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Abstract: 

While the majority of children infected with severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) display mild or no symptoms, rare individuals develop severe disease 

presenting with multisystem inflammatory syndrome (MIS-C). The reason for variable clinical 

manifestations is not understood.  Here, we carried out TCR sequencing and conducted 

comparative analyses of TCR repertoires between children with severe (n=12) or mild (n=8) 

COVID-19. We compared these repertoires with unexposed individuals (samples collected 

pre-COVID-19 pandemic: n=8) and with the Adaptive Biotechnologies MIRA dataset, which 

includes over 135,000 high-confidence SARS-CoV-2-specific TCRs. We show that the 

repertoires of severely ill children are characterised by the expansion of TRBV11-2 chains with 

high junctional and CDR3 diversity. Moreover, the CDR3 sequences of TRBV11-2 clones shift 

away from SARS-CoV-2 specific T cell clones, resulting in distorted TCR repertoires. In 

conclusion, our study reports that CDR3-independent expansion of TRBV11-2+ cells, lacking 

SARS-CoV-2 specificity, defines severity of disease in children.  

Introduction 

Coronavirus disease 2019, COVID-19, caused by the novel severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) is associated with high morbidity and mortality in older 

individuals, and in those with additional comorbidities. In contrast, children represent a small 

proportion of COVID-19, comprising less than 2% of cases worldwide 1,2. While most children 

with COVID-19 are asymptomatic or present with mild disease, rare individuals develop 

severe disease presenting with multisystem hyperinflammatory syndrome (MIS-C) including 

persistent fever, severe abdominal pain, diarrhoea, myocardial dysfunction, cardiogenic 

shock, rash and neurological disorders 3,4. This disparity in symptoms is not understood but 

could represent a difference in the T cell response to SARS-CoV-2.  

Whilst it is clear that the adaptive immune response plays an important part in clearance of 

SARS-CoV-2 infection5–7, the exact role of T cells in the resolution or potential exacerbation of 

SARS-CoV-2 infection is not known8. A large number of unexposed individuals have SARS-CoV-

2 reactive CD4+ memory T cells and these memory T cells have been shown to exhibit cross-

reactivity against seasonal “common cold” coronavirus strains 8,9 10 11. In addition, studies to 

date have shown that T cell responses develop in almost all patients with confirmed SARS-
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CoV-2 infection 12 and remain detectable for several months following infection 8. In adult 

COVID-19 patients CD8+ T Cell activation status evolves with disease severity in a non-

monotonous way 13: effector-like cell clusters expand in mild disease and fall during severe 

disease with the highest level of T-cell polyfunctionality in moderately ill patients. In children 

activation and proliferation level of CX3CR1+ CD8+ T-cells is much higher in multisystem 

inflammatory syndrome compared to mild COVID-19 14. These cells can interact with 

fraktalkine-expressing activated endothelium and patrol vasculature, thus this interaction 

might explain the cardiovascular involvement in children with multisystem inflammatory 

syndrome. However, whether specific T-cell clones contribute to the hyperinflammatory state 

or if there is a difference in the T-cell repertoire composition, structure and antigen-

specificity-profile of children with mild or severe COVID-19 is still unknown. 

T cell receptor sequencing allows the detection and quantification of specific T cell clones and 

enables us to capture unique patient TCR repertoires.  We hypothesized that comparing the 

TCR repertoire in children with mild or severe COVID-19 and contrasting with either 

unexposed individuals or COVID specific data sets, could reveal TCR repertoire features that 

could help understand features associated with severe disease in children.  

 

Results and Discussion 

Cohort characteristics (Table 1) 

The cohort included children at Great Ormond street Hospital, London, UK with PCR 

confirmed SARS-CoV-2 defined as having either mild disease (asymptomatic, cough or fever 

(n=8)) or multisystem hyperinflammatory syndrome (MIS-C (n=12)).  

Of the patients tested (n=14), 86% were SARS-CoV-2 antibody positive. Half of the patients 

(50%, n=10) had pre-existing co-morbidities: 86% (n=7) of the mild disease patients and 25% 

(n=3) of severe disease patients. The majority of the mild disease patients (n=6, 75%) and 25% 

(n=3) of severe disease patients were lymphopenic at the point of sampling. The detailed 

patient information is shown in Table 1.  

