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Abstract

There remains a great challenge to minimize the spread of epidemics. This may be
particularly true on densely populated, residential college campuses. To construct class
and residential networks I used data from a four-year, residential liberal arts college
with 5539 students. Equal-sized random networks also were created for each day.
Different levels of compliance with mask use (none to 100%), mask efficacy (50% to
100%), and testing frequency (daily, or every 2, 3, 7, 14, 28, or 105 days) were assessed.
Tests were assumed to be only 90% accurate and positive results were used to isolate
individuals. I also tested the effectiveness of contact tracing and subsequent
quarantining of neighbors of infectious individuals.

I used class enrollment and residence data from a college with 5539 students to
analyze network structure and test the epidemic potential of the infectious disease agent
SARS-CoV-2. Average path lengths were longer in the college networks compared to
random networks. Students in larger majors generally had shorter average path lengths.
Average transitivity (clustering) was lower on days when students most frequently were
in class (MWF). Degree distributions were generally large and right skewed, ranging
from 0 to 719.

Simulations began by inoculating twenty students (10 exposed and 10 infectious)
with SARS-CoV-2 on the first day of the fall semester and ended once the disease was
cleared. Transmission probability was calculated based on an R0 = 2.4. Without
interventions epidemics resulted in most students becoming infected and lasted into the
second semester. On average students in the college networks experienced fewer
infections, shorter duration, and lower epidemic peaks that occurred compared to
dynamics on equal-sized random networks. The most important factors in reducing case
numbers were the proportion masking and the frequency of testing, followed by contact
tracing and mask efficacy. The paper discusses further high-order interactions and other
implications of non-pharmaceutical interventions for disease transmission on a
residential college campus.

[Model and network data files are available at https:
//github.com/GreggHartvigsen/Network-epidemic-model-college-campus]

Author summary

I built and analyzed daily networks for a college with 5539 students based on class
enrollment and residence data over two academic semesters (fall 2019 - spring 2020). I

April 6, 2021 1/16

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.06.21255015doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://github.com/GreggHartvigsen/Network-epidemic-model-college-campus
https://github.com/GreggHartvigsen/Network-epidemic-model-college-campus
https://doi.org/10.1101/2021.04.06.21255015


then introduced an infectious disease agent similar to SARS-CoV-2 and tested a variety
of non-pharmaceutical interventions to minimize the spread. The structure of these
networks actually resulted in fewer students becoming infected when compared to
random networks. Most important, however, was the level of masking and testing that
was used to mitigate the spread. I found that with moderate levels of testing and
contact tracing and/or masking the number of COVID-19 cases was well contained.
Without any of these non-pharmaceutical interventions most students contracted
COVID-19. Additionally, larger majors were at a slightly elevated level of risk of
infection and students in classes over 40 students also were at a great risk of infection.
The results suggest that college campuses should be able to contain infectious diseases,
such as COVID-19, through the effective use of moderate levels of masking and testing,
with resulting isolation of infectious individuals.

Introduction 1

There remains a great deal of interest in understanding and predicting the dynamics of 2

the spread of the SARS-CoV-2 virus and similar infectious agents through populations. 3

Analytical models are useful for estimating spread rates and extent of epidemics but 4

lack the realistic structure of how people actually encounter each other. Network-based 5

models, on the other hand, allow for discrete modeling of epidemics through more 6

realistically-structured populations [1–3]. These models, however, usually rely on 7

generalizations about the structure of networks, such as being based on a famous 8

network (e.g., [4]). The current work attempts to overcome this by using actual 9

enrollment data for a medium-sized residential, liberal arts college. 10

A variety of models have been used to investigate potential spread and containment 11

using different non-pharmaceutical interventions [5]. The results suggest that 12

government-mandated lock downs, for instance, are essential to work toward reducing 13

