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Abstract 1 

Brain development from 1 to 6 years-of-age anchors the rapid development of a wide 2 

range of functional capabilities. However, quantitative growth charts of typical 3 

development during this age period are lacking, preventing the identification of early 4 

brain abnormalities. Here we characterize the time-dependent individual differences of 5 

cortical thickness and subcortical volume in 340 typically developing children and 6 

construct regional growth curves for these brain morphological measures. The growth 7 

curves reflect four types of time-dependence for cortical thickness and subcortical 8 

volume metrics. At the individual level, the growth curve model provides percentiles 9 

for each brain region's cortical thickness or volume during ages 1 to 6, allowing for 10 

individualized inferences of brain developmental status relative to the same-age 11 

population. The growth curves further demonstrate clinical utility potentials by 12 

identifying children with developmental speech and language disorders, achieving high 13 

accuracies on data collected on both 1.5T and 3T scanners. Our results fill the 14 

knowledge gap in brain morphometrics in a critical development period and provide 15 

an avenue for individualized brain developmental status evaluation, with demonstrated 16 

sensitivity and generalizability. 17 

 18 

Keywords: brain development; brain structure; childhood development; 19 

developmental brain disorder; growth curve; diagnostic imaging 20 
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Introduction 1 

Brain development comprises complex morphological and volumetric changes [1,2]. 2 

Variations in the brain's growth and regional differences emerge consistently during 3 

childhood and adolescence, contributing to inter-individual differences in general 4 

intelligence and functioning [3,4]. Such a life-span dynamic trajectory of both cortical 5 

and subcortical changes has been examined with a structural imaging approach [5,6]. 6 

Previous studies reported non-linear decreases in cortex gray matter volume and 7 

increases in white matter during the development period, mainly based on non-8 

continuous or multiple site samples of children aged over eight or less than two years 9 

old [1,2,7–11]. This notable age gap reflects the challenge of recruiting healthy children 10 

between 1 to 6 years-of-age. Thus, the age-dependent morphometric dynamics of 11 

cortical and subcortical structures remain elucidated within this critical developmental 12 

period [12].  13 

Two neuroimaging studies have covered this 1-6 age-span. One study reported cortical 14 

myelination changes reflected by myelin water fraction and T1 relaxation times [13]; 15 

the other study indicated that the white matter myelination reflected distinct 16 

neurodevelopmental processes from cortical thickness [14]. However, the annual change 17 

of cortical thickness and volume subcortical regions in this 1-6 age-span has not been 18 

quantified, and there is no model available to evaluate brain maturation.  19 

To fill in this gap, we quantified typical year-by-year maturation in cortical thickness 20 

and subcortical volume based on brain imaging data from 340 children between 1 and 21 
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6 years old. We further developed growth curve models for all cortical and subcortical 1 

regions to characterize their age-dependence and to make inferences for individuals. 2 

We examined whether the models are useful for detecting abnormal brain development 3 

by training and testing classifiers to recognize children with language developmental 4 

disorders. The sensitivity and generalizability of the models were further examined 5 

using data from an independent scanner. The growth curve models reveal unique 6 

information that can help understand individual differences in the brain during this 7 

critical period and provide a novel tool for recognizing atypical structural brain 8 

development. 9 

 10 

Methods 11 

Participants 12 

A total of 391 typical developing children (TDC) and 38 children with developmental 13 

speech/language disorder (DSLD) between one and six years old were recruited in the 14 

Department of Radiology, the Children's Hospital affiliated to Zhejiang University 15 

School of Medicine, Hangzhou, China. The Medical Research Ethics committee at the 16 

Children's Hospital approved the study. The parents of all participants signed the 17 

written informed consent form. 18 

The inclusion criteria for TDC were: age between 1 and 6 years old; full-term 19 

(gestational age between 37 and 41 weeks) without any complicated perinatal course; 20 

referral for neuroimaging examination with indications including one episode of 21 
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idiopathic febrile seizure, dizziness, headaches, facial or arm paralysis, trauma, short-1 

term fever of unknown reason, and physical examination; typical results of neurological 2 

examination (examined by HL); free of current and past neurological or psychiatric 3 

disorders; and no evidence of genetic, metabolic, or infectious diseases. Exclusion 4 

criteria included: unable to complete the scans, poor image quality, and remarkable 5 

brain MRI radiological interpretation (examined by HX.Z).  6 

The DSLD group was composed of patients referred to a neuroimaging examination 7 

with an indication of developmental speech/language disorder. The clinical diagnosis 8 

of DSLD was confirmed by a pediatric neurologist (H.L.), following criteria for 9 

language development delays[15,16]. The inclusion criteria were: age between 1.5 and 10 

6 years old; full-term (gestational age between 37 and 41 weeks) without any 11 

complicated perinatal course; unable to produce a single word before 18 months of age, 12 

or produced less than 30 words after age 24 months, or expressing fewer than 3/5 13 

linguistic structures for boys/girls after 30 months, or unable to express two-word 14 

phrases after 36 months of age; and no evident brain structural abnormality on 15 

conventional MRI. Participants with any of the following were excluded: autism 16 

spectrum disorder, intellectual disability, hearing deficit, phonological production 17 

deficit, or other sensory deficits; tics disorders, coprolalia syndrome, attention-18 

deficit/hyperactivity disorder, specific learning disability, anxiety disorders, depressive 19 

disorders, or seizures. A senior radiologist (HX.Z) further assessed clinical scans (both 20 

