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Abstract
We investigate machine learning models that identify
COVID-19 positive patients and estimate the mortality
risk based on routinely acquired blood tests in a hos-
pital setting. However, during pandemics or new out-
breaks, disease and testing characteristics change, thus
we face domain shifts. Domain shifts can be caused,
e.g., by changes in the disease prevalence (spreading
or tested population), by refined RT-PCR testing pro-
cedures (taking samples, laboratory), or by virus mu-
tations. Therefore, machine learning models for diag-
nosing COVID-19 or other diseases may not be reliable
and degrade in performance over time. To countermand
this effect, we propose methods that first identify do-
main shifts and then reverse their negative effects on
the model performance. Frequent re-training and re-
assessment, as well as stronger weighting of more recent
samples, keeps model performance and credibility at a
high level over time. Our diagnosis models are con-
structed and tested on large-scale data sets, steadily
adapt to observed domain shifts, and maintain high
ROC AUC values along pandemics.

1 Introduction
Reverse transcription polymerase chain reaction
(RT-PCR)1 are still the gold standard tests for the coro-
navirus disease 2019 (COVID-19)2. However, RT-PCR
tests are expensive, time-consuming, and not suited
for high-throughput or large-scale testing efforts. In
contrast, antigen tests are cheap and fast, but they
come with considerably lower sensitivity than RT-PCR
tests3. Blood tests for COVID-19 are a promising

technique, since they unify the best of RT-PCR and
antigen tests: they are cheap, fast, efficient, and have
sufficiently high sensitivity when combined with ma-
chine learning (ML) methods. Furthermore, auto-
matically checking all routinely taken blood tests for
COVID-19 allows frequent, fast and broad scanning at
low costs, thus provides a powerful tool to ban new
outbreaks4,5. Therefore, we assess ML methods for di-
agnosing COVID-19 from blood tests. ML can enhance
the sensitivity of cheap and fast tests such as antigen6
or blood tests, therefore enabling a cost efficient alter-
native to RT-PCR tests. ML methods enhanced tests
could be particularly useful for asymptomatic patients
with a routine blood test, who would not be tested for
COVID-19. In this scenario, COVID-19 positive pa-
tients could be identified, isolated and a further spread
of the virus might be prevented. Especially in devel-
oping countries with limited testing capacities, the ML
enhanced tests can evolve into an efficient tool in com-
bating a pandemic.

To confine the spread of infectious diseases, and es-
pecially the COVID-19 pandemic, ML approaches can
be applied in very different ways7. ML algorithms help
in developing vaccines and drugs for the treatment of
COVID-198–10. COVID-19 and the patient’s prognosis
can be predicted from chest CT-scans, X-rays11–14 or
sound recordings of coughs or breathing15–17. Further-
more, it has been shown that MLmodels based on blood
tests are capable of detecting COVID-19 infection18–32
and predicting other outcomes, such as survival or ad-
mission to an intensive care unit33–41.

An ML model is constructed via learning on a data
set with the goal that the model generalizes well, that
is, performs well on new, unseen data, e.g., correctly
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predicts the label or class for a new data item. The
quality, size and characteristics of the training data set
strongly determine the predictive quality of the result-
ing model on new data. The central ML paradigm is
that training data and future (test) data have the same
distributions. This paradigm guarantees that the con-
structed or learned model generalizes well to future data
and has high predictive performance on new data. How-
ever, this paradigm is violated during pandemics. Data
sets collected during the progression of the COVID-19
pandemic are characterized by strong changes in distri-
bution, called domain shifts. These domain shifts vio-
late the central ML paradigm, nevertheless, they were
insufficiently considered or even neglected during the
evaluation of ML models. Unexpected behavior of the
models in real world hospital settings often stem from
neglected domain shifts42. Such an unexpected behav-
ior could even lead to unfavorable consequences, like a
major disease outbreak in a hospital. Most of the previ-
ous ML studies evaluated the predictive performance of
the learned models by cross-validation, bootstrapping
or fixed splits on randomly drawn samples18–22,26–32.
However, the theoretical justification of these evalu-
ation methods is heavily founded on the central ML
paradigm: that the distributions remain constant over
time. To disregard domain shifts is a culpable negli-
gence, since they may lead to an overoptimistic per-
formance estimate on which medical practitioners base
their decisions. These decisions are then misguided.