COVID-19’s spread (achieving an R0 < 1.0). However, the latter has been criticized for 14

not incorporating the benefits from practices such as contact tracing [6, 7]. 15

There are many studies that have demonstrated the effectiveness of different 16

non-pharmaceutical interventions for the containment of SARS-CoV-2 among people. 17

Masks, for instance greatly reduce the emissions of aerosolized droplets that are the 18

leading cause of transmission [8, 9]. Additionally, testing and subsequent quarantining 19

has been shown to be effective in reducing transmission rates [10,11] and are having 20

effects on other directly transmitted diseases [12]. In this paper I explore the interactive 21

effects of COVID-19 testing, isolation, quarantining, and different proportions of people 22

using masks that differ in efficacy within a real college network. The model relies on 23

actual enrollment data in classes from a college with more than 5500 students. 24

Much remains unknown about the effectiveness of these interventions, such as 25

masking [13]. In particular, there are differences between different types of masks, 26

ranging from the common bandanna (neck gator) to N95 respirators [9, 14]. Because of 27

this it is important to examine how masks with different efficacies might influence the 28

spread of COVID-19 through a population. In addition, there are differences in the 29

extent to which people use masks and wear them appropriately. In one study 86.1% of 30

adults ranging in age from 18-29 chose to wear masks [15]. Despite this encouraging use 31

of non-pharmaceutical interventions the pandemic has not been contained. 32

The US Centers for Disease Control and Prevention (CDC) has provided guidelines 33

for institutions of higher education for safe operations [16]. Included in these 34

recommendations are a range of practices from lowest risk to highest risk. The work 35

here addresses this range by assessing what happens across the spectrum of safety, from 36

the highest risk with in-person classes without non-pharmaceutical interventions to the 37

lowest risk with no in-class meetings (simulated here through the use of masks that are 38
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100% effective and used by everyone). 39

It is the hope of this work that we can better understand and predict the dynamics of 40

infectious diseases and the effect on control measures in residential college communities. 41

Methods 42

Anonymized data for a two-semester academic year (2019-2020) were acquired that 43

included class enrollments and local addresses for 5539 students [17]. Networks were 44

constructed for each day of the week for each semester. Class sizes ranged from 1 to 351 45

students. Weekend networks contain only housing data. Daily networks ranged from 46

3108 to 4919 students that were connected with between 109,000 to 305,000 edges, 47

connecting students who were either enrolled in the same class or lived at the same 48

address. Multiple edges were permitted. No faculty or instructors were included in the 49

networks. In addition, equal-sized random networks were created for each day. 50

I calculated degree distributions, average path lengths, and average clustering 51

coefficients (transitivity) for the college and random networks for each day of the week 52

for both fall and spring semesters. 53

An SEIRIQ network model (states include susceptible, exposed, infectious, recovered, 54

isolated, and quarantined) was developed to simulate the spread of the SARS-CoV-2 55

virus through a population of undergraduate students (Fig 1). The network changed for 56

each day of the week as students attended their various classes. On weekends students 57

were assumed to only come into contact with their house mates. Fall and spring 58

semesters were assumed to continue without interruption. At the beginning of the fall 59

semester 20 students were assumed to begin classes infected with the virus (ten 60

categorized as exposed and ten infectious). Students remained in the non-infectious 61

exposed class for two days. After a 10 day infectious period ended individuals would 62

enter a recovered state and could not be reinfected. The basic reproductive number (R0) 63

was set at 2.4 [18] which follows an earlier report which suggested the same rate [5]. 64

These and additional parameters for the model are provided in Table 1. Simulations 65

ended when the disease was cleared or there were no remaining susceptible neighbors of 66

infectious individuals. The model assumes no individuals are able to become reinfected 67

which has been found to be relatively rare [19]. Model, statistics, and network 68

construction and analysis were completed using R [20] and the igraph package [21]. 69

Fig 1. Example of student networks over time. Students (dots) in the each class
(ovals in upper boxes) form complete networks. Students in residences form relatively
sparse networks (below). Infected students carry their infections from day to day, even
if not in a class on certain days.