T1 and T2 weighted images) to exclude remarkable brain structure abnormalities and 21 

myelination abnormalities.  22 
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MRI acquisition 1 

Twenty-six DSLD participants and 303 TDC were scanned with a Siemens 1.5T MRI 2 

scanner (Magnetom Avanto, Siemens Healthcare, Erlangen, Germany). Besides regular 3 

T1- and T2-weighted clinical scans, high-resolution T1-weighted 3D images were 4 

acquired using a magnetization prepared rapid gradient echo (MPRAGE) sequence 5 

with the following parameters: TR = 1910 ms, TE = 3.06 ms, TI = 1100ms, flip angle 6 

= 15°, FOV = 192 mm × 192 mm, data matrix = 256 × 256, spatial resolution = 0.8 7 

× 0.8 × 1.0 mm3. The participants who could not cooperate with examinations due to 8 

their young age were sedated with 10% chloral hydrate (50mg/ml) orally or by enema 9 

before scanning. 10 

The other 66 TDC and 13 DSLD participants were scanned with a Philips Achieva 3T 11 

TX MRI scanner (Philips Healthcare, Best, The Netherlands). Besides regular T1- and 12 

T2-weighted clinical scans, high-resolution T1-weighted 3D images were acquired using 13 

a 3D Turbo Field Echo (3D-TFE) sequence with the following parameters: TR = 2000 14 

ms, TE = 3.7 ms, TI = 800ms, flip angle = 8°, FOV = 256 mm × 256 mm, data matrix 15 

= 320 × 320, 180 slices, spatial resolution = 0.8 × 0.8 × 2.0 mm3. 16 

Image processing 17 

The clinical scans were first interpreted to exclude participants who exhibited 18 

remarkable brain structural abnormality. The T1-weighted 3D images of the remained 19 

participants were visually checked for head motion artifacts. Images with obvious 20 

artifacts were further dropped from further analyses. 21 
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A total of 292 TDC completed MRI scans on the 1.5T scanner, among which 11 were 1 

excluded due to remarkable brain abnormalities, and 16 were excluded due to poor 2 

image quality based on visual inspections 265 were included in further analyses. The 3 

sample sizes from age 1 to age 6 were: 52 (22 females), 49 (20 females), 47 (19 females), 4 

34 (15 females), 43 (18 females), and 40 (24 females), respectively. Supplementary 5 

Table 1 presents a summary of the indications when referred for neuroimaging 6 

examination for the 265 TDC. The most common indications were idiopathic febrile 7 

seizure, headache, and physical examination. These three types of indications 8 

accounted for 80.4% of the sample. 9 

A total of 26 developmental speech and language disorder (DSLD) patients, who 10 

received "no obvious abnormal" radiology diagnoses, completed brain scans on the 11 

1.5T MRI scanner, among which six were excluded due to low image quality, remaining 12 

20 DSLD for further analyses. There were six females and 14 males. The mean age was 13 

3.03, with a standard deviation of 1.29 years. To form a control group for the 20 DSLD 14 

patients, we selected 20 people from the 265 TDC matched with the DSLD patients 15 

one-on-one by sex and age. The mean age of this control group was 2.97, with a 16 

standard deviation of 1.37 years. 17 

Sixty-six TDC and 13 DSLD participants completed MRI scans on the 3T scanner, 18 

but 11 TDC and 3 DSLD participants were excluded due to poor image quality or 19 

remarkable brain abnormalities, remaining 55 TDC and 10 DSLD for further analyses. 20 

The sample sizes of TDC from age 1 to age 6 were: 16 (9 females), 11 (7 females), 10 21 

(7 females), 3 (2 females), 5 (2 females), and 10 (7 females). Supplementary Table 2 22 
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 9 

presents a summary of the indications in the referral for neuroimaging examination for 1 

the 55 TDC included in the analyses. The most common indications were idiopathic 2 

febrile seizure, headache, and physical examination, which accounted for 87.3% of the 3 

sample. 4 

Supplementary Figure 1 presents a flowchart of the following imaging analysis steps. 5 

Brain extraction results from CAT12, volbrain [17], ANTs [18], and FreeSurfer [19] 6 

were compared. Based on a visual check of all images, the brain masks generated by 7 

the volbrain were chosen as the brain extraction masks. Next, the TDC-1.5T group 8 

was split into a training set containing 245 participants and a test set of 20 participants 9 

that best matched the age and sex of the 20 DSLD participants.  10 

We divided the TDC in the training dataset into six non-overlapping age groups (i.e., 11 

1-2, 2-3, 3-4, 4-5, 5-6, and 6-7 years old). A brain image template was constructed for 12 

each group using ten male and ten female participants who were randomly selected, 13 

following ANTs' multivariate template construction procedure [20]. This procedure has 14 

been used in previous studies to generate population-specific brain templates [21,22]. 15 

Then the multivariate joint label fusion procedure in ANTs [23], combined with a set 16 

of 15 manually labeled brains, was applied to each age-specific template image to 17 

generate six image segmentation prior probability images, representing gray matter, 18 

white matter, cerebrospinal fluid (CSF), subcortical structures, brain stem, and 19 

cerebellum, respectively. Supplementary Figure 2 presents the resultant age-specific 20 

brain templates and corresponding prior probability images.  21 

With these age-specific prior brain tissue probability images and brain templates, the 22 
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n-tissue segmentation tool in ANTs was applied to obtain white matter masks for all 1 

participants. The white matter segmentation quality for all participants was visually 2 

checked, and all images yielded acceptable white matter masks. The cortical thickness 3 

and subcortical volume statistics for each participant were estimated using FreeSurfer. 4 

