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Abstract 17 

Background: While numerous studies have identified factors associated with severe 18 

COVID-19 outcomes, they have yet to quantify these characteristics. Therefore, our 19 

study’s purpose is to stratify these risk factors and use them to predict outcomes. 20 

Study Design: This is a retrospective review of the CDC COVID-19 Surveillance Data. 21 

Logistic regression models calculated risk estimates for independent variables, and 22 

random forest models predicted the chance of severe outcomes. 23 

Results: Our sample of 3,798,261 patients with COVID-19 consisted mainly of females 24 

(51.9%), 10- to 69-year-olds, and White/Non-Hispanics (34.9%). Most were not 25 

healthcare workers (90.6%) and did not have preexisting medical conditions (47.1%). 26 

Age had an increased risk of severe outcomes that grew every decade of life. White 27 

patients had a decreased occurrence of severe outcomes than Non-Whites, except for 28 

Pacific Islanders with comparable mortality. The variable selection algorithm detected 29 

that three outcomes were more accurate without healthcare worker classification: 30 

mechanical ventilation/intubation, pneumonia, and ARDS Acute respiratory distress. 31 

However, providers had a decreased risk of severe outcomes overall. Also, patients 32 

with preexisting conditions demonstrated an increased risk in all outcomes. Compared 33 

to the logistic regressions, the predictive models had a higher performance (AUC>0.8). 34 

The death model had the best metrics, followed by hospitalization and ventilation. We 35 

amassed these predictive models into the Severe COVID-19 Calculator web application 36 

that estimates the probability of severe outcomes. 37 

Conclusions: Several patient social and medical demographics recorded by the CDC 38 

significantly affect severe COVID-19 outcomes suggesting a multifactorial influence. To 39 
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account for these variables, a generated Severe Covid-19 Calculator can accurately 40 

predict the chance of severe outcomes in citizens that may contract or have COVID-19. 41 

  42 
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Introduction 43 

As the U.S. transitions into the vaccine era of the coronavirus disease-19 (COVID-19) 44 

pandemic, health care providers and administrators have to plan allocation of COVID-19 45 

treatments and reconsider reopening elective hospital services and surgeries. 46 

Therefore, hospitalists and surgeons must balance a patient’s risk of nontreatment 47 

against potential hospital-acquired COVID-19 infection as hospitals return to pre-48 

pandemic volumes [1–3]. Simultaneously, the government charged hospital 49 

administrators and local health care leaders of each state, tribe, and territory to develop 50 

their vaccine distribution plan [4–6]. Since the U.S. Food and Drug Administration (FDA) 51 

granted emergency use authorization of the Moderna and Pfizer-BioNTech COVID 52 

vaccines in late December 2020, the U.S. continues to trail other countries in the 53 

proportion of citizens that received at least one vaccine dose [4–9].  54 

 55 

While investigators and journalists have yet to agree, most experts have suggested that 56 

technical challenges, lack of federal involvement, and strict adherence to state and CDC 57 

priority groups have contributed to the vaccine distribution and administration gap – on 58 

January 6th, this gap was as large as 3.7 million to 603,000. [10] Others attribute this 59 

vaccination gap to confusing and ambiguous state guidance or poor distribution 60 

infrastructure [11–13]. Part of this problem stems from a long-standing ethical question 61 

in medicine: How do we distribute a limited treatment equitably and fairly? The diverse 62 

array of COVID-19 symptoms complicates this question as severe outcomes, such as 63 

hospitalization and death, occur more often in select subgroups, while others are 64 

asymptomatic. Researchers also discovered that not unlike our healthcare system pre-65 
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pandemic, the social determinants of health amplified these deadly outcomes [14]. A 66 

report from the Proceedings of the National Academy of Sciences (PNAS) of the United 67 

States of America demonstrated that Black and Latino Americans would be 68 

disproportionally left out the CDC Phase 1b recommendation of persons ≥75 years of 69 

age as minority groups die younger than their white counterparts [15,16]. 70 

 71 

While numerous studies have qualified risk factors associated with severe COVID-19 72 

outcomes, the current literature has yet to quantify these objective characteristics. 73 

Therefore, the purpose of this study is to determine which citizens would most likely 74 

develop severe COVID-19 if they contracted the disease. Similar to how the Model for 75 

End-Stage Liver Disease (MELD) aids the distribution of livers, our goal is to create an 76 

objective and multifactorial algorithm that can stratify patients at risk for severe COVID-77 

19 outcomes [17]. To fulfill these goals, we conducted a retrospective review of the 78 