Simulations were run to compare spread under unmitigated conditions between the 70

student and random networks (no masking or testing). Individuals were initially 71

susceptible with 10 individuals randomly inoculated as exposed with an additional 10 72

individuals inoculated as infectious. Exposed individuals became infectious after two 73

days and remained infectious for 10 days (see Table 1). 74
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Table 1. Parameter settings for simulations. These are the basic settings used in
the simulations. This resulted in 6400 simulations.

Parameter Settings Sources

R0 2.4 estimated
Number days exposed (latent) 2 [22]
Number days infectious 10 [23]
Network types College, Random
Test cycle (days) 0, 1, 2, 3, 7, 14, 28, 105
Test results delay 1 day
Test accuracy 90%
Contact tracing yes/no
Number days in isolation/quarantine 14 CDC rec.**
Proportion population masked 0, 0.5, 0.75, 0.861*, 1 [24]
Mask efficacy 0.5, 0.75, 0.95, 1.0
Number initially exposed/infectious 10/10
Number of replicates 10

Table notes: * for 18-29 year olds [24]. ** At the time of writing CDC recommends a 10
day quarantine period.

Testing, contact tracing, and masking 75

All individuals were tested each semester but at different time periods. For each test 76

cycle period students were randomly assigned days they would be tested. Time periods 77

were 1, 2, 3, 7, 14, 28, or 105 days. A one means students were tested daily and 105 78

means students were tested once per semester. In addition, I ran simulations without 79

testing (see Table 1). Students were not tested if they were currently awaiting test 80

results or in either isolation, quarantine, or recovered. Test results were evaluated one 81

day after testing with a 90% positive accuracy rate (false positives were not considered). 82

If testing was being used then students that were infectious at the time of the test were 83

isolated for two weeks. If contact tracing occurred then all susceptible neighbors were 84

quarantined for two weeks. The model treats quarantine as complete with no contacts 85

allowed. Students that were in the exposed state when tested then their test result was 86

treated as a negative and were returned to the network and allowed to move to the 87

infectious state. After 10 days in the infectious state students were moved into a 88

recovered class and could neither receive nor share the virus with neighbors. 89

The transmission probability (Td,s) was calculated for each day of the week (d) for 90

each semester (s). This probability was used to determine the likelihood that an 91

infectious individual would pass the virus to a susceptible neighbor on a given day. Td,s 92

was determined using the following relationship: 93

Td,s = 1 −
(

1 − R0

Kd,s

)(1/DI)

(1)

where Kd,s is the median degree of the network on day d of each semester (s) [4]. 94

Individuals were assumed to be infectious for 10 days (DI = 10, [23]). On weekends 95

degrees were low leading to relatively high transmission probabilities, which effectively 96

simulates close interactions among roommates. This relationship for Td,s results, on 97

average, of infectious individuals infecting R0 susceptible neighbors in a completely 98

susceptible neighborhood. However, as the infection spreads the realized spread rate 99

generally decreases as the number of susceptible neighbors of infectious individuals 100

decreases. 101
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Results 102

I begin with a comparison evaluating the structural differences between the college and 103

random networks. This includes the degree distributions and clustering coefficients as 104

well as the average path lengths for all students and grouped by majors. These metrics 105

play important roles for the overall dynamics of disease transmission. This is followed by 106

a discussion of the results from simulating disease transmission through these networks. 107

The college network structure 108

The college networks include course enrollments for Monday - Friday plus the housing 109

data for all days of the week over both fall 2019 and spring 2020 semesters. Students 110

were assumed to interact only with their housemates on weekends. These networks, 111

were strikingly different from the random networks for each day of the week and 112

between semesters (see Fig 2). These structural differences led to significant differences 113

in the dynamics of disease spread between the college and random networks (discussed 114

below). The housing network includes 89% of students (e.g., students not reporting 115

off-campus residences). A majority of students can be seen living in pairs (dyads in Fig 116

2). Undoubtedly, weekend and evening gatherings could contributed substantially to 117

epidemic spread. 118

College Network Random Network

Fig 2. College and random housing networks for the fall 2019. Both networks
contain 4919 vertices and 4045 edges. Small housing communities are apparent in the
college network (left). Vertex arrangements were completed using the Davidson-Harel
layout algorithm.