Specifically, the denoised brain structure images from ANTs' N4 denoising step were 5 

input to the FreeSurfer "recon-all" pipeline. The corresponding white matter and brain 6 

extraction masks obtained previously were injected into the pipeline to improve its 7 

performance in constructing surface models for this very young sample. The FreeSurfer 8 

"recon-all" pipeline parcellated the cerebral cortex into 62 (31 per hemisphere) 9 

anatomical regions defined by the Desikan-Killiany Atlas and parcellated subcortical 10 

structures into 20 regions (excluding ventricles and brain stem) per the default 'aseg' 11 

atlas in FreeSurfer. The "recon-all" pipeline calculated regional mean cortical thickness, 12 

subcortical region volume, and volume of a variety of brain tissues such as cerebral 13 

white matter, subcortical gray matter, cerebellar white matter, cerebellar cortex. These 14 

metrics were used in further analyses. 15 

Age-group comparisons 16 

In the training dataset (n = 245), we first applied a linear model to each of the above 17 

brain morphometrics to examine the effects of age, sex, and their interactions. To avoid 18 

the potential impact of outliers, we cleaned the data by setting the values outside the 19 

[Q0.25 – 1.5 IQR, Q0.75 + 1.5IQR] range to the closest boundaries of this range, where 20 

Q0.25 and Q0.75 are the first and third quartiles, and IQR indicates the distance between 21 

Q0.25 and Q0.75. We then characterized the age-dependence of the metrics by 1) 22 
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calculating the change rate for each group from age 2 to age 6, relative to age 1, and 1 

2) examining year-by-year changes using independent sample t-tests. The significance 2 

was corrected for multiple comparisons using the false-discovery rate (FDR) approach.  3 

Growth curve model 4 

We constructed a growth curve model for each of the metrics to model the age-5 

dependence of both typical value and individual variability of the brain morphometrics. 6 

Furthermore, the models can evaluate relative positions of a given individual among 7 

the same-age population, analogous to the developmental score for height or weight of 8 

a child. The model construction procedures were largely consistent with those used for 9 

constructing height/weight growth curves by the World Health Organization [24]. 10 

Technical details, as well as differences from the WHO procedures, are described below. 11 

The following procedure was applied to each metric. For those exhibiting significant 12 

sex differences, additional sex-specific growth curve models were constructed. 13 

GAMLSS model. The Generalized Additive Model for Location, Scale, and Shape 14 

(GAMLSS) was adopted to fit the growth curves. This model is a distributional 15 

regression approach, allowing for modeling age-dependent changes for all probability 16 

distribution parameters. Mathematically, the model can be expressed as: 17 

 18 

In this formulation, Xi and xij are subsets of the exploratory variable, i.e., TDC 19 
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participants' precise age. Y is the response variable, i.e., the value of a given regional 1 

metric. D is a probability distribution, and µ, σ, ν, and τ are possible parameters. The 2 

number and meaning of these parameters vary with the specific form of the distribution 3 

D determined in the model fitting step. g1 to g4 are link functions to map the 4 

parameters onto the entire real axis, and sij are nonparametric smoothing functions of 5 

explanatory variables. Xiβi and sij(xij) are additive terms. Model fitting was 6 

implemented using the R package "GAMLSS".  7 

Choice of distribution. To choose a proper distribution (D) for the current dataset, 8 

four distributions were examined, including Box-Cox power exponential, Box-Cox t, 9 

Box-Cox normal, and Johnson's SU. The training samples were divided into six non-10 

overlapping age groups (1-2, 2-3, 3-4, 4-5, 5-6, and 6-7 years old), and model fitting 11 

was conducted within each age group without considering additive terms. Per the 12 

Akaike Information Criterion (AIC), the Box-Cox normal distribution exhibited the 13 

best goodness of fit for over 60% of all six age groups' metrics. We, therefore, adopted 14 

this distribution for model fitting. 15 

Choice of additive terms. Two types of additive terms were compared: second-order 16 

polynomial and second-order fractional polynomial. The polynomial term can be 17 

expressed as: , and the fractional polynomial term can be expressed as: 18 

. The AIC was compared when using these terms 19 

to fit the three parameters of Box-Cox normal distribution with three parameters, µ, 20 

σ, and ν, representing mean, standard deviation, and skewness. The second-order 21 
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polynomial term yielded smaller AIC for all regional metrics, and thus this additive 1 

term was adopted in the GAMLSS model. 2 

Model fitting. The following model fitting procedure was applied:  3 

1) Construct model 1 to fit only µ (see the GAMLSS formula above). 4 

2) Conduct Q-test on σ, ν in model 1. Q-test examines the normality of the residuals 5 

within a range of an independent variable and has been used to construct WHO Child 6 

Growth Standards to detect parameter misfit. If any parameter's Q-test p-value is less 7 

than 0.05, model 2 will be constructed to fit µ and σ. 8 

3) Conduct Q-test on ν in model 2 if it is constructed. If ν's Q-test p-value is less than 9 

