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Abstract 
 

We analyzed the number of cumulative positive cases of COVID-19 as a 
function of time in countries around the World. We tracked the increase in 
cases from the onset of the pandemic in each region for up to 150 days. 
We found that in 81 out of 146 regions the trajectory was described with a 
power-law function for up to 30 days. We also detected scale-free 
properties in the majority of sub-regions in Australia, Canada, China, and 
the United States (US). We developed an allometric model that was 
capable of fitting the initial phase of the pandemic and was the best 
predictor for the propagation of the illness for up to 100 days. We then 
determined that the power-law COVID-19 exponent correlated with 
measurements of human mobility. The COVID-19 exponent correlated 
with the magnitude of air passengers per country. This correlation 
persisted when we analyzed the number of air passengers per US states, 
an even per US metropolitan areas. Furthermore, the COVID-19 exponent 
correlated with the number of vehicle miles travelled in the US. Together, 
air and vehicular travel explained 70 % of the variability of the COVID-19 
exponent. Taken together, our results suggest that the scale-free 
propagation of the virus is present at multiple geographical scales and is 
correlated with human mobility. We conclude that models of disease 
transmission should integrate scale-free dynamics as part of the modeling 
strategy and not only as an emergent phenomenological property.  

 

Introduction  
From the beginning of the COVID-19 pandemic, there is an increasing number of 
studies that suggest that the number of positive cases of COVID-19 have power-law 
dynamics (1-9). If indeed, the propagation of the illness is governed by scale-free 
processes and is not only an emergent dynamics from complex interactions that 
assume exponential growth then, modeling strategies might have to be revised. 
However, these studies have focused on a few countries or regions. Thus, it is 
important to understand how prevalent power-law propagation is around the World. It is 
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also important to understand if a power-law spread of the illness measured at a national 
level is reflected in its sub-regions. Furthermore, since policies on restricting the spread 
of the virus have included reducing mobility, it is necessary to find how that affects the 
power-law properties of the propagation of COVID-19 (10).  

Traditional modeling approaches to illness propagations, such as COVID-19, 
assume an exponential growth (11-16). However, increasing evidence shows that 
human dynamics and clustering has power-law properties (17-20). In fact, recent work 
has shown that multiple measurements of human activity follow allometric properties 
such as 𝑤𝑤 ∝ 𝑁𝑁𝛼𝛼, where N is the number of individuals and w a metric of activity (21). 
Since most of the world population now lives in urban areas 
(https://www.un.org/development/desa/en/news/population/2018-revision-of-world-
urbanization-prospects.html) it is important to consider how urban human dynamics 
affects the spread of illnesses. Furthermore, since asymptomatic transmission is a 
prevalent feature of SARS-Cov-2 (22) then the virus will propagate in a population 
following normal human dynamics, as opposed to illnesses in which the probability of 
infections is highest when individuals are symptomatic (23). Therefore, the spread of 
COVID-19 might be influenced by allometric properties observed in urban areas.  

In this project, our aim was to understand the spread of the virus at the beginning 
of the pandemic. For this, we analyzed the total positive cases of COVID-19 in all 
countries and regions in the World. We also analyzed sub-regional behavior in four 
countries in three continents. Furthermore, we studied the spread of the virus in the 
United States (US) at the national, state, and urban levels. We found that the majority of 
countries followed a power-law in the cumulative number of positive cases of COVID-19 
for at least 30 days. The majority of the sub-regions of the countries we studied, 
including 33 of the 50 US states, followed power-law dynamics. We built an allometric 
growth model to fit not only the power-law spread, but the initial days of the pandemic 
and tested it by extrapolating its values up to 100 days. We show that the allometric 
growth model is better than simple power-law or exponential fts. We end the study by 
showing that the value of the COVID-19 power-law exponent is correlated with air and 
vehicle travel. Overall, our work shows that power-law behavior of the spread of COVID-
19 is observed across scales, it is related to human mobility, and that allometric models 
are a good strategy to increase the predictive power of computational studies.  