Degree 119

The number of connections (degree) for individuals in the college networks ranged from 120

0 to 719 and varied from day to day and were right skewed (Fig 3), with most 121

individuals having a total degree less than 100 each day. A small number of students 122

had a zero degree on a day in which they had no classes and happened to not have their 123

housing location reported. On the weekend (“SS” in Fig 3) we can see that a few 124

individuals had degrees greater than 10. The most frequent degree was just one, 125

forming dyads (note that in Fig 3 a one was added to all degrees). 126
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Fig 3. Degree distributions for college networks by day for fall 2019 and
spring 2020 semesters. Weekday networks include both enrollment and housing
connections for both the fall 2019 and spring 2020 semesters. The weekend networks
(“SS”) include only the housing connections. Degree values all were increased by one
and shown on a semi-log plot.

Average path length 127

The average path length (APL) is a metric that summarizes the average number of 128

steps from each student to all other students through both the enrollment and housing 129

networks. APL varied by day of week (Fig 4). Most notably, students are very highly 130

connected with fewer than three steps separating students, on average. Some differences 131

are apparent between semesters, particularly between MWF and TR classes. Average 132

path lengths are longer in the college network compared to the random network due to 133

clustering that takes place within majors. Additionally, we can see that students in 134

different majors had variable average path lengths with no clear pattern related to size 135

of major (Fig 5). 136

Clustering coefficient 137

The clustering coefficient (CC), or transitivity, for a vertex in this analysis is the 138

average number of triangles formed by neighbors divided by the total possible number 139

of triangles. High average values for this coefficient suggest students who are clustering 140

together in groups. In the college networks clearly students are gathering in classes 141

which form complete subgraphs. This measure can play an important role in the spread 142

of a disease within a group but also can function to isolate different groups from each 143

other. The college networks are clearly highly clustered compared to the random 144

networks and serves as an important metric differentiating the college from random 145

networks (Fig 6). 146
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Fig 4. Average path length for college and random networks. The average
path length (APL) for weekday networks from the fall 2019 semester are shown.
Additionally, APL values for random networks also are shown, which are consistently
lower.

Epidemic dynamics 147

Simulations were begun on the first day of classes in the fall 2019 semester. For each 148

replicate simulation on both the college and random networks 20 randomly selected 149

students were inoculated with SARS-CoV-2 virus. Half were placed in the exposed class 150

and half in the infectious class. The disease always spread on both the college and 151

random networks (Fig 7). The dynamics exhibited periodicity on a weekly schedule due 152

to restricted spread on weekends when individuals in the model mix only with those with 153

which they reside. As a result, relatively few individuals become exposed over weekends. 154

All five factors significantly influenced the number of infected individuals in the 155

network populations. Most important of these are the frequency of testing (test cycle) 156

and the proportion of students using masks (Fig 8). These two factors explained a 157

combined 45 percent of the total variance in the model and, as testing and masking 158

levels increased the number of cases fell (Table 2). Additionally, all higher-order 159

interactions were statistically significant (not shown in Table 2). I found that testing, 160

and subsequent isolation and quarantining of contacts, significantly reduced the total 161

number of infections, accounting for a combined 27% of the overall variance. The effect 162

is quite large for even small levels of testing and subsequent isolation of individuals who 163

test positive, followed by quarantining of neighbors. I found a significant reduction in 164

the numbers of individual infected with as little as 0.5% of the population tested daily 165

(students testing once per month, Fig 8) . 166

In the absence of interventions (testing and masking) disease prevalence reached its 167

highest levels seen in all simulations. Overall, the college, with its higher APLs and 168

clustering coefficients, exhibited fewer infections than seen in the random networks 169