CDC COVID-19 Case Surveillance Restricted Access Detailed Data to enumerate 79 

severe COVID-19 outcomes and create a prediction algorithm with machine learning 80 

that stratifies a citizen’s risk for severe COVID-19 outcomes.  81 

 82 

Methods 83 

Data Collection 84 

To determine the rates of severe COVID-19 outcomes, we obtained the CDC COVID-19 85 

Case Surveillance Restricted Access Detailed Data after completion and approval 86 

through the Registration Information and Data Use Restrictions Agreement (RIDURA) 87 

and restricted data access process [18]. The six severe COVID-19 outcomes recorded 88 
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in the CDC data include hospitalization, intensive care unit (ICU) admission, mechanical 89 

ventilation or intubation, pneumonia, acute respiratory distress syndrome (ARDS), and 90 

death. 91 

 92 

To ensure our sample best represents the COVID-19 population, we only included 93 

patients with laboratory-confirmed COVID-19, thereby excluding suspected cases. 94 

Additionally, we chose a study cut-off date of December 15th, 2020, which corresponds 95 

to the first day of vaccination in the U.S., to eliminate any potential vaccination effects. 96 

Therefore, only positive cases with a date of first specimen collection before December 97 

15th, 2020, were included in our study. We also converted the CDC state and region 98 

data into the Census Bureau Regions, which reclassifies each patient’s residence into 99 

one of the five regions: The Northeastern, Midwestern, Southern, Western, and U.S. 100 

Territory Regions to account for potential geographic confounding [19]. 101 

 102 

The information presented in the database reflects the CDC Human Infection with 2019 103 

Novel Coronavirus Person Under Investigation (PUI) and Case Report Forms at an 104 

individual patient level. The variable “pre-existing medical conditions” also reflects this 105 

reporting form and is defined as having any of the following conditions: chronic lung 106 

disease, diabetes mellitus, cardiovascular disease, chronic renal disease, chronic liver 107 

disease, immunocompromised condition, neurologic/neurodevelopmental/intellectual 108 

disability, other current diseases, current pregnancy status, and current or former 109 

smoker [18]. 110 

 111 
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The CDC Surveillance Review and Response Group (SRRG), as part of the CDC’s 112 

COVID-19 Emergency Response, maintains the COVID-19 Case Surveillance 113 

Restricted Access Detailed Dataset. While the CDC approves database access and 114 

study proposals through evaluation of the RIDURA. Institutional review board approval 115 

was not required as this study involves data that is a collection of publicly available data 116 

with information recorded by the SRRG in such a manner that the subjects cannot be 117 

identified directly or through identifiers linked to the subjects (45 Code of Federal 118 

Regulations (CFR) 46.101(b)). The CDC does not take responsibility for the scientific 119 

validity or accuracy of methodology, results, statistical analyses, or conclusions 120 

presented. 121 

 122 

Determining Risk Factors 123 

Baseline demographic variables and clinical outcomes were presented with frequencies 124 

and percentages. The following outcomes were considered: hospitalization, ICU 125 

admission, mechanical ventilation/intubation, pneumonia, acute respiratory distress, and 126 

mortality. For each outcome, an initial multivariable logistic regression model fit all 127 

baseline demographics and symptoms as covariates. Forest plots showing odds ratios 128 

and 95% confidence intervals for each covariate in the model were presented, and 129 

model fit metrics including Akaike information criterion (AIC), Bayesian information 130 

criterion (BIC), Area under the curve (AUC), and pseudo-R2 measures were shown. 131 

The Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression was 132 

then used as a variable selection technique to assess if any variables were 133 

uninformative to predicting each outcome. The LASSO algorithm’s penalty 134 
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hyperparameter was tuned using 5-fold cross-validation to determine its optimal value 135 

based on the area under the receiver operating characteristic curve (AUC). Variables 136 

that were shrunk to zero in the LASSO models were dropped, and another logistic 137 

regression model was fit for each outcome with the variables kept by the LASSO model. 138 

Model fit metrics were then presented for these models to determine if dropping 139 

uninformative variables improved model fit. Statistical significance was defined as a p-140 

value < 0.05.  141 

 142 

Predictive Model Creation 143 

For each outcome, a random forest model was fit with baseline demographics, including 144 

age, sex, race/ethnicity, region, healthcare worker, pre-existing medical conditions, and 145 

month of positive COVID-19 test as predictive features.  146 

 147 

Before modeling, the data was first split into training and testing sets. Due to the large 148 

sample size, we took a random sample of 3% of the data for computational speed. We 149 

then took a random sample of 80% of that data to train the model and used the 150 

remaining 20% of the data as the test set. Data pre-processing included creating 151 

indicator variables for all non-numeric categorical values of the predictor variables and 152 