Results 
 
Power-law propagation of COVID-19 at the global and regional scales 
We studied the number of cumulative test positive cases of COVID-19 (𝐼𝐼) in 187 
countries and territories from 22 January 2020 to 23 August 2020. We wanted to obtain 
a date that acted as reference for a period of sustained increase. For this purpose, for 
each region, we started our analysis after 𝐼𝐼 ≥ (𝐼𝐼𝑇𝑇ℎ = 100). We did this to avoid plateaus 
and sudden changes in cases reported in the first days of the pandemic. Then, we 
calculated the ratio between 21 days (𝑅𝑅 = 𝐼𝐼(𝑡𝑡 + 21)/𝐼𝐼(𝑡𝑡)) and we selected the day (𝐼𝐼𝑜𝑜) 
when 𝑅𝑅2 ≥ 2 for the first time. As a result, we obtained a list of 146 regions. The other 
41 regions included countries with small populations or regions that had a spread of the 
pandemic slower than 𝑅𝑅2 or than when they reached that threshold did not have enough 
data points for analysis (at least 35 days). We then fitted the cumulative cases per day 
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to a power-law, 𝐼𝐼 = 𝑡𝑡𝛼𝛼 + 𝑏𝑏, where 𝛼𝛼 is the COVID-19 exponent; or an exponential 
function, 𝐼𝐼 = 𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡/𝜏𝜏) + 𝑑𝑑, where τ is the time constant. In order to compare the fits, 
we fitted all the traces over a range that started 𝐹𝐹𝑠𝑠 = 5 days after 𝐼𝐼𝑜𝑜 and lasted 30 days 
(𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), except for Australia (𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟=15) and China (𝐹𝐹𝑠𝑠= 3 and 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 10) because of 
their early strict social mobility policies. The mean value of cumulative cases on 𝐼𝐼𝑜𝑜 was 
124.31  ± 5.44 SEM cases. We calculated the root mean square error (RMSE) and the 
r-square values for each fit. We determined the goodness of fit by comparing the RMSE 
of the power-law and exponential fits. The fit with the lowest RMSE had to have an r-
square larger than 0.97. This analysis showed 81regions were better fit by a power-law, 
31 were better explained by an exponential fit, and 34 by neither (see Supplementary 
Materials). We plotted the trajectories of all regions fitted by a power-law for 100 days 
after their respective 𝐼𝐼𝑜𝑜 (107 of the 146 areas had enough data points). This showed 
that the propagation followed a similar trajectory (Figure 1, the Supplementary Materials 
contain the table form data). The average value of the COVID-19 exponent was 
𝛼𝛼𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊��������� =1.50 ± 0.08 SEM with an inter-quantile range of 0.99. The propagation of 
COVID-19 seems to follow a different trajectory than previous pandemics. For example, 
we analyzed the total positive cases during the Ebola epidemic in West Africa influenza 
deaths during the 1918 pandemic in Philadelphia and found that it follows an 
exponential fit (24) (Supplementary Materials Figure S1). Thus, our analysis suggested 
that most of the regions in the world experienced a power-law increase in the 
propagation of COVID-19.  

We were interested in understanding if the propagation of COVID-19 followed 
power-law dynamics in sub-regions within countries. For this, we chose Australia, 
Canada, China, and the Unites States (US). In the case of Australia, our algorithm 
determined that the propagation of COVID-19 followed an exponential function. Never-
the-less, we studied the propagation of the pandemic in all Australian states. In order to 
detect the onset of activity in a smaller population we used an 𝐼𝐼𝑇𝑇ℎ = 20 (Figure 2a). Our 
regional analysis shows that 5 of the 8 Australian states had a power-law propagation 
with a mean of 𝛼𝛼𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1.47 ± 0.26 𝑆𝑆𝑆𝑆𝑆𝑆. The states that followed power-law 
dynamics included most of the Australian population. However, the most populous 
state, New South Wales, followed exponential growth, which dominated the national 
level dynamics. Another aspect that did not allow the power-law dynamics be reflected 
nationally was that the start of the epidemic in each state (day of first reported case) 
took place over 18 days. Thus, while the propagation of the illness appeared 
exponential at the national level the majority of the country showed power-law behavior.  