(Table 3). Additionally, the epidemics on the college networks reached their peaks and 170

ended later than those on random networks and resulting in fewer infected individuals. 171

An additional challenge for college health providers is the result that the epidemic peak 172

on this campus occurred after just one month and involved over 25% of the student 173
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Fig 5. Average path length for students separated by major and weekday.
The average path length (APL) for students in the 10 most populous majors for each
weekday during the fall 2019 semester are shown. Numbers above bars represent the
number of students registered in a class on that day by major. Abbreviations are:
Biology (Bio), Psychology (Psych), Communications (Comm), Undecided (Undec),
Political Science (PolSci), Business Administration (B-Admin), Pre-Business
Administration (Pre-B-Admin), Accounting (Acc), Childhood/Special Education (C/S
Edu), English (Eng), and Mathematics (Math).
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Fig 6. Clustering coefficients for weekday college and random networks.
The global clustering coefficients (transitivity) for the college and one rendition of the
paired random networks based on the same number of vertices and edges.
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Fig 7. Time series dynamics of the simulation. The number of exposed (E) and
infectious (I) individuals per day for ten replicate simulations on the college (left) and
random (right) networks. Fewer individuals become infected on the college network
than the random network because of the community structures (longer APLs and higher
clustering coefficients) within majors. The weekly cycles are caused by the increased
but sparser connectivity on weekends.

population. 174

Testing and contact tracing 175

Increasing testing frequency with contact tracing significantly reduced the number of 176

infections. Previous work suggesting that testing every other day minimized the number 177

of infections [25]. Results here concur (Fig 8) although, numerically, fewer individuals 178

were infected by testing daily. There was no significant difference between the number 179
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Fig 8. The number of infections for different testing frequencies for both
networks. The average number of infections for simulations with testing and contact
tracing at different intervals. Note that test cycles are the days between testing for
individuals. The largest number of infections occurred when no testing was done (0
days), followed by testing students only once per semester (105 days). Error bars are ±
95% confidence intervals. Samples sharing letters are not statistically different.

Table 2. ANOVA table for number of infections. The main effects and two-way
interactions are shown as percentages of the sums of squares from the ANOVA. All
factors and higher-order interaction terms were highly statistically significant (P <
0.001). The main and two-way interactions (shown) accounted for 88% of the variance
(overall adjusted R2 = 0.995).

Factor df Percent SS p

Test Cycle 7 22.24 < 0.001
Contact Tracing 1 5.00 < 0.001
Proportion Masked 4 23.33 < 0.001
Mask Efficacy 3 1.97 < 0.001
Network Type 1 0.36 < 0.001
Test Cycle x Contact Tracing 7 3.75 < 0.001
Test Cycle x Proportion Masked 28 19.29 < 0.001
Contact Tracing x Proportion Masked 4 7.94 < 0.001
Test Cycle x Mask Efficacy 21 3.19 < 0.001
Contact Tracing x Mask Efficacy 3 0.41 < 0.001
Proportion Masked x Mask Efficacy 12 0.77 < 0.001
Test Cycle x Network Type 7 0.06 < 0.001
Contact Tracing x Network Type 1 0.26 < 0.001
Proportion Masked x Network Type 4 0.17 < 0.001
Mask Efficacy x Network Type 3 0.09 < 0.001

Residuals 5760 0.95 < 0.001

of infected individuals for testing rates of every day to just once every two weeks. 180

However, from an implementation standpoint I found that the number of tests needing 181

to be administered in the college network population was highest when tests were 182

administered every other day (Fig 9). This is due to the high reproductive rate of 183

SARS-CoV-2 (R0 = 2.4) that allow the virus to spread more than when testing 184

occurred daily. The fewest tests were required when testing was conducted daily and 185

when done just once per student per semester, although the latter was the least effective 186

method for controlling COVID-19 (Fig 8). 187
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Table 3. Comparison of unmitigated spread on the college vs random
networks. The four main response variables are presented as means (± 95% CI). No
masking or testing was done. All eight samples were normally distributed. All responses
were significantly different between the college and random networks using a t-test (df
= 18). Note that the outbreaks were completed after approximately one semester (105
days) and infected an average of 63% and 76% of the college and random network
individuals, respectively.