Yang et al.25 and Plante et al.24 addressed the do-
main shifts via evaluation on an external data set. Yang
et al.25 trained and evaluated their models on data from
the same period and therefore, temporal domain shifts
were not sufficiently considered. The training and ex-
ternal evaluation set as in Plante et al.24 only includes
pre-pandemic negatives, they missed out on using pan-
demic negatives. Soltan et al.23 considered the tem-
poral domain shift by conducting a prospective evalua-
tion. However, analogous to Plante et al.24, the nega-
tives are all pre-pandemic, therefore, the domain shift
is artificially generated and can deviate from domain
shifts during the pandemic.

In the following, we describe the categories of domain
shifts that can occur in COVID-19 data sets. For the
categorization, we have to consider two random vari-
ables, which both are obtained by testing a patient:

• x: Outcome of a fast and cheap test. The mea-
surement values for a patient, which serve as in-
put data (input features) for an ML model. We
assume that the COVID-19 status (positive / neg-
ative) can, to some extent, be inferred from these
tests. The measurements can arise from a fast and
cheap test such as a blood test or vital sign mea-
surement. To illustrate this value, we assume that

x is the fibrinogen level, since it tends to rise during
a systemic inflammation43.

• y: Outcome of the slow and expensive COVID-19
RT-PCR test, which is assumed to be binary
y ∈ {0, 1} to indicate the COVID-19 status. The
test result y is assumed to be the ground truth and
should give the actual COVID-19 status.

Our goal is to use ML methods to predict y from x,
in order to replace the slow and expensive COVID-19
RT-PCR test by a fast and cheap test.

Examples of temporal domain shifts are shown in
Figure 1 a, which affect the model performance and
the trustworthiness of performance estimates, see Fig-
ure 1 b and c. We identify and define following cate-
gories of domain shifts44,45:

• Prior shift: p(y). The probability of observing a
certain RT-PCR test result, e.g., y = 1, strongly
changes during the pandemic. If the overall preva-
lence of the disease in the population is high, the
probability to observe a positive test usually in-
creases.

• Covariate shift: p(x). The distribution of the
patient features is also affected by the overall pan-
demic course. E.g., if the prevalence of the disease
is high, more persons suffer from disease symp-
toms, with potentially high fibrinogen, and go to
the hospital. Nevertheless, fibrinogen levels could
also change without connection to the pandemic,
for example, with time of year46. Or, in case there
is an obligation for testing, the person group is
changed as are the measurements.

• General domain shift: p(y, x). The joint distri-
bution of patient features and labels also changes
during the pandemic, for example with new virus
mutations. A new mutation could lead to more
severe disease progression47 and to even higher fib-
rinogen.

• Concept shift: p(y|x). Probability to observe a
certain RT-PCR test result given a patient charac-
terized by their measurements such as blood tests.
We model this by p(y = 1|x) ≈ g(x;w), with
the model g and the model parameters w. The
RT-PCR test result y changes even if the patient
features x are the same, which can occur with
changing test technologies, changing test proce-
dures, changing thresholds, and so on.

Neglecting and insufficiently countering the above
mentioned domain shifts can lead to undesired conse-
quences and failures of the models:
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Figure 1: Domain shifts in COVID-19 data sets. a, COVID-19 numbers in Austria over time, illustrating fac-
tors causing a temporal domain shift. The numbers are sketched according to data from the Austrian BMSGPK
(https://www.data.gv.at/COVID-19/). b, The actual model performance is calculated for each month from June
to December 2020 and the estimated model performance is calculated on the respective previous month. c, Estimated
and actual performance with 95 % confidence intervals. The estimated and actual ROC AUC is significantly different
in December and PR AUC differs significantly in November and December, showing the effect of the domain shifts.
Note that the PR AUC is sensitive to changes of prevalence.
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Unreliable performance estimates. Performance
estimates without consideration of domain shifts might
be overoptimistic and the actual performance of the
model can deviate significantly from the estimate42 (see
Figure 1, and Section 2.5).

Degrading of predictive performance over time.
Standard ML approaches are unable to cope with
domain shifts over time and during the progression of a
pandemic, which can result in a decrease of predictive
performance44,48,49.

In light of the domain shifts, we suggest lifelong learn-
ing and assessment50–52, thereby maximizing the clini-
cal utility of the models. Concretely, we propose a) fre-
quent temporal validation to identify domain shifts and
b) re-training the models with higher weights of re-
cently acquired samples. To this end, a continuous
stream of COVID-19 samples is required, which can be
achieved by routinely testing a subset of samples with
an RT-PCR test.