The same analysis in Canada showed that 8 out of 14 provinces followed power-
law propagation with an average of 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 = 1.84 ± 0.32 𝑆𝑆𝑆𝑆𝑆𝑆. In this case, the national 
propagation of COVID-19 also followed a power-law increase with a value of 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
2.57 ± 0.08 𝐶𝐶𝐶𝐶95. In this case, the national result was influenced by the faster 
propagation of COVID-19 in more populous provinces, with British Columbia 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 =
3.20, 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 3.27, and 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 2.05 (Figure 2b). In China, 19 of the 30 provinces 
were also described with a power-law. The average propagation of 𝛼𝛼𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1.50 ±
 0.10 𝑆𝑆𝑆𝑆𝑆𝑆 was again slower than for the entire country (𝛼𝛼𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 2.14 ±  0.17 𝐶𝐶𝐶𝐶95), 
which was dominated by Hubei, where the virus originated (𝛼𝛼𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 2.14 ±  0.17 𝐶𝐶𝐶𝐶95) 
(Figure 2c). Finally, for the US, we used 𝐼𝐼𝑇𝑇ℎ = 10, 𝐹𝐹𝑠𝑠 = 5, and 𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 20. This analysis 
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showed that 33 of 50 states had power-law dynamics (𝛼𝛼𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  2.37 ±  0.12 𝑆𝑆𝑆𝑆𝑆𝑆). 
Again, the analysis for the entire country shows a faster propagation (𝛼𝛼𝑈𝑈𝑈𝑈 = 3.98 ±
 0.21 𝐶𝐶𝐶𝐶95) (Figure 3).  Overall, our regional analysis shows that COVID-19 propagated 
following power-law dynamics in the early stages of the pandemic.  
 
An allometric model predicts the spread of cases 
The propagation of COVID-19 seems to have been driven by asymptomatic infected 
individuals. This is different from other illnesses in which patients are infectious when 
showing symptoms. Thus, the modeling approach should be based on the behavior of 
healthy populations. Increasing information shows that the metrics of metropolitan 
community activity have a power-law, or allometric, scaling with the size of the 
population (21). We assumed that human activity, for example travel, shows such 
behavior and thus the activity of the infected population could be described by: 

𝑊𝑊 = 𝑎𝑎𝐼𝐼𝑏𝑏 1 
As postulated by others  (see eq 4.65 and 4.67 in (25)), the state of resources used by a 
population can be described by: 

𝑊𝑊 = 𝑅𝑅 𝐼𝐼 + 𝐸𝐸 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

2 

Re-arranging and renaming variables we obtained: 
   

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝐼𝐼(𝑡𝑡)𝑏𝑏 − 𝛽𝛽𝛽𝛽(𝑡𝑡) 3 

Where 𝛾𝛾is the classical rate of infections and, in our simplified model, 𝛽𝛽 is the 
number of recovered or diseased. This model is equivalent to one in which the rate of 
infection depends on time: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝐼𝐼(𝑡𝑡)𝑏𝑏−1𝐼𝐼(𝑡𝑡) − 𝛽𝛽𝛽𝛽(𝑡𝑡) = 𝛾𝛾∗(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 𝛽𝛽𝛽𝛽(𝑡𝑡) 4 

 In the Methods section we show that the solution to Equation 3 has a temporal 
regime in which the model has power-law behavior and the relation of b with 𝛼𝛼 is: 

𝛼𝛼 =
1

1 − 𝑏𝑏
5 

With 𝑏𝑏 < 1. 
We fitted the solution of our allometric model using the same parameters used to 

fit the power-law function. We used the value of 𝛼𝛼 that we calculated before and allowed 
the fitting algorithm to get values for 𝛾𝛾and 𝛽𝛽. While fitting the data from the start of the 
spread was not our objective, we compared the values predicted by the fits to the 
number of cases at 𝐼𝐼0. This shows that in the allometric fit deviated -52 %, the power-
law -73 % and the exponential 181 % (see examples in Figure 4a and 4b).  These 
results suggested that the allometric model could better fit the behavior of cases in the 
initial days of the pandemic. In order to compare the predictive power of the power-law, 
exponential, and allometric fits we calculated the percentage difference between the 
models and real data for up to 100 days after the last day used for the fit (only 20 
regions had enough data points for this analysis). This analysis shows that the 
allometric fit is the best model to predict the propagation of COVID-19 (Figure 4a, right). 
The same analysis for US states also shows that the allometric model provides reliable 
predictions of the evolution of the spread (Figure 4b). Overall, our allometric model is a 
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parsimonious framework to model the initial spread of the pandemic and provides 
strong predictive power.  
 