Metric College Random

Total number of infections** 3467.6 (36.5) 4197 (32.4)
Duration of epidemic** 100.5 (3.9) 107.9 (5.5)
Peak number of infections** 1656.7 (50.7) 1799.0 (38.5)
Day of peak infections* 33.0 (0) 46.3 (2.8)

* Differences are statistically significant (* p = 0.024, ** p < 0.001).
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Fig 9. The average number of tests conducted per person versus testing
cycle. These simulations include only tests with contact tracing and no masking using
the college networks. The average number of tests per person was greatest when
individuals were tested every other day. This was far greater than when individuals
were tested daily because individuals that tested positive were isolated, not tested
during this period and most effectively curtailed the outbreak. Error bars are ± 95%
confidence intervals. Samples sharing letters are not statistically different.

An additional 19% is explained by the interactive effects of the number of people 188

tested and the proportion of individuals that mask, regardless of the efficacy of masks, 189

which ranged from 50% to 100% effective. 190

The effects of masking 191

Masking significantly reduced the number of infected individuals in these populations. 192

Importantly, I found a significant interaction between the proportion of people masking 193

and the efficacy of the masks (Fig 10, Table 2). As can be seen in this figure, changing 194

from no masking to even using masks that are 50% effective at blocking the 195

transmission greatly reduced the number of infections. 196
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Fig 10. Comparison of the number of infected individuals in response to
masking levels and efficacies between networks. The number of individuals that
became infected under different levels of masking and mask efficacy for both the college
and random networks. This three-way interaction was statistically significant (F =
74.14; df = 12, 5760; p < 0.001) along with the two-way interactions within network
types. Without masking more students contracted the disease on the random networks
but masking proved less effective, comparatively, on the college network due to the high
clustering of students. Error bars are ± 95% confidence intervals.

Which students contract COVID-19? 197

Unfortunately, essentially all the students are vulnerable and likely to contract 198

COVID-19 based on how students are connected through coursework and their 199

residences. Having the majors of students allows me to determine whether students of 200

different majors are more or less likely to contract COVID-19. In Fig 11 we can see, 201

after creating induced subgraphs by major, there is no relationship between the mean 202

proportion of students contracting the disease agent and average path length (A), mean 203

degree (B), or clustering coefficient (C, Fig 11). However, there was a weak, positive 204

relationship between proportion of students infected and the size of the major (D, F = 205

4.56; df = 1, 38; p = 0.039; y = 0.079x + 0.457; R2 = 0.084). Additionally, I found that 206

there was a positive, non-linear relationship between the sizes of individual classes and 207

the proportion of students that got infected, although this relationship is poorly 208

modeled with any simple asymptotic function. Also, the relationship appears important 209

only as class size exceeds about 50 students (Fig 12). 210

Discussion 211

To predict the dynamics of a disease like COVID-19 spreading through a college 212

campus, or any population, it is helpful to include the actual structure of the 213

population. This work relies on class enrollment and housing data from a college with 214