using indicators of the month of the positive test date for accounting treatment 153 

improvement over time. Since fewer patients experienced each outcome than those 154 

who didn’t, we upsampled each model’s outcome to balance the classes.  155 

 156 
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The random forest algorithm’s hyperparameters were tuned using 3-fold cross-157 

validation on the training set, with the number of trees contained in the ensemble fixed 158 

at N = 1000. The hyperparameters correspond to the number of predictors randomly 159 

sampled at each split when creating the tree models (m_try) and the minimum number 160 

of data points in a node required for the node to be split further (min_n). The optimal 161 

hyperparameters were chosen based on which values maximized the area under the 162 

receiver operating characteristic curve (AUC). The AUC metric measures fit from 0.5 163 

(no better than a coin flip) to 1.0 (perfect prediction).  164 

 165 

Final models were fit on the entire training set and evaluated on the test set using the 166 

following metrics to assess performance: accuracy, precision, recall, and AUC. 167 

Accuracy is the number of correct predictions divided by the total number of predictions 168 

or the percentage of predictions from the correct model. Precision is the number of true 169 

positives divided by the sum of the true and false positives, demonstrating how precise 170 

a model is out of those it predicted positive. The recall is the number of true positives 171 

divided by the true positives and false negatives, accounting for the percentage of 172 

relevant results correctly classified by the model. 173 

 174 

The random forest models’ relative predictive performance was compared to the logistic 175 

models’ performance in risk factor estimation. Feature importance plots for the random 176 

forest models were produced to show which variables were most important to making 177 

the predictions for each outcome. All analyses were performed in R Version 4.0.3 [20]. 178 

 179 
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Results 180 

The total sample contained 3,798,261 patients with laboratory-confirmed cases of 181 

COVID-19 between January 1st, 2020, and December 15th, 2020. Table1 presents the 182 

sample demographics. Our sample of patients with COVID-19 were primarily women 183 

between the ages of 10 - 69, white/non-Hispanic, and who lived in the Northeast CDC 184 

Census Regions. While most patients’ status regarding healthcare work or pre-existing 185 

medical conditions was missing or unknown, most subjects with COVID-19 were not 186 

healthcare workers and did not have any pre-existing medical conditions (Table 1).  187 

 188 

Table 1. Demographics of patients with COVID-19. 189 

Variable Label Patients with COVID-

19 

(N = 3,798,261) 

Sex   

 Male 1,795,160 (47.6%) 

 Female 1,954,915 (51.9%) 

 Other or Unknown 18,709 (0.50%) 

Age Group   

 0 – 9 Years 141,591 (3.70%) 

 10 – 19 Years 379,438 (10.0%) 

 20 – 29 Years 711,770 (18.8%) 

 30 – 39 Years 611,965 (16.2%) 
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 40 – 49 Years 562,714 (14.9%) 

 50 – 59 Years 555,063 (14.7%) 

 60 – 69 Years 403,679 (10.7%) 

 70 – 79 Years 231,412 (6.1%) 

 80+ Years 185,817 (4.9%) 

 Unknown 14,812 (0.39%) 

Race/Ethnicity   

 White, Non-Hispanic 1,324,461 (34.87%) 

 

American Indian/Alaska Native, Non-

Hispanic 15,431 (0.41%) 

 Asian, Non-Hispanic 67,567 (1.78%) 

 Black, Non-Hispanic 288,992 (7.61%) 

 Hispanic/Latino 489,383 (12.88%) 

 Multiple/Other, Non-Hispanic 111,481 (3.10%) 

 

Native Hawaiian/Other Pacific Islander, 

Non-Hispanic 11,060 (0.29%) 

 Unknown 1,489,886 (39.23%) 

CDC Census 

Region   

 Northeast 1,325,064 (34.89%) 

 Midwest 745,419 (19.63%) 

 South 1,050,551 (27.7%) 

 Pacific 669,141 (17.62%) 
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 U.S. Territory 7,282 (0.19%) 

 Unknown 804 (0.02%) 

Health Care Worker   

 No 1,255,055 (33.04%) 

 Yes 130,446 (3.43%) 

 Unknown 2,412,760 (63.52%) 

Pre-existing Medical 

Conditions   

 No 711,859 (18.74%) 

 Yes 633,792 (16.69%) 

 Unknown 2,452,610 (64.57%) 

 190 

Table 2 presents the six severe COVID-19 outcomes labeled in the CDC dataset. We 191 

found that providers hospitalized 13.52% of patients with COVID-19, admitted 4.98% of 192 

patients to the ICU, and intubated or mechanically ventilated 3.02% of patients. 193 