Human travel is correlated with propagation of COVID-19 from countries to cities 
Lockdown measures enacted to reduce the spread of COVID-19 included the reduction 
of human mobility. In this context, we wanted to understand how travel affects the value 
of 𝛼𝛼. As such, we analyzed the relationship between the number of air passengers per 
country against the value of 𝛼𝛼.  We found that the magnitude (Log10) of the number of 
passengers strongly correlated to the value of 𝛼𝛼, with 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 0.71,𝑝𝑝 ≪ 0.05 (Figure 
5a). We repeated this analysis for the number of air passengers in the 33 US states that 
were described with a power-law. Here again we found a strong correlation, 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑈𝑈𝑈𝑈 =
0.66,𝑝𝑝 ≪ 0.05 (Figure 5b). We also analyzed the countries and US states that were 
better described by an exponential fit. In this case, we again found a significant 
correlation between the value of the calculated time constant and the magnitude of air 
travel (Supplementary Figure S2). This suggested that the processes represented by a 
time constant could be also part of a slower power-law process. Furthermore, we 
analyzed the spread of COVID-19 in 30 metropolitan areas that corresponded to the 
largest airports by number of passengers in the US. From these, 23 metropolitan 
regions serviced by those airports showed a power-law increase and there was a 
correlation coefficient of 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.53,𝑝𝑝 = 0.01 (Figure 5c). Together, our analysis 
suggests a strong effect of air travel magnitude in the power-law propagation of COVID-
19.  

The previous analysis suggest that air travel affects the dynamics of the 
propagation of the virus. However, this could be due to long-distance movement and not 
directly related to air travel. In order to compare the propagation of the virus to other 
forms of travel we studied vehicle miles traveled in the US. We obtained the data for 
urban, suburban, and rural travel per state. Our results show that there is no correlation 
between the value of 𝛼𝛼 per state against the corresponding average urban miles 
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑈𝑈𝑈𝑈
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 =  −0.21,𝑝𝑝 = 0.23) and suburban miles travelled (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑈𝑈𝑈𝑈

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  0.16,𝑝𝑝 = 0.38, 
Figures 5d and 5e). However, there is a positive correlation with rural miles traveled 
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑈𝑈𝑈𝑈
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  0.43, 𝑝𝑝 = 0.01, Figure 5f). There was no correlation between the number of 

air passengers per state and any of the three measurements of miles traveled per state 
(although the urban miles were almost significant, see Supplementary Materials), 
suggesting that the two modes of transport contribute independently to the propagation 
of the virus. Finally, we constructed linear models for all the combinations of air 
passenger and miles traveled by state against their respective value of 𝛼𝛼. This showed 
that air passengers accounted for 43 % of the observed variance of 𝛼𝛼 but when 
combined with the three measurements of miles traveled by vehicle the model accounts 
for 70 % of the variance observed in the value of 𝛼𝛼 (Figure 6).  

 

Discussion 
The power-law propagation of COVID-19 was reported recent in the pandemic (9, 26). 
In our current work, we found that the total positive cases of COVID -19 infection follows 
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a power-law increase in the majority of the regions of the World as well as at the 
regional level in Australia, Canada, China, and the US.  

The emergence of power-law propagation of the virus could be due to different 
time constants of the propagation that together appear as a power-law or due to the 
effect of lockdown measures (10). However, we showed that power-law behavior can be 
observed in sub-regions of geographically large countries (Australia and Canada) or 
with big populations (China and US). We went further to show that metropolitan regions 
served by the busiest airports also showed power-law dynamics. This multi-scale 
property suggests that the propagation of the virus is following scale-free human 
dynamics properties (27). 