A control cohort included DNA samples taken from children who had no exposure to SARS-

CoV-2 and were collected before the COVID-19 pandemic (n = 8). 
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This study was done in accordance with The Multi Centre Research Ethics Committee in Wales 

guidelines MREC Wales reference 06/Q0508/16.  

TCR sequencing and repertoire analysis was performed using bulk DNA extracted from blood 

samples (Figure 1a). TCR repertoire metrics can be found in Supplementary Table 1.  

The repertoires of severely ill children are characterized by the expansion of TRBV11-2.  

We performed principal component analysis (PCA) of TRBV gene usage to determine their 

global distributions between patient groups with different symptom severity.  Patient cohorts 

showed separation along the first principal component in children with severe disease 

clustering clearly apart from the children with no or mild symptoms. (Figure 1b).  

In order to better characterise TRBV gene expression skewing in children with severe disease, 

we performed differential gene expression analysis of TRBV genes between patient cohorts.  

This revealed that the expansion of TRBV11-2 chain is mostly responsible for the different 

TRBV gene usage pattern of children with severe disease (Figure 1c). The fraction of TRBV11-

2 in a repertoire did not show correlation with the patient’s age, the number of days since 

COVID-19 diagnosis or the antibody status (Supplementary Figure 1).  

TRBV11-2 has high junctional diversity in all patient cohorts 

To interrogate whether the expansion of TRBV11-2 in the severely ill children cohort is 

associated with a specific CDR3b motif of J genes usage, we analysed the junctional diversity 

of TRBV11-2 chains. We compared the frequencies of rearranged J genes in children with mild 

symptoms to children with severe disease. We did not observe a difference between the 

cohorts indicating that the expansion of TRBV11-2 in children with severe COVID-19 was not 

driven by clones harbouring specific TRBV-TRBJ junctions, and that TRBV11-2 had high 

junctional diversity in all of our patient cohorts (Figure 1d). The alignment of expanded 

TRBV11-2 CDR3 sequences from severely ill patients did not reveal the presence of an 

enriched CDR3 sequence motif, thus we concluded that the expansion of this V-gene was 

unrelated to the sequence of the CDR3 peptide binding motif (Figure 1e). This finding is in line 

with two recent studies suggesting that a superantigen-like sequence motif highly similar to 

staphylococcal enterotoxin B (SEB) near the S1/S2 cleavage site of the SARS-CoV-2 spike (S) 

protein can interact with the CDR2 region of TRBV11-2 and may be able to form a ternary 
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complex with MHCII 15,16. A superantigen-like interaction bypasses the antigen-specific CDR3 

region and involves only the constant CDR2 region, thus all T-cells expressing a given TRBV 

gene expand regardless of their peptide-MHC specificity. This can lead to the domination of 

the TCR repertoire by the superantigen-interacting V-gene, while the virus-specific T-cells fail 

to expand and respond to the infection 17. In addition, some of the TCRs harbouring the 

superantigen-interacting V-gene can be autoreactive causing severe autoimmune reaction in 

the patient. To this date, the presence of autoantibodies in adults suffering from severe 

COVID-19 disease has been reported 18,19, but little is known about the involvement of 

autoreactive T-cells in the development of severe disease in adults or multisystem 

inflammatory syndrome in children. It is possible to hypothesize that if TRBV11-2 TCRs 

interact with the SARS-CoV-2 spike (S) protein consistent with a superantigen event, this can 

trigger the expansion and activation of autoreactive TCR clones causing life-threatening 

complications.  