0.05, model 3 will be constructed to fit µ, σ, and ν. 10 

4) Compute generalized AIC (GAIC) for the available models. GAIC＝-2L+km, where 11 

L is the likelihood, m is the number of parameters, and k was set to 5, given the 12 

relatively limited sample size. The model with the smallest GAIC was chosen as the 13 

final model. 14 

Clustering analyses 15 

We conducted hierarchical clustering analyses to reveal the representative development 16 

patterns of the cerebral regions' thickness and the volume of the subcortical regions. 17 

Since 81 unique values of precise age uniformly distributed between 1 to 7, we extracted 18 

the fitted median values for the 81 precise ages and transformed them into Z scores. 19 

Euclidean distance between the regions was then computed based on the 81-20 

dimensional vectors. The hybrid hierarchical clustering algorithm, implemented in the 21 
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R package "hybridHclust" [25], was then applied to this distance matrix. Briefly, this 1 

method includes three steps: 2 

1) Use bottom-up clustering to find the mutual clusters, each of which is a group of 3 

sufficiently close points to each other and distant from all other points. 4 

2) Perform a constrained top-down clustering that retains the mutual clusters. 5 

3) Perform a top-down clustering within each mutual cluster. 6 

We chose the numbers of clusters based on the "knee points" on the inter-cluster 7 

distance vs. the number of clusters plots to visualize the representative developmental 8 

patterns. This procedure was performed for the cortical thickness, and subcortical 9 

volume results separately. The dendrograms were cut into clusters according to the 10 

chosen number of clusters. The within-cluster growth curves were normalized to 11 

relative changes against age 1 and averaged to represent the clusters' typical patterns. 12 

Recognizing DSLD using brain morphometrics 13 

To evaluate the utility of the growth curve models, we examined whether TDC and 14 

DSLD participants could be accurately classified using the development scores (i.e., 15 

the percentiles among the same-age population) derived from the growth curve models. 16 

For those metrics showing significant age-differences, the development scores were 17 

derived from the corresponding sex-specific growth curves. Four classifiers, based on 18 

regularized discriminant analysis (RDA), as implemented in the R package "klaR" [26], 19 

were trained to recognize DSLD from TDC participants. The four classifiers included 20 

the regional cortical thickness, subcortical volume, volume of brain tissues, and all 21 
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metrics as features, respectively. The performance of the classifiers was evaluated using 1 

leave-one-out cross-validation. Classification accuracy and the area under the receiver 2 

operator curves (AUC) were calculated to indicate the classifiers' performance. 3 

To further examine the sensitivity and generalizability of the growth curve models, 4 

we applied the growth curve models constructed using the data from the 1.5T 5 

scanner (n =245) to the images from the 3T scanner to derive a percentile value 6 

among the same-age population for each region in each participant. These data were 7 

then inputted to the classifiers trained using the 20 TDC and 20 DSLD participants 8 

scanned on the 1.5T scanner. This procedure formed an independent test of the 9 

performance of the classifier. We calculated the AUC of the classifiers to indicate 10 

their performance. 11 

Data availability 12 

We shared the brain templates for children from 1 to 6 years old (3D nifty files), the 13 

growth curve models of all brain regions, and the code to perform the analysis in a 14 

public open-science repository: 15 

(https://osf.io/fm7cq/?view_only=9716e89f09e04b4bb2b4f0323ab2b684). The 16 

original and processed imaging data are available on reasonable request. 17 

 18 

Results 19 

Age-difference of brain morphometrics 20 
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Brain tissue volumes. Using a linear model, we examined the main effects of sex and 1 

age and their interactions on the volume of a series of brain tissues, including brain 2 

volume (excluding ventricles), total gray matter volume, total cortex volume, total 3 

cerebral white matter volume, subcortical gray matter volume, cerebellar white matter 4 

volume, and cerebellar cortex volume. There was no metric showing significant sex by 5 

age interaction effects. After false-discovery rate (FDR) correction (q<0.05), the brain 6 

volume, total cortex volumes, total cerebral white matter volumes, and total gray 7 

matter volume exhibited significant differences between male and female participants. 8 

Table 1 displays the age-group differences and the change rate of the volume of brain 9 

tissues. According to these results, ages 2-3 exhibited the most significant increase in 10 

all types of brain tissues. Age 4 also showed a significant volume increase in cerebral 11 

white matter, cortex, total gray matter, and whole-brain (excluding ventricles). 12 

Supplementary Table 3 presents age-group differences and change rates for male and 13 

female children separately for those brain tissues showing significant sex-difference. 14 

The observations in the pooled samples remained, while after multiple-comparisons 15 

correction, only male children exhibited a significant increase in the volume of the 16 

brain (excluding ventricles), total gray matter, total cortex, and total cerebral white 17 

matter at age 4. 18 

Cortical thickness. There was no region showing a significant interaction effect between 19 

age and sex or the main effect of sex on cortical thickness (after FDR correction). 20 