The power-law infection dynamics could also be comparable to the 
experimentally observed power-law dispersal of bank note trajectories (27)] which was 
used as a proxy for human travel on all geographical length scales. Other previous work 
(28, 29) showed that the spread of SARS 2003 can be reproduced by a model that 
considers nearly the entire civil aviation network; however, this model could only 
describe global trends but not local spatial scales. Other work has found an association 
between mobility patterns and COVID-19 transmission in the US (30). Their analysis 
showed that mobility patterns were strongly correlated with decreased COVID-19 case 
growth rates for the most affected counties in the US.  

Our analysis confirms that the power-law dynamics of COVID-19 is correlated to 
human dynamics. In fact, 𝛼𝛼 is correlated to air travel passengers per country. In the US, 
𝛼𝛼 is also correlated to air passengers per state and metropolitan area. Furthermore, 𝛼𝛼 is 
correlated with some types of vehicle travel. Our simplified allometric model was able to 
predict the evolution of the illness several weeks in advance. These observations let us 
to conclude that current models of disease transmission should integrate power-law 
dynamics as part of the modeling strategy and not only as an emergent 
phenomenological property.  

Methods 
Data 
The data for the number of cases of COVID-19 across the World was obtained from the 
Github repository of the Johns Hopkins Center for Systems Science and Engineering 
(https://github.com/CSSEGISandData/COVID-
19/tree/master/csse_covid_19_data/csse_covid_19_time_series). The data file 
contained information for sub-regions in Australia, Canada, and China (31).  

The data for US states (us-states.csv) and counties (us-counties.csv) were 
obtained from the New York Times database (https://github.com/nytimes/covid-19-data).  

The data for World air travel was obtained from the World Bank 
(https://data.worldbank.org/indicator/IS.AIR.PSGR). We used the data reported for 
2019. The data for Norway and Sweden was obtained from www.statista.com 
(https://www.statista.com/statistics/716952/number-of-passengers-at-airports-in-norway/ 
and https://www.statista.com/statistics/797084/monthly-number-of-passengers-at-
airports-in-sweden/).  

The data for the number of air travel passengers for the US was obtained from 
the 2019 airport ranking by the Bureau of Transportation Statistics 
(https://cms7.bts.dot.gov/airport-rankings-2019). From the location of each airport we 
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computed the total number of passengers for each state. In the case of New York, we 
incorporated the numbers of La Guardia (located in New Jersey).  

To calculate the spread of COVID-19 in the metropolitan areas served by major 
airports we used the US county database. We created custom software that extracted 
the number of cases for the counties that corresponded to a given metropolitan area. 
The cumulative number of COVID-19 in each metropolitan area was fitted as in all the 
other cases.  

The data on number of vehicles miles traveled for each US state in urban, 
suburban, and rural areas was also obtained from the Bureau of Transportation 
statistics that corresponded to 2017 (https://www.bts.gov/statistical-
products/surveys/vehicle-miles-traveled-and-vehicle-trips-state). 

The data on the 1918 pandemic in Philadelphia and the Ebola pandemic in West 
Africa were obtained from Fig 1 and Fig 2 of [3] by data extraction using the software 
‘WebPlot Digitizer’ (32).  
 
Model 
We solved the allometric growth equation (Eq. 3) where 𝑏𝑏 < 1 and 𝛾𝛾 and 𝛽𝛽 are 
constants. If 𝛾𝛾 is much larger than 𝛽𝛽, then the growth of 𝐼𝐼(𝑡𝑡) saturates to reach the 
equilibrium value: 

