurv. Outcomes 9 

were evaluated through the cumulative/dynamic AUCs (Time-Dependent AUC), net 10 

reclassification improvement (NRI), relative risk (RR), concordance index (CI), concordance 11 

index with inverse probability of censoring weights (IPCW), and integrated brier score (IBS). 12 

(B) Data distribution along the survival timeline. Censored participants for mortality (78.7%) and 13 

MAE (72.3%) are displayed in orange and those with outcome/death in blue. MAE = major 14 

adverse events, including all-cause mortality and cardiovascular outcomes, Time in Days = time 15 

in days to the predicted event, COXPH = Cox Proportional Hazards Regression Model, RSF = 16 

Random Survival Forest, lSVM = Linear Support Vector Machines, nMTLR = Neural Multi-17 

Task Logistic Regression, DeepSurv = Non-Linear Cox Proportional Hazards Deep Neural 18 

Network. 19 

 20 

Figure 2: Feature importance for the COXPH, RSF, lSVM, nMTLR, and DeepSurv models. 21 

Permutation importance was applied to COXPH, lSVM, nMTLR, and DeepSurv, while mean 22 

decrease Gini (RSF) was implemented for RSF. The top five (orange) and worst five (blue) 23 
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predictive features are shown for each model. MAE = major adverse events, including all-cause 1 

mortality and cardiovascular outcomes, COXPH = Cox Proportional Hazards Regression Model, 2 

RSF = Random Survival Forest, lSVM = Linear Support Vector Machines, nMTLR = Neural 3 

Multi-Task Logistic Regression, DeepSurv = Non-Linear Cox Proportional Hazards Deep Neural 4 

Network. 5 
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Feature COXPH -
MAE

nMTRL -
MAE RSF - MAE lSVM - MAE DeepSurv -

MAE
COXPH -

Mortality
nMTRL -

Mortality
RSF -

Mortality
lSVM -

Mortality
DeepSurv -
Mortality

Age 0.0330 0.0274 26.3293 0.1954 0.0373 0.0478 0.0302 27.7874435 0.235 0.0443
Gender -0.0002 0.0027 9.4771 0.0666 0.0048 0.0005 0.0031 6.55639006 0.0507 0.0054
BMI -0.0006 0.0028 1.6905 -0.0177 0.0020 -0.0021 0.001 3.56222953 -0.0116 0.0032
Education Status 0.0003 -0.0048 1.5214 0.0211 0.0018 -0.0013 -0.0042 2.08086395 0.0122 0.0012
Income Category 0.0079 -0.0004 9.3495 -0.0659 0.0004 0.0074 -0.0037 11.9580847 -0.0649 0.0065
Race/Ethnicity 0.0011 -0.0025 1.0607 -0.0340 0.0031 -0.0014 -0.0031 2.98914204 -0.0156 -0.0005
Diabetes -0.0004 -0.0008 7.3612 0.0420 -0.0005 0.0004 -0.0036 5.317218 0.033 0.0011
Albumin/Creatinine Ratio 0.0017 0.0032 19.9846 0.0234 0.0021 0.0031 0.0014 19.6553556 0.0385 0.0034
Hypertension -0.0007 -0.0078 9.2653 0.0264 -0.0048 -0.0039 -0.0013 7.67367689 0.0173 0.0011
Mean Diastolic Blood Pressure 0.0013 0.0053 4.5530 -0.0157 0.0023 -0.0013 0.0015 2.09412041 -0.0185 0.0062
Mean Systolic Blood Pressure -0.0014 -0.0034 15.8568 0.0586 -0.0010 -0.0002 -0.0023 12.9244876 0.0425 0.0042
Hyperlipidemia 0.0008 -0.0008 -0.1801 -0.0150 0.0015 0.0009 0.0055 1.86370858 -0.0491 0.0035
HDL 0.0004 -0.0026 5.6802 0.0074 -0.0004 -0.0045 0.0032 3.98910591 -0.0137 0.0022
LDL -0.0003 0.0002 1.2425 -0.0099 0.0003 0.0004 -0.0024 1.88021261 -0.0366 0.0023
Cholesterol 0.0017 -0.0024 0.3609 0.0094 -0.0002 -0.0002 -0.0002 4.56124513 0.018 0.0031
Triglycerides -0.0028 -0.0020 2.3332 0.0177 -0.0011 -0.0004 0.0017 2.0452883 0.0096 0.0014
Statin Use -0.0006 -0.0003 0.9573 -0.0052 -0.0015 -0.0005 -0.0009 1.88669502 0.0009 0.002
Smoking 0.0031 0.0021 6.2579 0.0689 0.0021 0.0032 0.0001 6.54691247 0.0645 0.0086
Smoking – Pack Years -0.0003 0.0030 14.3605 0.0219 0.0057 -0.0024 0.0002 15.8650873 0.0332 0.0024
Walking Minutes a Week 0.0022 0.0005 2.7788 -0.0060 -0.0001 -0.0008 -0.0023 3.90569267 0.0014 0.0021
Metabolic Syndrome 0.0015 -0.0032 6.4625 0.0338 -0.0034 -0.0014 -0.0015 4.35484533 0.0173 0.0021
Family History of Heart Disease 0.0004 -0.0050 -1.0019 0.0221 0.0000 -0.0019 -0.0017 -0.1404428 -0.0049 0.0002
Homocysteine 0.0002 0.0025 17.2868 0.0308 0.0032 0.0002 0.0004 18.9550095 0.0412 0.0062
Interleukin-6 (IL6) -0.0023 -0.0004 12.9540 0.0360 0.0028 0.0007 0.0002 14.6470494 0.0549 0.0017
Plasmin Antiplasmin 0.0082 -0.0013 11.4076 0.0267 0.0008 -0.0002 0.0023 13.1955998 0.0327 0.0052
Fibrinogen Antigen -0.0001 -0.0047 6.7405 0.0064 -0.0009 0 -0.0032 5.00122664 0.0004 0.0026
C Reactive Protein -0.0035 0.0015 2.3863 0.0102 0.0013 -0.001 0.0013 3.73310542 0.0086 -0.0003
D Dimer 0.0034 0.0008 13.5513 0.0191 -0.0013 0.0032 0.0025 17.5742785 0.0307 -0.0012
Factor VIII 0.0001 -0.0016 7.0988 0.0216 0.0001 0.0017 -0.0044 7.24939309 0.0116 0.0001
Left Ventricular Ejection Fraction -0.0003 -0.0058 6.8318 -0.0271 -0.0017 -0.002 -0.003 4.14990122 -0.0098 0.0024
Left Ventricular Area 0.0051 -0.0007 10.9476 0.0478 0.0006 -0.001 -0.0002 2.66629332 0.0132 0.0035
Pericardial Fat 0.0013 -0.0020 13.8316 0.0114 -0.0014 0.0002 0.0013 10.3053957 0.0048 0.0014
Coronary Artery Calcium 0.0216 0.0196 28.5456 0.0657 0.0223 0.002 -0.0005 21.2209562 0.0339 0.006
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