Figure 1 shows maps of cortical thickness across 1-6. For most cortical regions, the 21 

cortical thickness was between 2 and 4 mm and showed changes across ages. To 22 
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quantify the age-dependence of cortical thickness, we examined the age-group 1 

difference of mean thickness of every cortical region. Figure 2A shows maps of mean 2 

annual change rates across 2-6 years old, relative to the first year. For most regions, 3 

the cortical thickness exhibited a monotonous downward trend. At age 6, the cortical 4 

thickness of the bilateral orbitofrontal cortex, bilateral cuneus, and bilateral 5 

pericalcarine gyrus was thinner than 90% of age 1. For the precentral gyrus, entorhinal 6 

cortex, and parahippocampal gyrus, the cortical thickness first increases and decreases 7 

in age 4 and age 5. Still, the cortex in these regions was not thinner than the first year 8 

for all age groups. The cortical thickness changes reflected symmetry between the two 9 

hemispheres, i.e., the corresponding regions between hemispheres showed similar 10 

changing trends. Figure 2C shows t maps of the year-by-year difference of all cortical 11 

regions. The white dots mark a significant year-by-year difference (multiple-12 

comparisons corrected using FDR, q < 0.05). These results showed that most cortical 13 

regions' significant changes appeared in age 2, age 3, and age 6. 14 

Subcortical volume. There was no significant interaction effect between age and sex on 15 

subcortical regions' volume after FDR correction. The volume of bilateral thalamus 16 

exhibited significant sex difference after FDR correction: left thalamus: (F = 15.03, p 17 

= 0.00014), right thalamus (F=8.47, p = 0.004). Table 2 presents the mean and 18 

standard deviation of the volume of subcortical regions for each age group.  19 

We examined the age-group difference in the volume of all subcortical regions. Figure 20 

2B shows maps of mean annual change rates across 2-6, relative to the first year. The 21 

volume of subcortical regions increased with age. At age 6, the volume of putamen, 22 
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palladium, amygdala, accumbens area, and cerebellum white matter was over 30% 1 

larger than age 1. The age-dependent volume change of subcortical regions was also 2 

symmetric. Figure 2D presents year-by-year changes (t-values) for all subcortical 3 

regions. According to these analyses, most subcortical regions' volume significantly 4 

enlarged in age 2 and age 3. At age 4 and age 5, the volume of bilateral putamen, 5 

bilateral pallidum, and left amygdala further increased.  6 

Growth curve models and developmental patterns of brain morphometrics 7 

We further modeled the age-dependent individual variability of brain morphometrics 8 

using the growth-curve model. Figure 3A presents examples of growth curve models 9 

for cortical thickness, subcortical volume, and brain tissue volume. The 5th, 10th, 25th, 10 

50th, 75th, 90th, and 95th percentage curves were used to visualize the age-dependent 11 

distributions of individual variability. For a given chronological age and a 12 

morphometric feature, the growth curve model could derive a percentage value that 13 

indicates the relative position among the TDC distribution. Supplementary Figures 2-14 

4 present growth curve models for the mean thickness of all cortical regions, the volume 15 

of all subcortical regions, and the volume of different types of brain tissues. 16 

To further characterize the developmental patterns of regional brain morphometrics, 17 

we clustered the growth curves into different types based on their changing trends with 18 

age. Figure 3B maps four types of cortical regions carrying different age-dependence 19 

trends. Figure 3C further depicts a hierarchical dendrogram of similarity of growth 20 

curves among all cortical regions. According to the knee plot of inter-cluster distance 21 

(Figure 3D), we chose to cut the dendrogram to form 4 clusters. Figure 3E shows the 22 
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age-dependent change rates of the median of the growth curves corresponding to the 1 

four clusters. The first two types of cortical regions exhibited monotonous decreasing 2 

trends with increasing age, and the difference between the two was the slope. The third 3 

type showed a nearly flat growth curve, and the last type demonstrated an inverted-4 

U shape of the growth curve. 5 

For the subcortical regions, we also clustered their volumes’ growth curves into four 6 

types (Figure 3F-G) according to the knee plot of inter-cluster distance (Figure 3H). 7 

Figure 3I shows the corresponding growth curves of the four types. The first type of 8 

subcortical regions, including the left amygdala, right putamen, bilateral cerebellum 9 

white matter, and bilateral pallidum, exhibited a steep increasing slope with age. The 10 

second type, including bilateral ventral DC, right amygdala, bilateral hippocampus, 11 

and left putamen, showed a power function-like trend that approximates to 1.2 (change 12 

rate relative to age 1). The last two types exhibited inverted-U shapes of the growth 13 

curve, while the trend was more apparent in the bilateral accumbens area (type 4). 14 

These results revealed the diversity of the age-dependent changes of cortical and 15 

subcortical regions from 1 to 6 years old. 16 

Recognizing abnormal development based on brain morphometrics 17 

For a given brain region of an individual, the growth curve model can provide an 18 

individualized inference by deriving a relative position, as reflected by a percentage 19 

value, among the fitted distributions of age-dependent individual variability. We 20 

examined the utility of this feature to recognize children with delayed language and 21 

speech disorders (DLSD). The brain morphometrics of 20 DLSD and 20 age-matched 22 
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TDC (not included in the samples used to build the growth curve models) were input 1 

to the growth curve models to obtain the corresponding percentage values, which were 2 

used to train a linear discrimination classifier. In Figures 4A, we present an exemplar 3 

growth curve representing the right lateral occipital gyrus's cortical thickness. The 4 