𝐼𝐼𝑒𝑒𝑒𝑒 = �𝛾𝛾
𝛽𝛽
�

1
1−𝑏𝑏 6

If we make a change of variables in Eq. 3: 
𝐼𝐼(𝑡𝑡) = 𝑢𝑢(𝑡𝑡)𝑟𝑟 7

we obtain, 
𝑢̇𝑢 = 1

𝑟𝑟
�𝛾𝛾𝑢𝑢1−(1−𝑏𝑏)𝑟𝑟 − 𝛽𝛽𝛽𝛽� 8

We set 𝑟𝑟 = 1
1−𝑏𝑏

   which turns Eq. 8 into: 
𝑢̇𝑢 = −𝛾𝛾′𝑢𝑢 + 𝛽𝛽′ 9

with 
𝛾𝛾′ = (1 − 𝑏𝑏)𝛽𝛽 10

and 
𝛽𝛽′ = (1 − 𝑏𝑏)𝛾𝛾 11

Thus, we get 

𝑥𝑥(𝑡𝑡) = �𝛾𝛾
𝛽𝛽
�1 − 𝑒𝑒−(1−𝑏𝑏)𝛽𝛽𝛽𝛽� + 𝑒𝑒−(1−𝑏𝑏)𝛽𝛽𝛽𝛽𝐼𝐼(0)1−𝑏𝑏�

1
1−𝑏𝑏 12

where 𝐼𝐼(0) is the number of cumulative cases at 𝑡𝑡 = 0. In the case for a very extended 
time 𝑡𝑡 < 1

1−𝑏𝑏
1
𝛽𝛽
 , the intermediate time regime is described by: 

𝐼𝐼(𝑡𝑡) ∝ 𝑡𝑡𝛼𝛼 13
with  

𝛼𝛼 = 1
1−𝑏𝑏

14
We used Eq. 12 to fit the positive cases of COVID-19 throughout this study.  

We used a Log-Log transformation of the data to fit the power-law function, and a 
Log-Linear, for the exponential. In this way, we fitted a line for the power-law and 
exponential cases. For the allometric function, we did not perform any modifications. In 
all instances we used the fit() function in Matlab with a non-linear least square 
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algorithm. Individual fits are reported with their 95 % confidence intervals (CI95). Pooled 
data is reported with standard error of the mean (SEM).  
 
Figure captions 
 

 
Figure 1. Power-law propagation of COVID-19 across the World. A) cumulative positive 
cases reported for 81 countries and regions over time. B) same data as in A but the 
trajectories were referenced to their first value. The gray line is the fit to the mean of the 
trajectories resulting in 𝐿𝐿𝐿𝐿𝐿𝐿10(𝐼𝐼) =  1.27 ∗  𝑡𝑡 +  1.62. 𝐼𝐼 is the cumulative number of 
cases for each country. See text for details.   
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Figure 2. The sub-regions of Australia, Canada, and Chine follow power-law increase in 
cases of COVID-19. A) Regions in Australia that haw power-law behavior. The black 
dots indicate the first and last point used for the fitting, all ranges were the same foe 
each sub-region. The gray straight line is the plot of the fit. B) and C) same analysis for 
the provinces of Canada and China that followed power-law behavior.  
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Figure 3. The propagation of COVID-19 in the US follows a power-law behavior in most 
states. The cumulative number of cases (I) were analyzed after suprasing 100 cases in 
each state. In all cases the power-law function was fitted 5 days after the refernce date 
for 20 days. See text for details. 
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Figure 4. The allometric model predicts the behavior of the propagation COVID-19. A) 
Left: example of fitting a power-law and allometric function to the same date of 
cumulative cases (I) of COVID-19 for Greece. Middle: Examples of cumulative cases 
and allometric predictions for up to 100 days after the date of the last point used to fit 
the curves.  Right: The mean percentage error for 20 countries over 100 days after the 
last point used to fit the exponential (black), power-law (red), and allometric (green) 
functions. The lighter shade curves correspond to the 95 % confidence intervals. B) 
same as in A applied to 33 states that follow power-law dynamics in the United States.  
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Figure 5. The power-law COVID-19 exponent (𝛼𝛼) correlates with human travel. A) 
scatter plot of the value of 𝛼𝛼  against the scale of total number of passengers enplaned 
in 2017. B) and C) same as in A but for total passengers per state in the US (B) and for 
metropolitan areas served by the major airports in the US. D-F) as in A-D for the 
average miles traveled by vehicle in urban (D), suburban (E), and rural (F) areas. Lines 
were plotted when the correlations were significant. See text for details.  
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Figure 6. The variance observed in the power-law COVID-19 exponent (𝛼𝛼) in the US is 
explained by air and vehicle travel. A) Rendering of the values of 𝛼𝛼 versus number of air 
passengers and rural miles traveled per US state. The linear model (grid) explains 57 % 
of the variance. A model including urban and suburban miles explains 70 %. B) a 
different view angle of the same data. See text for details. 
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