The expansion of TRBV11-2 in severely ill children does not alter the TCR repertoire’s overall 

architecture 

We assessed the effect of severe COVID-19 infection on the children’s TCR repertoires by 

computing global T-cell metrics. We found that children infected with SARS-CoV-2 had a lower 

number of TCR clones than healthy ones, but there was no correlation between the number 

of clones and symptom severity within the disease cohort indicating that the expansion of 

TRBV11-2 did not influence the repertoire’s richness (Figure 2a). The children’s age, number 

of days after COVID-19 diagnosis or presence of co-morbidities did not affect the repertoire’s 

richness either (Supplementary figure 2a-c). All repertoires were diverse as shown by the high 

values of Shannon evenness index (Figure 2b).  This finding might seem unexpected taken 

into account that the TRBV11-2 gene was significantly expanded in children with severe 

COVID-19, however, as shown above (Figure 1d-e), the expanded TRBV11-2 chains had high 

CDR3 sequence diversity, thus they contributed to the repertoire’s overall diversity and 

richness This supports the hypothesis that TRBV11-2 chains might engage in a superantigen-

binding interaction with the Sars-Cov2 S-protein regardless of their CDR3 sequence.  15,16.  

In order to gain insight into the architecture of patient repertoires we applied a network 

analysis approach (Figure 2c). This method has been used before to decipher the overall 
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connectivity structure of antibody and TCR repertoires 20–22. Upon antigen exposure specific 

T-cells expand, thus they are more likely to be captured when blood samples are collected, 

and they are easier to detect by TCR sequencing. Homologous TCRs with highly similar CDR3 

sequences often recognise the same antigens 23,24, resulting in highly connected TCR 

sequence similarity networks, with the most similar sequences forming clusters. We analysed 

connectivity levels of our patient TCR networks by comparing their graph metrics. Usually, 

high number of nodes and edges in a network, large clusters and high number of connections 

per node indicate highly connected networks with the presence of many similar TCR 

sequences. We found that patients in the severely ill group had slightly higher level of network 

connectivity indicated by the higher number of nodes. The number of network edges, the 

mean degree or the size of the largest cluster did not change significantly, thus the level of 

increase in network connectivity was small. This increase might be explained by the presence 

of more similar clones that arise in response to the more severe disease and prolonged 

antigen exposure. Overall, the patient repertoires were robust, SARS-CoV-2 infection and the 

expansion of TRBV11-2 chains in the severely ill cohort did not cause a major change in the 

immune networks’ overall structure (Figure 2d). 

TRBV11-2 clone sequences of severely ill children shift away from the COVID-19-specific 

clones 

By mapping the clones to the publicly available Adaptive MIRA dataset (described in methods) 

we can identify TCRs with potential to be SARS-Cov2-specific 25,26. This database contains 

more than 130,000 unique TCRβ sequences with known specificities to SARS-CoV-2 antigens 

from a high number of donors with diverse HLA-backgrounds (MIRA clones). We found that 

both class I and class II MIRA clones were ubiquitously expressed in our patient repertoires, 

and the number of identified MIRA clones in a repertoire was directly proportional to the total 

number of clones (Supplementary Figure 3). To assess the overall level of similarity to MIRA 

clones in a repertoire we defined the distance to MIRA measure for each clone (Figure 3a). 

Briefly, a distance matrix was constructed between all clones and all MIRA clones in a 

repertoire, and the distance to the closest MIRA clone was identified. Naturally, MIRA clones 

will have a distance to MIRA score of 0.  
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In order to interrogate if the properties of TRBV11-2 clones change in the repertoires of 

severely ill children compared to children with mild symptoms, we plotted their distance to 

MIRA distributions. In children with mild symptoms, the majority of TRBV11-2 clones have a 

CDR3 sequence 3-4 amino acids different from a class I MIRA clone (Figure 3b). The 

distribution shifts to higher distance to MIRA values in severely ill children, the maximum 

density being around distance to MIRA 4-5 accompanied by a longer tail in the region on high 

distance to MIRA values. We fitted the curves with Gaussian probability distribution functions 

and achieved significantly better fit when symptom severity was taken into account, 

indicating that there is a significant difference in the distance to MIRA distributions of 

TRBV11-2 clones in children with mild and severe disease (Figure 3b). All other TRBV chains 

had the same distance to class I MIRA distribution in mild and severe disease (Supplementary 

Figure 4).  