TDC and DSLD participants are marked using black and red circles in the plots. While 5 

most TDC fell within the 5-95% range, a large portion of DSLD participants was 6 

outside this range.  7 

To summarize the associations between DSLD and abnormal morphometrics detected 8 

in the regional growth curves, we present a relative risk map in Figure 4B. The value 9 

is a risk ratio of DSLD when a given region is abnormal (outside 5-95% range of the 10 

corresponding growth curve) versus when the region is normal. The thickness of the 11 

bilateral lateral occipital cortex, the right angular gyrus, the bilateral parahippocampal 12 

gyrus, the bilateral cingulate gyrus, and the right frontal cortex exhibited a high risk 13 

ratio. Most subcortical regions, especially the caudate, hippocampus, and amygdala, 14 

showed an increased DSLD risk ratio. These observations reveal that wide-spread brain 15 

regions are related to DSLD, supporting strong associations between DSLD and 16 

abnormal brain development as reflected in the growth curves. 17 

To further combine the information from different regions to achieve accurate 18 

recognition of DSLD, we trained linear discrimination classifiers based on the percentile 19 

values derived from the growth curve models. With a 10-fold cross-validation scheme, 20 

the analyses achieved a classification accuracy of 0.975 in classifying DLSD and TDC 21 

participants using all regional cortical thickness, subcortical volume, and brain tissue 22 
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volume features. The classification accuracy was 0.900 when using the cortical 1 

thickness measures, which was 0.875 when using the subcortical volume measures, 2 

which was 0.900 when using the brain tissue volume features. The performance of the 3 

classifiers was summarized using ROC plots in Figure 4C. The area under curve (AUC) 4 

metrics for the ROC analyses were 0.998, 0.905, 0.928, and 0.950 for all morphometrics, 5 

cortical thickness only, the subcortical volume only, and brain tissue volume only. 6 

These observations reflect that the growth curves help to derive individualized 7 

evaluation of brain development status with clinical potentials. 8 

Independent examination of sensitivity and generalizability of the model 9 

We further examined the sensitivity and generalizability of the DSLD recognition 10 

model with data from an independent 3T scanner. From the growth curve models 11 

constructed using the data from the 1.5T scanner, we derived regional percentile values 12 

of 55 TDC and 10 DSLD patients scanned on the 3T scanner. We then applied the 13 

pre-trained linear discrimination classifiers to recognize DSLD patients based on the 14 

percentile values. As shown in Figure 4D, the classifiers achieved high performance as 15 

reflected by the AUC of ROC curves. When combining all regions' percentile values, 16 

the classifier achieved an AUC of 0.978; when only using cortical thickness, subcortical 17 

volume, brain tissue volume, the AUCs of the classifiers were between 0.913 and 0.920. 18 

These results from an independent scanner with different magnetic strength support 19 

that the growth curve models and the DSLD classifiers based on the percentile values 20 

can provide individualized inferences sensitive to DSLD and generalizable across the 21 

scanner. 22 
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Discussion 1 

For the first time, the present study quantified annual changes of cortical thickness 2 

and subcortical volume of typically developing children between 1 and 6 years old. The 3 

thickness in most cortical regions decreased at age 2, age 3, and age 6. Simultaneously, 4 

the volume for the precentral gyrus, entorhinal cortex, and parahippocampal gyrus 5 

showed a different, inverted-U shape of dynamics. The volume of most subcortical 6 

regions significantly enlarged in age 2 and age 3, and the volume of putamen, pallidum, 7 

hippocampus, and amygdala kept increasing at age 4 and age 5. With the growth curve 8 

models for the age-dependence of individual variability, we were able to discriminate 9 

four age-dependent patterns among cortical regions and subcortical regions, providing 10 

a summary of brain morphometrics' developmental patterns.  11 

The regional growth curve models enabled identifying DSLD patients with high 12 

sensitivity and specificity. Our independent test further supported the generalizability 13 

of the growth curve models and the classifiers based on them. To our knowledge, these 14 

are the first brain regional growth charts for children ages 1 to 6 years, a critical time 15 

window for diagnosing many developmental disorders. The accuracy of our model, 16 

when all features were combined, reached 0.975 for recognizing DSLD. Since the human 17 

brain reaches 95% of adult size by age 6 [6], our current study addresses a period 18 

during which brain size develops dynamically and substantially and provides a link to 19 

existing studies of structural brain maturation beyond six years-of-age [27]. The growth 20 

curve model generated in the present study offers a potentially valuable tool to measure 21 
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and define the developmental trajectory of individual brains and to provide clinically 1 

relevant information.  2 

Previous studies revealed the potential importance of brain maturation curves in the 3 

diagnosis of early neurodevelopmental disorders [5,28]. For instance, early-onset 4 

schizophrenia patients were found to exhibit abnormal acceleration of gray matter loss 5 

during development [4,29]; autistic children showed distinct patterns of cortex growth 6 

and white-gray matter contrast [30,31], abnormal amygdala volume dynamics [32], and 7 

extreme male-like patterns of interhemispheric connectivity [33]; children with ADHD 8 

have been found to have reduced subcortical volume [34],  delayed cortical maturation 9 

[35], and altered hemisphere asymmetry[36]; fragile X syndrome is associated with 10 

aberrant prefrontal cortex maturation[37], and volumetric abnormalities in subcortical 11 

regions [38]. Notably, most studies were based on adolescents imaged after disorders 12 

were diagnosed. Few papers have reported brain imaging samples during childhood 13 