We evaluate and compare our proposed approach of
lifelong learning and assessment against standard ML
approaches on a large-scale data set. This data set com-
prises 127,115 samples after pre-processing and merg-
ing, which exceeds the data set size of many small
scale studies18–22,32 by far. Our data set comprises
pre-pandemic negative samples and pandemic negative
and positive samples spanning over multiple different
departments of the Kepler University Hospital, Linz.
As opposed to studies that require additional expensive
features19,22,23, our models use no other features than
blood test, age, gender and hospital admission type.
This way, the blood tests can be automatically scanned
for COVID-19 in a cost-effective way without any ad-
ditional temporal effort for the hospital staff.

We additionally report the predictive ability for mor-
tality risk of the COVID-19 positive samples on the
basis of the blood tests only, again with no additional
expensive features33–35,38,40,41,53,54. Compared to pre-
vious studies33,36,37,39, our mortality models are trained
on a large number of COVID-19 positive patients. We
again take domain shifts and other potential biases into
account for mortality prediction.

2 Results

2.1 Study Cohort
Our dataset comprises 125,542 negative and 1,573 pos-
itive samples for training and evaluation of the ML
models for COVID-19 diagnosis. From the negatives,
116,067 have been acquired before the pandemic and
9,475 during the pandemic. The RT-PCR test sample

has been collected after the blood test, with a window
of 48 hours between the two tests. From the COVID-19
diagnosis data set 919 cases survived and 118 cases died
with COVID-19.

For the mortality prediction, the features and sam-
ples are selected on the basis of the COVID-19 positive
patients, rather than the 2019 cohort for the COVID-19
diagnosis data set. The data sets are imbalanced in
both tasks, the COVID-19 diagnosis and the mortality
prediction. The pre-selection of the samples and the
merging is described in more detail in Section 4 and
in Figure 2. In the 2019 cohort and in the 2020 cohort
women and men occur about equally often (2019 cohort:
48 % men, 2020 cohort: 48 % men). However, in the
positives cohort, there are more men (56 % men). The
death rate of patients relative to the COVID-19 posi-
tive samples in patients with 80 years or older is 20 %,
in patients younger than 80 years, it is 8 %. In our data
set, men died more than twice as often as women (68 %
men). In the age group below 80 years, men died even
three times as often as women with COVID-19 (75 %
men).

2.2 Machine learning methods and
model selection

We show the capability of the ML models to classify
COVID-19 and to predict the mortality risk. We com-
pare the performance of self normalizing neural network
(SNN)55, K-nearest neighbor (KNN), logistic regression
(LR), support vector machine (SVM), random forest
(RF) and extreme gradient boosting (XGB). XGB and
RF outperform other model classes in the COVID-19
diagnosis and also in the mortality prediction. The do-
main shifts are exposed when comparing the evalua-
tions on different cohorts.

The hyperparameters are selected on a validation
set or via nested cross-validation to avoid a hyperpa-
rameter selection bias. Performance is estimated ei-
ther via standard cross-validation or by temporal cross-
validation (for details see Section 4.3).

2.3 Comparison of estimated and actual
performance

In this experiment, we investigate the effects of a stan-
dard ML approach, in which a model is trained on data
collected in a particular time-period, then assessed on
a hold-out set and then deployed. Concretely, we train
an XGB model on data from July 2019 until October
2020, and assess the model performance on data from
November 2020. We then simulate that the model is
deployed and used in December 2020. Without domain
shifts, the predictive performance would remain similar,
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Figure 2: Large-scale COVID-19 data set. a, Block diagram of the structure of the data set. The blood tests from
2019 (blood tests 2019) are all negatives and are pre-processed to the 2019 cohort. The COVID-19 RT-PCR test
results and the blood tests are merged to the 2020 cohort. The negatives data set results from the 2019 cohort and
the negative samples of the 2020 cohort. The positive tested cases (positives) are further divided to the cohort with
the survived and the deceased cases. Note that one case can be in the negatives and positives cohort due to a change
of the COVID-19 status. Multiple samples are obtained from one case, if RT-PCR and blood tests are measured
repeatedly. b, Aggregation of the blood tests for the COVID-19 tested patients: The blood tests of the last 48 hours
before the COVID-19 test are merged to one sample. In case a feature is measured multiple times, the most recent
one is inserted in the sample. Patient specific data, namely age, gender and hospital admission type, are added to the
sample.

but in the presence of domain shifts, the performance
would be significantly different. Thus, domain shifts
are exposed by comparing actual performance with the
estimated performance determined on the respective
previous month, see Figure 1 b. The area under the
receiver operating characteristic curve (ROC AUC) es-
timate is higher than the actual performance in most
months (Figure 1 c). The ROC AUC performance es-
timate for December was significantly lower than the
actual performance in December. The estimated and
actual area under the precision recall curve (PR AUC)
differ significantly in November and December. These
results show that there is a domain shift and thus there
is a necessity for up-to-date assessments, otherwise the
performance estimate is not trustworthy.