5539 students. I analyze network structure and simulate the spread of the disease 215

through the population. These networks and model dynamics also are compared against 216

those responses in a set of same size, randomly constructed networks. 217

When a disease, such as COVID-19, enters a college population there exists a variety 218

of challenges to minimizing its spread. In this work I investigated the effects of various 219

methods to minimize disease spread. The findings suggest that the risk of disease 220

spread is reduced significantly by the actual structure of students who are non-randomly 221

enrolled in classes, mainly with members of the same majors. This appears to be largely 222
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Fig 11. Testing factors associated with the proportion of students that
contracted COVID-19 by major. Circles with dots in their centers represent
different majors. Circle areas are proportional to the number of students in those
majors. Simulations were replicated five times for the proportion infected. Network
metrics include average path length (A), mean degree (B), average clustering coefficient
(C), and the number of students in each major (D). The proportion of infected students
is positively related only to the number of students in the major (F = 4.56; df = 1, 38;
p = 0.039; y = 0.0789x + 0.457; R2 = 0.084)

due to longer average path lengths and higher clustering coefficients found among 223

students in the college networks compared to random networks. The longer a path is 224

between students the less likely a transmissible disease agent will be successfully 225

transmitted. Interestingly, there was a significant, although weak, relationship between 226

the size of majors (number of students) and the number of infections. Additionally, 227

there was clearly an increased risk of students contracting a disease like COVID-19 from 228

larger classes. 229

Admittedly, entering into a non-voluntary 14-day quarantine period is disruptive to 230

everyone, particularly college students. In this model, too, students were completely 231

compliant during the quarantine period. When implementing frequent testing of 232

students in the model many students ended up in quarantine. This greatly disrupts 233

learning environments. There is evidence that shorter quarantine periods may be 234

effective [27]. Additionally, this model assumes a relatively rapid turn around on testing 235

results (1 day). Interestingly, testing students every day resulted in very low numbers of 236

tests administered because infectious individuals were rapidly identified and isolated, 237

despite test accuracy being only 90%. Daily testing also resulted in the fewest number 238

of cases. However, the administration of daily tests for all students on a campus is likely 239

challenging. Modeling by Paltiel et al. (2020) concluded that testing on a college 240

campus would be optimal at, in decreasing order of effectiveness, 2-, 1-, and 7-day 241

intervals [25]. Results here suggest that there would be an approximately five-fold 242

increase in the number of tests required when implementing a two day testing period 243

over testing daily. 244

Students in larger classes tended to have a higher risk of becoming infected. This 245

leads to a recommendation that class size be kept as low as is feasible. However, with 246
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Fig 12. Mean proportion of students infected versus class size. The mean
proportions of students infected are from all 1458 classes in the fall 2019 semester. Two
simulations were run without interventions (e.g., masking or contact tracing) and the
proportions infected were averaged. The results suggest that large class sizes impose
increased risk of infection, particularly classes over 40 students (vertical dashed line).
Although there are relatively few large classes these do represent a large number of
students. Data are from the fall semester when most infections occurred.

the use of even low efficacy masks the epidemic can be well contained. 247

The current work does not model the effects of social distancing as an effective 248

non-pharmaceutical intervention. Clearly, the level of concern by students can vary 249

greatly and this was accounted for through the testing of mask efficacy (from 50 - 100% 250

effectiveness). This model calculates a transmission probability for all students each day. 251

With this approach it is assumed that students all share the same likelihood of either 252

infecting others or being infected by others. It would be interesting to know how 253

important these assumptions are in affecting the outcomes reported here. 254

Conclusion 255

Students on a college campus generally reside in very well connected networks by 256

attending classes and living in residence halls. With a high reproductive rate for a 257

directly transmitted disease agent, such as SARS-CoV-2 students attending a residential 258

college are at a high risk of spreading and contracting such a disease. I found that the 259

actual structure of the college network itself was sufficient to reduce the spread of the 260

disease agent. This was due to students in majors taking classes together, leading to 261

increased average path lengths and higher clustering coefficients compared to 262

randomized networks. Additionally, wearing masks and utilizing frequent testing and 263

contact tracing that leads to isolation and quarantine can greatly reduce spread in such 264

a community. Even the use of poorly functioning masks alone greatly reduced 265

transmission. Finally, I found that class sizes greater than 40 students resulted in high 266

proportions of those students contracting the disease. Therefore, working to manage the 267
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size of classes would likely reduce the incidence of transmissible diseases on college 268

campuses. 269
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