Additionally, 6.36% of patients with COVID-19 eventually developed pneumonia, 1.78% 194 

developed ARDS, and 4.87% eventually died.  195 

 196 

Table 2. Severe COVID-19 outcomes. 197 

Outcome Label Patients with COVID-19 

(N = 3,798,261) 

Missing Data 

Hospitalization 53.5% 

No 1,526,273 (86.5%)  
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Yes 238,638 (13.5%)  

ICU Admission 79.3% 

No 747,280 (95.0%)  

Yes 39,152 (5.0%)  

Mechanical Ventilation/Intubation   84.1% 

No 585,626 (97.0%)  

Yes 18,244 (3.0%)  

Pneumonia 79.1% 

No 741,769 (93.6%)  

Yes 50,373 (6.4%)  

Acute Respiratory Distress   79.2% 

No 777,033 (98.2%)  

Yes 14,054 (1.8%)  

Death 54.6% 

No 1,638,857 (95.1%)  

Yes 83,810 (4.9%)  

 198 

To understand the risks of severe COVID-19 outcomes in special populations, we 199 

performed a univariate subgroup analysis on healthcare providers and subjects with 200 

pre-existing conditions. Table 3 demonstrates that patients with pre-existing medical 201 

conditions had a higher risk of developing all six severe COVID-19 outcomes than the 202 

opposing group. Likewise, this table also illustrates that healthcare workers have a 203 

significantly decreased risk of obtaining all six severe COVID-19 outcomes than non-204 
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healthcare workers. To determine the risk of severe outcomes by age, we plotted the 205 

age groups by the proportion of patients with severe COVID-19 in Fig 1. This figure 206 

demonstrates that all six outcomes increase in older subjects, while death and 207 

hospitalizations escalate at a steeper rate.  208 

 209 

Table 3. Severe COVID-19 outcomes in special populations. 210 

Outcomes Medical Conditions  

(N = 633,792) 

Healthcare 

Workers  

(N = 130,446) 

Overall 

(N = 3,798,261) 

Hospitalized 125,449 (23.9%) * 4,191 (4.2%) * 238,638 (13.5%) 

ICU Admission 25,656 (8.9%) * 774 (1.6%) * 39,152 (5.0%) 

Mechanical Ventilation 12,964 (5.3%) * 301 (0.7%) * 18,244 (3.0%) 

Pneumonia 34,935 (10.9%) * 2,020 (4.1%) * 50,373 (6.4%) 

Acute Respiratory Distress 10,397 (3.3%) * 485 (1.0%) * 14,054 (1.8%) 

Death 46,449 (10.3%) * 233 (0.2%) * 83,810 (4.9%) 

* Proportions are different compared to overall population (p < 0.001) 211 

 212 

Fig 1. Risk of severe COVID-19 by age group 213 

 214 

We accounted for potential confounding factors in a multivariate logistic regression 215 

model for each of the six severe outcomes controlling for the same seven independent 216 

variables of sex, age group, race/ethnicity, healthcare worker status, U.S. Census 217 

region, pre-existing medical condition status, and month of positive COVID-19 test 218 
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(Figure 2). We compared the logistic regression model using all variables to the LASSO 219 

selected models and presented the best model metrics to evaluate predictive capacity.  220 

 221 

Fig 2. Logistic regression models for severe COVID-19 outcomes. Forest plot for 222 

each severe COVID-19 outcome. a) Hospitalization – all variables, b) ICU admission – 223 

all variables, c) Mechanical ventilation/intubation – LASSO selected variables, d) 224 

Pneumonia – LASSO selected variables, e) Acute respiratory distress – LASSO 225 

selected variables, and f) Mortality – all variables. Male is the reference group for sex. 226 

Age 20-29 Years is the reference group for age. Non-Hispanic White is the reference 227 

group for race/ethnicity. Northeast is the reference group for the region. The reference 228 

group for the month of the positive test is January-March.  229 

 230 

Figure 2a illustrates the results of the logistic regression model created for the 231 

hospitalization outcome. The LASSO algorithm did not drop any of the variables, and 232 

therefore, we did not create its associated model (S1 Table). When controlling for all 233 

other covariates, we found the three largest effect sizes were in patients over 80, 234 

between the ages of 70-79, and with pre-existing medical conditions. The forest plot 235 

shows that patients over 80 and 70-79 years old had seventeen- and fourteen-times 236 

higher odds of being hospitalized than those with ages 20-29, respectively. Patients with 237 

a pre-existing medical condition had a three-fold increased risk of being hospitalized.  238 