[14,39]; future longitudinal studies are essential to improve the first diagnosis and 14 

initiate earlier treatments for developmental disorders.  15 

Besides characterizing the age-dependence and variabilities of typical brain 16 

morphometry development between 1 and 6 years of age, our study represents an initial 17 

effort towards establishing growth charts of brain morphometry in children. The WHO 18 

published growth curve standards for body height and weight for children in 2006 [24], 19 

and the growth chart model has been used in clinical practice for many years, but 20 

there are no childhood growth charts for the typically developing brain. The models 21 

presented in this study represent an initial effort to construct brain growth charts for 22 
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children, which would enhance the precise diagnosis of developmental brain disease 1 

and might even contribute to individualized education in the future. Although the 2 

sample size in this study is insufficient to construct a clinically useful growth chart, 3 

the present results serve as a starting point. The precision of the preliminary growth 4 

chart model can be improved by incorporating additional samples. For instance, based 5 

on the current models, one could implement a web-based service to evaluate brain 6 

abnormalities of images uploaded by users, providing a percentile among the same age 7 

population for every brain region. This web-based service would learn from the new 8 

data contributed and improve its precision.  9 

One limitation of the present study is that the growth curve models were not validated 10 

using independent scanners. Future efforts will involve developing a common algorithm 11 

for different clinical scanners and fitting brain growth curve models to other 12 

racial/ethnic samples. The estimation procedure should consider scanner type and 13 

scanning parameters to provide clinically useful information across different centers. It 14 

would also be preferable to develop an automatic detection algorithm for other 15 

neurological or psychiatric disorders during development, which would require 16 

longitudinal data collection with larger sample size, including sufficient subgroups of 17 

different types of patients.  18 

In summary, this study described easy-to-use structural MRI-based brain regional 19 

growth charts, with the potential to predict brain developmental stage and clinical 20 

aberrance.  21 

 22 
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Tables 

Table 1. Age-dependence of brain tissue volumes. 

Age group Statistic 

Brain 
volume, 
excluding 
ventricles 

Total gray 
matter 
volume 

Total 
cortex 
volume 

Total 
cerebral 
white 
matter 
volume 

Subcortical 
gray 
matter 
volume 

Cerebellar 
white 
matter 
volume 

Cerebellar 
cortex 
volume 

Age 1 Meana 889295 622038 490937 252293 42312 15083 88263 

(n=52) SDa 88147 55067 47253 35044 4767 1964 8416 

Age 2 Meana 988666 676463 537235 296535 46349 16562 92505 

(n=49) SDa 90918 55067 53551 35373 5324 1608 8511 

 
Change 
rateb 

1.11 1.09 1.09 1.18 1.10 1.10 1.05 

 t-valc 5.57*** 4.81*** 4.60*** 6.31*** 4.01*** 4.15*** 2.52*** 

Age 3 Meana 1062960 717391 569222 333413 49127 18661 98724 

(n=47) SDa 91081 49161 44426 32578 4709 1873 8918 

 Change 
rateb  

1.20 1.15 1.16 1.32 1.16 1.24 1.12 

 t-valc 4.00*** 3.72*** 3.19** 5.32*** 2.71*** 5.88*** 3.49*** 

Age 4 Meana 1118411 743821 594120 357214 50712 19392 98353 

(n=34) SDa 76620 48617 42549 31941 5417 3101 11882 

 
Change 
rateb  

1.20 1.20 1.21 1.42 1.20 1.29 1.11 

 t-valc 2.97*** 2.40*** 2.55*** 3.28*** 1.37 1.22 -0.15 

Age 5 Meana 1137510 744780 592735 374540 52402 20429 99404 

(n=43) SDa 96335 58417 52802 41460 4539 2442 11079 

 Change 
rateb  

1.28 1.20 1.21 1.48 1.24 1.35 1.13 

 t-valc 0.97 0.08 -0.13 2.07* 1.46 1.60 0.40 

Age 6 Meana 1125584 726905 575012 379174 52698 21693 98936 

(n=40) SDa 109161 69385 61544 45763 4084 2883 11250 

 
Change 
rateb  

1.27 1.17 1.17 1.50 1.25 1.44 1.12 

 t-valc -0.53 -1.26 -1.40 0.48 0.31 2.15* -0.19 

Note:  
a. volume unit: mL;  
b. change rate relative to age 1;  
c. t values relative to the previous age-group; *** false discovery rate q<0.05; ** p<0.01; * 
p<0.05. 
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Table 2. The volume of subcortical regions between 1 and 6 years old. 
 

  
Age 1 

 
Age 2 

Age 3 
 

Age 4 
Age 5 

 
Age 6 

  Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Cerebellu
m white 
matter 

L 7362 878 8055 839 9079 938 9393 1618 9927 1131 10511 1417 

R 7721 1129 8507 879 9582 976 9999 1586 10460 1263 11032 1281 

Cerebellu
m cortex 

L 43842 4160 46010 4301 49157 4308 48688 5143 49159 5346 48935 5705 

R 44422 4316 46494 4292 49460 4425 49768 4902 50132 5588 50000 5634 

Thalamus 
L 5720 723 6108 924 6371 711 6561 763 6548 672 6590 538 

R 5895 788 6292 1002 6588 748 6550 668 6816 739 6824 701 

Thalamus 
(Male) 

L 6215 808 6470 919 6640 692 6744 495 7010 709 6905 716 

R 5976 753 6322 879 6404 644 6785 590 6750 682 6727 553 

Thalamus 
(Female) 