2.4 Model performance under domain
shifts

In this section, we set up five modeling experiments
with two prediction tasks and different assessment
strategies:

(i) COVID-19 diagnosis prediction assessed by ran-
dom cross-validation with pre-pandemic negatives,

(ii) COVID-19 diagnosis prediction assessed by ran-
dom cross-validation with recent negatives,

(iii) COVID-19 diagnosis prediction assessed by tem-
poral cross-validation,

(iv) mortality prediction assessed by random cross-
validation,

(v) mortality prediction assessed by temporal cross-
validation.

We then compare the performance estimates ob-
tained by the assessment strategy. If the performance
estimates by random cross-validation and temporal
cross-validation are similar, then the underlying distri-
bution of the data is likely to be similar over time. If
the performance estimates of (ii) are different from (i),
then former and current negatives follow different dis-
tributions. If performance estimates from (iii) are lower
than those of (i) and (ii), the distribution of the data
changes over time, hence indicating the presence of do-
main shifts. Equally, changing performance estimates
from (iv) to (v) indicate a domain shift over time. The
results in terms of threshold-independent performance
metrics for the comparison of the models are shown in
Table 1 a and b and in Figure 3. More information
about the discriminating capability of individual fea-
tures is shown in Figure 5 and in Table 5.

(i) COVID-19 diagnosis prediction & random
cross-validation with pre-pandemic negatives.
In this experiment all cases from 2019 and 2020 are
randomly shuffled, see Section 4.3 for more details.
In experiment (i) the highest performance is achieved,
however, domain shifts are not considered in the per-
formance estimate. The model with the highest ROC
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AUC of 0.97±0.00 and PR AUC of 0.52±0.01 is the RF.
Note that the baseline of a random estimator (RE) is at
0.50±0.00 for ROC AUC and 0.01±0.00 for PR AUC,
the latter due to the high imbalance of positive and neg-
ative samples. For in-hospital application a threshold is
required to classify the probabilities of the models to the
positive or negative class. This threshold is a trade-off
between identifying all positive cases and a low num-
ber of false positives. Therefore, we report the thresh-
old-dependent metrics for multiple thresholds, which
are determined by defining negative predictive values
on the validation set. The results with these deter-
mined thresholds are shown in Table 1 c for the RF.

(ii) COVID-19 diagnosis prediction & random
cross-validation with recent negatives. The test
set of experiment (ii) only comprises cases, which have
been tested for COVID-19 with an RT-PCR test. The
2020 cohort comprises patients which are suspicious for
COVID-19, some might even have characteristic symp-
toms. Therefore, a classification of the samples in the
2020 cohort is more difficult and potential biases be-
tween the 2019 and 2020 cohort cannot be exploited.
XGB outperforms the other models with a ROC AUC
of 0.92±0.00 and a PR AUC of 0.62±0.00.

(iii) COVID-19 diagnosis prediction & tempo-
ral cross-validation. In experiment (iii), the model
is trained with samples until October and evaluated on
samples from November and December. XGB achieves
the highest ROC AUC of 0.81±0.00 and a PR AUC
of 0.71±0.00. We face an additional performance drop
in comparison to experiment (i) and (ii), which points
to a domain shift over time. Besides others, this do-
main shift over time occurs due to potential changes
in the lab infrastructure, testing strategy, prevalence of
COVID-19 in different patient groups, or maybe even
due to mutations of the COVID-19 virus, see Figure 1
and Section 1 for more details. These results again em-
phasize the necessity for countering the domain shifts
with lifelong learning and assessment.

(iv) Mortality prediction & random cross-
validation. We predict the mortality risk of
COVID-19 positive patients, who only occur in the
2020 cohort. The samples are randomly shuffled and
a five-fold nested cross-validation is performed. RF
outperforms the other models for the mortality predic-
tion with a ROC AUC of 0.88±0.02 in (iv) and a PR
AUC of 0.63±0.11. We report the threshold-dependent
metrics in Table 1 d, although the prediction scores of
survival or death, provided by our models, are more
informative for clinicians in practice, rather than a
hard separation by a threshold into the two classes.

(v) Mortality prediction & temporal cross-
validation. In experiment (v), the model is trained
with samples until October and evaluated on samples
from November and December for mortality prediction
of COVID-19 positive patients. Again, RF outperforms
the other models with a ROC AUC of 0.86±0.01 and
a PR AUC of 0.56±0.01. The performance drops from
experiment (iv) to (v), revealing a domain shift over
time for mortality prediction.