 239 

Additionally, the LASSO algorithm did not drop any variables while creating the ICU 240 

admission logistic regression model (Fig 2b, S2 Table). Patients ≥ 80 and between the 241 
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ages of 70-79 had a seventeen- and twenty-times increased odds of admission to the 242 

ICU, respectively. American Indian/Alaska Native, non-Hispanic patients had a four 243 

times greater risk of ICU admission likelihood than white, non-Hispanic patients. 244 

Patients with a pre-existing medical condition had a four times greater risk of ICU 245 

admission.  246 

 247 

In the outcome of mechanical ventilation or intubation, the LASSO algorithm dropped 248 

the variable healthcare worker status (Fig 2c). However, compared to the logistic 249 

regression model with all variables, the model fit metrics were nearly equivalent, 250 

suggesting that the LASSO model did not significantly improve the model fit for 251 

mechanical ventilation (S1 Fig, S3 Table). Fig 2c illustrates the forest plot for the 252 

LASSO selected variables for the mechanical ventilation logistic regression models. The 253 

characteristics with the most significant effect sizes include patients 70-79 years old, 60-254 

69 years old, and those with pre-existing medical conditions. Patients in their seventh 255 

and eighth decades of life had a 17- and 12-fold increase risk of being intubated or put 256 

on mechanical ventilation, respectively. Subjects with pre-existing medical conditions 257 

had a threefold increase of being intubated or ventilated.  258 

 259 

The LASSO model for pneumonia also dropped healthcare workers as a variable to 260 

include; however, compared to the all-variables model, the metrics were relatively 261 

equivalent, suggesting that dropping the variable did not improve model fit (S2 Fig S4 262 

Table). Fig 2d presents the forest plot for the LASSO selected logistic regression model. 263 

Patients over the age of 80 and between the ages of 70-79 had the most significant 264 
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effect sizes with an increased odds of developing pneumonia by 17- and 12-fold, 265 

respectively. Patients with pre-existing medical conditions had the third-highest effect 266 

size with an OR of 2.8. 267 

 268 

The LASSO algorithm for ARDS also dropped healthcare workers from its model; 269 

however, compared to the logistic regression with all variables, the variables’ effect 270 

sizes and p-values were similar (S3 Fig, S5 Table). The forest plot in Fig 2e presents 271 

the ORs of the logistic regression for the LASSO selected variables. Patients over 80 272 

and in their seventh decade of life had a fifteen- and eleven-times increased risk of 273 

developing ARDS compared to the 20–29-year age group, respectively. After age 274 

groups, the third-largest effect size demonstrates that patients with pre-existing medical 275 

conditions have increased ARDS odds by three.  276 

 277 

The LASSO model for mortality did not drop any variables (S6 Table). We present the 278 

mortality regression models with all variables in Fig 2f. Patients older than 80 years old 279 

and between the ages of 70-79 had the two largest effect sizes. Patients over 80 and in 280 

the seventh decade of life have 356- and 122-times increased risk of mortality, 281 

respectively, compared to patients aged 20-29. Pre-existing medical conditions had the 282 

third-highest effect size with a fourfold increased risk of mortality.  283 

 284 

Next, we created a prediction model using the same independent variables to calculate 285 

a patient’s risk of severe COVID-19 outcomes if they were to contract the disease. We 286 

present the hyperparameter tuning results from 3-fold cross-validation on the training 287 
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sets in S7 Table. For each outcome, an initial grid search across a broader range of 288 

values led to an optimum number of variables available for splitting at each tree node, 289 

or mtry value of 1 and a minimum number of data points required for the node to be split 290 

further, or min_n value of 18 leading to the best performance. The grid search was then 291 

repeated on a narrower range of hyperparameter values to produce the ROC curves for 292 

each outcome. 293 

 294 

The ROC curves for the final random forest models fit the entire training set using the 295 

optimal hyperparameter values for each outcome shown in Figure 3. All of the models 296 

had a high AUC > 0.8. The model with death as the outcome had the highest 297 

performance (AUC = 0.953), followed by hospitalization (AUC = 0.892) and mechanical 298 

ventilation (AUC = 0.882). 299 

 300 

Fig 3. ROC curves of random forest models. Abbreviation = ROC, receiver operating 301 

characteristic curve 302 

 303 

Table 4 presents the performance metrics for both the random forest and LASSO 304 

models for each outcome. Relative to the LASSO models, the random forest models 305 

had a higher performance in overall accuracy for each outcome. The models for 306 

predicting mechanical ventilation and deaths had higher accuracy than predicting 307 

pneumonia and ARDS. The random forest models for hospitalizations and death had a 308 

strong recall, with a low number of false-negative predictions. Overall, we found that the 309 

random forest models had a low precision with a high number of false positives. We 310 
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presented the relative feature importance for each model in Fig 4 to rank the patient 311 

characteristics that had the most influence on each outcome. Age groups and presence 312 

of a pre-existing condition were the top features for each outcome. Northeast region 313 

was an important feature in predicting hospitalization or ventilation. This pattern draws 314 

upon high hospitalization and ventilation rates in the Northeast during the first COVID-315 