L 5459 512 6033 1082 6510 836 6305 787 6547 713 6770 700 

R 5370 516 5798 920 6323 815 6277 878 6267 561 6499 520 

Caudate 
L 3041 445 3180 466 3375 491 3479 533 3594 411 3616 487 

R 2828 501 2795 595 2932 602 3106 657 3226 552 3272 548 

Putamen 
L 3953 554 4374 774 4613 746 5021 963 5344 618 5256 642 

R 3904 720 4420 821 4634 763 4804 1087 5307 721 5239 709 

Pallidum 
L 1194 379 1241 417 1341 349 1542 400 1624 261 1642 280 

R 1145 429 1134 470 1325 418 1393 459 1599 290 1622 303 

Hippocam
pus 

L 2686 312 2885 326 3149 322 3254 399 3427 312 3466 328 

R 2594 268 2795 380 3008 273 3116 373 3308 263 3337 317 

Amygdala 
L 1036 194 1122 191 1193 217 1228 206 1251 222 1232 184 

R 855 225 886 214 1005 192 1023 192 1123 179 1126 179 

Accumben
s area 

L 484 109 630 183 631 174 697 168 651 120 653 171 

R 577 208 780 266 836 268 855 244 776 192 774 221 

Ventral 
DC 

L 2715 420 3245 536 3410 561 3393 474 3268 490 3373 518 

R 2659 399 3065 459 3293 505 3283 403 3199 440 3330 469 

Note: The unit of volume is mL. 
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Figures 

Figure 1 

 

 

Figure 1. Dynamic maps of cortical thickness. The colors indicate cortical thickness. 
Most cortical regions become thinner from 1 to 6 years old. The medial frontal cortex, 
anterior cingulate cortex, and the parietal cortex exhibit fast changes during this period. 
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Figure 2 

 

Figure 2. Annual changes in cortical and subcortical regions. A. Change rate of 
cortical thickness, relative to age 1. While most regions become thinner, the cortical 
thickness of the precentral gyrus, entorhinal cortex, and parahippocampal gyrus 
increases and decreases. B. Change rate of volume of subcortical regions, relative to 
age 1. Most subcortical regions' volume increases with age, and some regions are 30% 
larger than the first year. C. Year-by-year difference of cortical thickness. The colors 
represent t-values comparing the current year with the year before. The white dots 
indicate significant differences after multiple-comparison correction using a false-
discovery rate < 0.05. D. Year-by-year difference in the volume of subcortical 
regions. The colors represent t-values comparing the current year with the year 
before. The white dots indicate significant differences after multiple-comparison 
correction using a false-discovery rate < 0.05. 
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Figure 3 
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Figure 3. Regional growth curve models and clustering results of age-dependence 
patterns. A. Examples of regional growth curve models. The curves with different 
colors represent the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of the growth 
curves. The grey dots represent the actual data for fitting the models. For metrics 
showing significant sex differences, such as white matter volume, sex-specific growth 
curves are fitted. B. Visualization of the four types of cortical regions carrying 
different age-dependence patterns. C. Hierarchical dendrogram of similarity of 
growth curves among all cortical regions. D. A knee plot of inter-cluster distance as a 
function of the number of clusters in the dendrogram (panel C). Starting from 4 
clusters (red dot), the distance is stable. E. Change rates of the median of the growth 
curves corresponding to the four clusters. F. Visualization of the four types of 
subcortical regions carrying different age-dependence patterns. G. Hierarchical 
dendrogram of similarity of growth curves among all subcortical regions. H.  A knee 
plot of inter-cluster distance as a function of the number of clusters in the 
dendrogram (panel G). The distance is stable, starting from 4 clusters (red dot). I. 
Change rates of the median of the growth curves corresponding to the four clusters.  
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Figure 4 

 

Figure 4. Multivariate classification of developmental speech and language disorder 
(DSLD) using growth curves of brain regions. A. A growth curve model for the cortical 
thickness of the right lateral occipital. The growth curve model is presented using 
curves indicating different percentiles in the population, from 5th to 95th. The gray dots 
indicate data from individual participants that were used to construct the growth curve 
models. An independent set of 20 DSLD patients and 20 age-matched controls are 
presented using red and black circles, respectively. The locations of these circles 
indicate their position in the same-age population. B. Relative risk map of DSLD. The 
relative risk value for each region was calculated by dividing the proportion of DSLD 
among all participants showing abnormality by the proportion of DSLD among all 
participants not showing abnormality. The abnormality was defined as outside the 5%-
95% range of the given region's growth curve model. A high relative risk value indicates 
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the abnormal development of a given brain region is a risk factor of DSLD. C. Receiver 
operation characteristic (ROC) curves of classifiers that identify DSLD patients from 
the typically developing children. These classifiers utilize the circles in the growth 
curve models (e.g., those in panel A) of brain morphometrics. The classifier that adopts 
the growth curve models of all morphological metrics, including regional 
thickness/volume metrics and brain tissue volume measures, achieves the highest area 
under the curve (AUC) of 0.998, with a classification accuracy of 0.975. D. ROC curves 
of the classifiers trained using the 1.5T data and tested using independent data from 
the 3T scanner. The AUC is 0.978 for the classifiers combining all the features, 
demonstrating the sensitivity and generalizability of the growth curves and DSLD 
recognition models. 
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