TCRs recognizing the same antigen often have highly similar CDR3 sequences 24,26, therefore, 

TRBV11-2 clones shifting away from the Sars-Cov2-specific MIRA hits in severely ill children 

suggests that these clones might be less effective at binding SARS-Cov-2 antigens. In severely 

ill children, TRBV11-2 chain is highly expanded with no CDR3 motif expansion or specific J-

gene usage and the CDR3 sequences of these expanded TRBV11-2 clones shift away from the 

SARS-CoV-2-specific MIRA hits. This suggests that the expansion of TRBV11-2 clones might be 

independent of the classical CDR3-peptide-MHC-mediated antigen recognition. As SARS-CoV-

2 Spike protein has been suggested to have a superantigen structure15,16 and considering our 

findings, it is likely that the observed TCR repertoire skewing is superantigen-induced which 

results in the repertoire being dominated by the expression of non-specific TCRs that are 

unable to respond to the infection and instead contributing to the hyperinflammatory state.  

There are some striking clinical similarities between MIS-C and toxic shock syndrome (TSS), 

caused by bacterial superantigens 27,28. Superantigens simultaneously bind major 

histocompatibility complex (MHC) class II (MHCII) molecules on antigen presenting cells and 

T cell receptors (TCRs) of both CD4+ and CD8+ T cells 29. They are able to circumvent TCR 

specificity by binding to specific TCR β-chains in a complementary-determining region 3 

(CDR3)-independent manner, resulting in broad T cell activation. In patients with MIS-C, 

skewing of specific TCR β Variable (V) genes, with diverse CDR3 and Joining (J) usage, has been 
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reported to correlate with disease severity, consistent with superantigen triggered immune 

activation 16. 

The distance distribution of TRBV11-2 clones to class II MIRA hits showed a slight, but not 

significant shift to higher values (Figure 3c). Although the shift in the median values is evident, 

the high variation in the data didn’t allow us to accurately estimate the distribution curves, 

thus our model did not determine significant difference between mild and severe patients. 

The distance to class II MIRA distributions of all other TRBV genes did not show any significant 

difference between our patient cohorts either (Supplementary Figure 5). The high variation 

in the data can be explained by the low number of class II MIRA hits in our repertoires. Class 

II MIRA clones accounted for about 0.4% of all clones in a repertoire (Supplementary Figure 

3c-d), whereas about 5% of each repertoire was a class I MIRA clone (Supplementary Figure 

3a-b). This discrepancy can be explained by the fact that the majority of the Adaptive MIRA 

database consists of class I hits. The MIRA database contains several data releases with most 

of them reporting TCRs that interact with antigens in the context of MHC class I.  

In summary, the T cell repertoire of severely ill children infected with SARS-CoV-2 is distorted,  

by TRBV11-2+ T cell clonal expansion and activation, which could be super antigen induced 

causing an aberrant immune response and leading to clinical manifestations reminiscent of 

toxic shock syndrome 27,28. We report the use of two metrics to define the severity of disease 

in children infected with SARS-CoV-2: 1) CDR3-independent expansion of TRBV11-2+ T cells, 

2) a lack of SARS-CoV-2 specificity in TRBV11-2+ T cells, measured by distance to Sars-Cov2-

specific MIRA clones. These two metrics can serve as biomarkers for early detection of 

multisystem inflammatory syndrome in children (MIS-C) guiding physicians to start precision 

immunotherapeutics that can prevent the development of severe, life-threatening 

complications and lasting disability in children.  
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Methods 

TCR sequencing 

Next generation sequencing of the T-cell receptor (TCR) was carried out as previously 

described 30. Briefly, DNA was extracted from patient blood samples using DNeasy Blood & 

Tissue kit (Qiagen), quantified using a Qubit Fluorometer (ThermoFisher Scientific) and 

amplified by multiplex-PCR of rearranged variable, diverse, joining (VDJ) segments of the TCR 

genes, which encode the hypervariable CDR3 domain. The products were size selected using 

Pronex beads (Promega) and subsequently sequenced on a MiSeq (Illumina).  