19 wave in the spring. The youngest age group is likely a solid indicator for the model of 316 

a lack of the outcome occurring. 317 

 318 

Table 4. Performance metrics. 319 

Outcome Metric Random Forest 

Logistic 

Regression 

Hospitalization Accuracy 0.818 0.808 

Precision 0.412 0.396 

Recall 0.804 0.804 

 AUC 0.889 0.886 

ICU Admission Accuracy 0.786 0.777 

Precision 0.165 0.169 

Recall 0.741 0.817 

 AUC 0.85 0.861 

Mechanical Ventilation Accuracy 0.863 0.814 

Precision 0.12 0.106 

Recall 0.663 0.821 

 AUC 0.877 0.904 
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Pneumonia Accuracy 0.738 0.756 

Precision 0.175 0.186 

Recall 0.746 0.743 

 AUC 0.811 0.824 

Acute Respiratory Distress Accuracy 0.781 0.768 

Precision 0.053 0.055 

 Recall 0.713 0.787 

 AUC 0.809 0.853 

Death Accuracy 0.879 0.872 

Precision 0.275 0.267 

 Recall 0.896 0.914 

AUC 0.952 0.953 

AUC, Area under the receiver operating characteristic (ROC) curve. 320 

 321 

Fig 4. Figure importance by the outcome. Abbreviation = HC Worker, Healthcare 322 

Worker. 323 

 324 

We aggregated the predictive models into the Severe COVID-19 Calculator web 325 

application and published it online (https://methodsconsultants-326 

apps.shinyapps.io/guthrie-cdc-covid-prediction/). The web application accounts for all 327 

predictive variables and provides a predicted estimate of the probability of severe 328 

COVID-19 outcomes (Fig 5). 329 

 330 
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Fig 5. Example of the Severe COVID-19 Calculator. 331 

 332 

Discussion 333 

Among 3,798,261 patients with COVID-19 from the pre-vaccine era in the United 334 

States, older patients had an increased risk of all six severe outcomes. The odds ratios 335 

are significantly higher in the latter decades of life as some outcomes, such as death, 336 

have a 300-fold increase. We discovered that White subjects had a decreased 337 

occurrence of all severe outcomes than Non-Whites, except Native Hawaiian/Other 338 

Pacific Islander patients who had similar mortality risks. The models also demonstrated 339 

that the rates of severe COVID-19 effects were unequal between all five of the CDC 340 

Census Regions. In both the LASSO selected and all-variable models, we found that 341 

healthcare workers had a decreased risk of severe COVID-19 outcomes. Additionally, 342 

we discovered the patients with pre-existing health conditions all had an increased 343 

chance of severe outcomes. When we adjusted for the diagnosis time, we uncovered 344 

that severe COVID-19 outcomes decreased by month as the pandemic progressed.  345 

 346 

Overall, our results confirm the current COVID-19 literature on severe outcomes. We 347 

found that age has the most significant effect measure compared to our other 348 

covariables. However, instead of using threshold ages, our age groups provide more 349 

details on risk stratification in special populations such as school children. A 350 

correspondence published in the New England Journal of Medicine examining child and 351 

teacher morbidity in Sweden without school closure also confirmed the low incidence of 352 

severe COVID-19 among schoolchildren and preschool-age children during the 353 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.12.21255201doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.12.21255201
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22  

pandemic [21]. While most researchers confirmed the effects of chronic diseases on 354 

severe COVID-19, our results demonstrate that pre-existing conditions have the second 355 

most significant influence on outcomes after age [22]. These chronic conditions like 356 

obesity and diabetes demonstrate an increased clinical severity in disease 357 

presentations, while infrastructure shutdown delayed treatments in conditions such as 358 

mental health disorders, chronic kidney disease, and cancer [22]. Additionally, our 359 

results also demonstrate that race/ethnicity has a significant influence on severe 360 

outcomes. A report from PNAS presented a disproportionate mortality rate in the Black 361 

and Latino populations compared to White patients [16]. However, we discovered that 362 

all Non-White populations, in general, had higher rates of severe outcomes. 363 

Additionally, we found that while healthcare workers consisted of 3% of our sample, 364 

they had a decreased risk of severe COVID-19 outcomes or had no influence on their 365 

outcomes in this pre-vaccine era. Our results differ from the current idea that healthcare 366 

workers mirror the general population rates of severe outcomes [23]. Because a few 367 

models excluded the variable healthcare workers, we suspect that the decreased 368 

occurrence of severe outcomes reflects a younger and healthier subgroup compared to 369 

the general population. A systematic review of COVID-19 in healthcare workers 370 

worldwide mirrors our results as providers over 70 or males had a higher risk of death 371 