Analysis of the raw TCR sequences was performed using MiXCR31. A built-in library of 

reference germline V, D, J, and C gene loci from the ImMunoGeneTics (IMGT) database 

(imgt.org) is employed by MiXCR. The IMGT nomenclature for TCR gene segments is used 

throughout the study. 

MIRA data set 

Adaptive Biotechnologies have created a MIRA dataset of T cell clones, which includes over 

135,000 high-confidence SARS-CoV-2-specific TCRs (MIRA clones) at the time of this study 
25,26. The MIRA assay is a high-throughput multiplex tool that maps TCRs binding to SARS-Cov2 

virus epitopes by exposing PBMCs to Sars-Cov2 minigenes or peptide pools, sorting T-cells 

based on surface expression of activation markers and sequencing the TCRs expressed by 

these activated T-cells. The dataset is a collection of matching antigen-TCR data from both 

Sars-Cov2-convalescent subjects and unexposed individuals. The antigens include Sars-Cov2 

epitopes presented by a diverse set of MHC class I as well as MHC class II alleles, thus 

capturing response by CD8+ and CD4+ T-cells 

Data analysis and visualization 

All visualization and standard statistical analysis were conducted using R version 4.0.3 and 

Python 3.9.1. Plots were generated using the ggplot2 R package 32. Correlation was quantified 

by Spearman’s rank correlation coefficient (ρ). Paired analyses were performed by non-

parametric paired Wilcoxon test. All tests were performed two-sided with a nominal 
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significance threshold of P < 0.05. In all cases of multiple comparisons, false discovery rate 

(FDR) correction was performed using the Benjamini-Hochberg procedure. Illustrations were 

prepared with the BioRender package. 

TCR repertoire analysis 

TRBV gene usage, TRBV-TRBJ junction frequencies and repertoire global metrics were 

calculated for each sample. When samples from multiple time points were available for a 

patient, the mean values were used for downstream analysis. Differential gene expression 

analysis of TRBV genes was conducted using the EdgeR package 33. 

The normalized repertoire richness (R) was calculated as follows: 

 

Where n is the number of clonotypes, and r is the number of reads in a repertoire.  

The Shannon evenness index (J’) was calculated as in (Attaf et al, Front Immunol, 2018):

 

Where pi is the frequency of the ith clonotype in a population of n clonotypes. Jʹ is undefined 

for monoclonal samples. Low Jʹ values approaching 0 indicate minimal evenness such as after 

clonal expansion of antigen-specific clones. The maximum value of J is 1, when all clonotypes 

have equal frequencies, thus the population is perfectly even. 

Network analysis 

First, multiple samples from the same patient collected at different time points were 

combined. Next, to adjust for different sequencing coverage and clonal depth among patients 

we randomly down sampled each repertoire to 1,000 clones. Next, we calculated pairwise 

amino acid sequence similarity of these 1,000 clones by constructing Levenshtein distance 

(LD) matrices of their CDR3 sequences using the stringdist package 34. Networks were 

generated using the igraph package35.  Each node in the TCR similarity network represents a 
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unique amino acid clone, and edges between nodes are constructed by connecting nodes that 

differ by no more than 2 amino acids (LD1-2) in their CDR3 sequences. The final similarity 

network contains only nodes that make at least one connection to another node in the 

network. Clusters were defined as groups of interconnected nodes. Classic graph analysis 

metrics  36, such as the number of nodes, edges, node degree and cluster sizes were calculated 

using the igraph package as well. The random repertoire down sampling, network 

construction and calculation of network metrics were repeated 10 times for each patient and 

the mean values were used for the downstream analysis. 

Distance to MIRA analysis 

First, samples from the same patients taken at different time points were combined, and 

MIRA clones in the repertoires were found by mapping the CDR3 sequences to the Adaptive 

MIRA database 25,26. Next,  Levenshtein distance matrices (LD) were constructed between all 

clones and all MIRA clones in a repertoire using the stringdist package 34. The distance to MIRA 

value was defined as the shortest distance a MIRA clone. Gene-wise distance to MIRA 

distributions were analysed for those TRBV genes that occupied at least 1% of mean 

expressed repertoire in each patient cohort. These distributions were fitted with Gaussian 

probability density functions and the difference between patient cohorts was assessed by 

comparing a model fitting all symptom groups together to a model taking into account the 

differences between symptom groups. The difference between the two models was 

determined with ANOVA analysis (as described in 37), with all p-values corrected for multiple 

hypothesis testing using Benjamini-Hochberg adjustment. 
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Figure Legends 

Figure 1: TRBV11-2 is expanded in the repertoire of severely ill children a) Overview of study 

design b) Principal component analysis (PCA) of differential TRBV usage in severely ill children 

(n=12) children with mild symptoms (n=9), and pre-COVID-19 children (n=8). Values in 

brackets show the percentage of variation explained by each principal component) 

Frequencies of TRBV genes in the patient cohorts. Bars indicate mean + SEM. Insert: TRBV11-

2 usage in patient cohorts. Differential gene expression analysis of TRBV genes was conducted 

using the EdgeR package. TRBV11-2 is expanded in severely ill children compared to children 

with mild symptom (p-val < 0.0001) d) Differential usage of J genes rearranged with TRBV11-

2. Bars indicate mean + SEM. TRBV11-2 rearrangement frequencies were analysed using the 

EdgeR package e) CDR3 diversity of TRBV11-2 in children with mild and severe disease 

displayed as positional weight matrix. CDR3 sequences containing 13 amino acids are shown 

as examples.  

Figure 2: The expansion of TRBV11-2 in severely ill children doesn’t alter the TCR 

repertoire’s overall architecture a-b) TCR repertoire metrics of patients. Significance 

determined by unpaired Wilcoxon test between each pediatric group, with adjustment for 

multiple comparisons using Benjamini-Hochberg correction, indicated by: * p<0.05, ** 

p<0.01, and *** p<0.001. Lack of notation for specified comparisons indicates no statistical 

significance. c) Overview of sequence similarity network analysis:  Each repertoire was 

downsampled to 1,000 clones. Pairwise amino acid sequence similarity of these 1,000 clones 

was calculated by constructing Levenshtein distance (LD) matrices of their CDR3 sequences. 

Each node in the TCR similarity network represents a unique amino acid clone, and edges 

between nodes are constructed by connecting nodes that differ by no more than 2 amino 

acids (LD1-2) in their CDR3 sequences. Classic graph metrics, such as node and edge number, 

node degree and the size of the largest cluster were calculated. The random down sampling 

and network construction were repeated 10 times and the mean value of the network metrics 

was used for the downstream analysis c) TCR sequence similarity network metrics of patient 

cohorts. Significance determined by unpaired Wilcoxon test between each paediatric group, 

with adjustment for multiple comparisons using Benjamini-Hochberg correction, indicated by: 

* p<0.05, ** p<0.01, and *** p<0.001. Lack of notation for specified comparisons indicates 

no statistical significance. 
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Figure 3: Distance to MIRA analysis a) Overview of distance to MIRA analysis: A distance 

matrix was constructed between all clones in a repertoire and those that mapped to the 

Adaptive MIRA database, and the distance to the closest MIRA clone was identified. b) 

Distance to class I MIRA distribution of TRBV11-2 clones in the repertoires of children with 

mild or severe COVID-19.c) Distance to class II MIRA distribution of TRBV11-2 clones in the 

repertoires of children with mild or severe COVID-19. 

Distance to class I and class II MIRA distributions were fitted with Gaussian probability density 

functions and the difference between patient cohorts was assessed by comparing a model 

fitting all symptom groups together to a model taking into account the differences between 

symptom groups.  The difference between the two models was determined with ANOVA 

analysis, with all p-values corrected for multiple hypothesis testing using Benjamini-Hochberg 

adjustment. Solid curves show the probability distribution functions determined by fitting the 

patient cohorts separately, shaded areas show 75% confidence intervals. P-values denote the 

statistical assessment of the models fitting all patient cohorts together versus fitting each 

patient cohort separately. See the distance to MIRA distributions of clones with TRBV gene 

other than TRBV11-2 in Supplementary Figures 4 and 5.  
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Figure 1 
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Figure 2 
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Figure 3 
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