[23].  372 

 373 

We present the first report on the CDC COVID-19 case surveillance system. This 374 

restricted database presents individual-level data from autonomous reporting entities 375 

from all U.S. states and territories. The large sample size and standardized data 376 
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dictionary allowed us to perform multiple logistic regression models to control each 377 

predictive variable. Therefore, we are confident in our adjusted risk calculations as they 378 

already account for any potential interactions. To the best of our knowledge, this is the 379 

first study to stratify by date of COVID-19 diagnosis to account for any treatment biases 380 

as COVID-19 management has changed over time. Additionally, as states have 381 

different COVID-19 protocols and strains occupy different regions of the U.S., our study 382 

is the first to account for these factors by accounting for geographical regions.  383 

 384 

Our web app for our Severe COVID-19 Calculator allows anyone to estimate the risk of 385 

the severe outcome if they have or if they were to contract COVID-19. As mentioned 386 

throughout our report, all of the predictive variables discussed significantly influence 387 

severe COVID-19 outcomes. Thereby, our calculator can provide accurate numeric 388 

predictions using the subject’s objective data without arbitrary thresholds or scoring 389 

systems. For example, Fig 5 illustrates the user interface and outcome estimates for a 390 

hypothetical patient. 391 

 392 

While our study accounted for socioeconomic factors such as sex, race, and region, the 393 

available data limited our ability to account for other important social determinants of 394 

health, such as income and occupation, which may affect severe COVID-19 outcomes 395 

and vaccine distribution plans [24]. Additionally, to preserve patient anonymity, we could 396 

not distinguish between types of pre-existing conditions. This limitation also questions 397 

the possibility of the number of pre-existing conditions correlating with disease severity. 398 

If so, there may be a benefit in making this distinction in future predictive tools. 399 
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Like all prediction modeling projects, the exclusion of potentially essential variables 400 

could reduce our models’ performance. Also, within the available data, a few predictive 401 

variables, such as race/ethnicity, healthcare worker status, pre-existing medical 402 

conditions, contained unknown variables, which could have affected our calculator’s 403 

accuracy. However, the high AUC value and performance metrics for all of our 404 

outcomes suggest that our predictive models are significantly better than random 405 

chance.  406 

 407 

As vaccine distribution continues to roll out in phases and trends of severe COVID-19 408 

outcomes change, we will need to continuously recalculate our results to determine the 409 

patients at the highest risk for severe COVID-19 outcomes. With the continuously 410 

updated CDC data and our publicly available web app, we can recreate our Severe 411 

COVID-19 Calculator to reflect the most up-to-date data. For example, in a new data 412 

release, we may find a race/ethnicity, sex, or age group with a disproportionate chance 413 

of severe COVID-19 outcomes in the vaccination era, and we would like to account for 414 

that in future calculator iterations. Additionally, using some of the variables already 415 

available in the CDC report, we plan to aggregate data sources to account for variables 416 

of interest, such as estimated patient income.  417 

 418 

Since the start of the pandemic, researchers have published dozens of studies that 419 

identified risk factors for severe outcomes. However, the literature lacked any detail on 420 

each risk factor’s relative importance or adjusted for potential covariable interactions. 421 

Our study performed these adjustments and found that predicting severe COVID-19 422 
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outcomes is a multifactorial problem and quantified that variables such as age, pre-423 

existing health conditions, and race/ethnicity are more important than others like health 424 

care worker status.  425 

 426 

While we provide an objective tool to assess a subject’s risk of developing severe 427 

COVID-19 outcomes, we have no comment on current vaccine distribution plans. The 428 

Severe COVID-19 Calculator is an objective tool that mirrors other models already used 429 

in medicine to help providers and researchers stratify patients in resource scarcity, such 430 

as hospital beds, ventilators, masks, or vaccines. This study’s sole purpose was to 431 

identify independent risk factors and quantify these effects to understand the apparent 432 

outcome disparities between different patient groups. After adjusting for covariates, 433 

patients that are older, male, Non-White, non-healthcare workers, or possess at least 434 

one pre-existing condition have an increased risk of severe COVID-19 outcomes. 435 

Additionally, we found that our Severe COVID-19 Calculator accurately predicts the 436 

chance of hospitalization, ICU hospitalization, mechanical ventilation/intubation, 437 

pneumonia, ARDS, and death in citizens that may contract or have COVID-19. 438 

  439 
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Supporting information 530 

S1 Fig. Forest plot for mechanical ventilation logistic regression model with all 531 

variables. Male is the reference group for sex. Age 20-29 Years is the reference group 532 

for age. Non-Hispanic White is the reference group for race/ethnicity. Northeast is the 533 

reference group for the region. The reference group for the month of the positive test is 534 

Jan-March. 535 

 536 

S2 Fig. Forest plot for pneumonia logistic regression model with all variables. 537 

Male is the reference group for sex. Age 20-29 Years is the reference group for age. 538 

Non-Hispanic White is the reference group for race/ethnicity. Northeast is the reference 539 

group for the region. The reference group for the month of the positive test is Jan-540 

March. 541 

 542 

S3 Fig. Forest plot for acute respiratory distress logistic regression model – all 543 

variables. Male is the reference group for sex. Age 20-29 Years is the reference group 544 

for age. Non-Hispanic White is the reference group for race/ethnicity. Northeast is the 545 

reference group for the region. The reference group for the month of the positive test is 546 

Jan-March. 547 

 548 

S1 Table. Model fit statistics for hospitalization logistic regression model. 549 

Metric Full Model with All Variables 

AIC 921,131.2 
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BIC 921,589.4 

AUC 0.121 

McFadden’s R2 0.341 

Nagelkerke’s R2 0.433 

Abbreviations = AIC, Akaike information criterion; BIC, Bayesian information criterion; 550 

AUC; area under the curve. 551 

 552 

S2 Table. Model fit statistics for ICU admission logistic regression models. 553 

Metric Full Model with All Variables 

AIC 237,255.7 

BIC 237,684.0 

AUC 0.139 

McFadden’s R2 0.238 

Nagelkerke’s R2 0.275 

Abbreviations = AIC, Akaike information criterion; BIC, Bayesian information criterion; 554 

AUC; area under the curve. 555 

 556 

S3 Table. Model fit statistics for mechanical ventilation logistic regression 557 

models. 558 

Metric 

Full Model with All 

Variables 

Model with LASSO Selected 

Variables  

AIC 112,975.3 118,124.7 

BIC 113,393.8 118,520.6 
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AUC 0.103 0.118 

McFadden’s R2 0.310 0.278 

Nagelkerke’s R2 0.339 0.306 

Abbreviations = AIC, Akaike information criterion; BIC, Bayesian information criterion; 559 

AUC; area under the curve; LASSO, least absolute shrinkage and selection operator. 560 

 561 

S4 Table. Model fit statistics for pneumonia logistic regression models.  562 

Metric Full Model with All Variables 

Model with LASSO Selected 

Variables  

AIC 294,942.5 295,800.1 

BIC 295,371.1 296,205.5 

AUC 0.167 0.169 

McFadden’s R2 0.214 0.212 

Nagelkerke’s R2 0.255 0.253 

Abbreviations = AIC, Akaike information criterion; BIC, Bayesian information criterion; 563 

AUC; area under the curve; LASSO, least absolute shrinkage and selection operator. 564 

 565 

S5 Table. Model fit statistics for acute respiratory distress logistic regression 566 

models.  567 

Metric Full Model with All Variables 

Model with LASSO Selected 

Variables  

AIC 115,744.8 116,143.1 

BIC 116,173.3 116,548.5 
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AUC 0.164 0.167 

McFadden’s R2 0.180 0.178 

Nagelkerke’s R2 0.194 0.191 

Abbreviations = AIC, Akaike information criterion; BIC, Bayesian information criterion; 568 

AUC; area under the curve; LASSO, least absolute shrinkage and selection operator. 569 

 570 

S6 Table. Model fit statistics for mortality logistic regression model. 571 

Metric Full Model with All Variables 

AIC 346,641.7 

BIC 347,098.9 

AUC 0.048 

McFadden’s R2 0.483 

Nagelkerke’s R2 0.531 

Abbreviations = AIC, Akaike information criterion; BIC, Bayesian information criterion; 572 

AUC; area under the curve; LASSO, least absolute shrinkage and selection operator. 573 

 574 

S7 Table. Hyperparameter tuning results.  575 

Outcome mtry min_n  

Hospitalization 3 17 

ICU Admission 3 17 

Mechanical Ventilation 3 17 

Pneumonia 1 15 

Acute Respiratory Distress 1 20 
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Death 3 17 

Abbreviations = mtry, number of variables randomly sampled as candidates at each 576 

split; min_n, the minimum number of data points in a node that is required for the node 577 

to be split further. 578 
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