2.5 Lifelong learning and assessment

We propose re-training and re-assessment with high fre-
quencies to tackle the domain shifts by exploiting the
new samples to achieve high performance and model
credibility in the real world hospital setting. Therefore,
we suggest to continuously determine the COVID-19
status with an RT-PCR test of some patients to ac-
quire frequent samples, which is indispensable to avoid
the model behavior to drift into unexpected and poor
performance. These measures are essential to enable
trustworthy ML models for clinical utility.

The effect of the re-training frequency of the model is
shown in Figure 4 b. The performance of the ML mod-
els increases with the re-training frequency, thereby re-
ducing the domain shift of the training to the test sam-
ples. The evaluation procedure is shown in Figure 4 a
and in Section 4.4.

To counter the domain shifts, we additionally pro-
pose to weight current samples stronger during train-
ing of the COVID-19 diagnosis model, see Figure 4 c.
On the validation set (May - October), we determine
the best weighting in dependence of the sample recency.
The highest performance gain on the validation set is
achieved by setting the weight of the 2019 cohort sam-
ples to 0.01 and the weight of the samples of the most
recent month to 3, and the second last month to 2
([1, 1, 2, 3]). Compared to weighting all samples equally,
this increases the ROC AUC on the validation set from
0.8118 (95 % CI: 0.7849-0.8386) to 0.8502 (95 % CI:
0.8271-0.8734) (p-value = 9e-6), which is statistically
significant. The selected weighting is tested on Novem-
ber and December, leading to a statistically significant
increase of the ROC AUC from 0.7996 (95 % CI: 0.7831-
0.8162) to 0.8120 (95 % CI: 0.796-0.828) (p-value =
0.0045). The method to determine the weighting is de-
scribed in more detail in Section 4.4.

2.6 Features with discriminating capa-
bility

For clinical insight, the violin plots show discriminating
capability of the selected features for the three different
cohorts (2019 and 2020 cohort, 2020 cohort, COVID-19
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Figure 3: Comparison of model classes for COVID-19 diagnosis and mortality prediction. a, ROC and b, PR
curves for the test set of COVID-19 diagnosis prediction in experiment (i). c, ROC and d, PR curves for mortality
prediction in experiment (iv). a-d, Curves plotted for the different model classes at one random seed. RF and XGB
outperform the other model classes as well as the random estimator (RE) baseline and the best feature (BF) as an
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Table 1: Performance metrics. a, Experiment (i) - (iii) are the results of the COVID-19 diagnosis prediction. In
experiment (i) the test set is randomly selected from the shuffled 2019 and 2020 cohort. In experiment (ii) the test set
is a random subset of the 2020 cohort and experiment (iii) are the results of a prospective evaluation on November and
December 2020. b, The threshold-independent metrics for mortality prediction with random shuffling of the positives
set (experiment (iv)) and with prospective evaluation on November and December (experiment (v)) are listed. The
ML models are trained, validated and tested with five random seeds. The mean and the standard deviation (±)
for the ROC AUC and PR AUC are listed. c and d, Performance metrics on test set of RF for different thresholds
selected on basis of the negative predictive value on the validation set (NPV val) of c, COVID-19 diagnosis prediction
in experiment (i) and d, mortality prediction in experiment (iv).

a Threshold-independent metrics for COVID-19 diagnosis prediction

Model Experiment (i) Experiment (ii) Experiment (iii)
ROC AUC PR AUC ROC AUC PR AUC ROC AUC PR AUC

RE 0.5000±0.0000 0.0124±0.0000 0.5000±0.0000 0.0822±0.0000 0.5000±0.0000 0.3162±0.0000
BF 0.6745±0.0000 0.0221±0.0000 0.6774±0.0000 0.3141±0.0000 0.6623±0.0000 0.5716±0.0000

SNN 0.9567±0.0025 0.4349±0.0306 0.8998±0.0044 0.5577±0.0074 0.7836±0.0053 0.6620±0.0082
KNN 0.9071±0.0000 0.3137±0.0000 0.8432±0.0000 0.4486±0.0000 0.7209±0.0000 0.5712±0.0000
LR 0.9600±0.0008 0.4126±0.0145 0.8878±0.0022 0.4770±0.0086 0.7732±0.0008 0.6467±0.0059

SVM 0.9611±0.0000 0.4268±0.0000 0.9045±0.0000 0.5573±0.0000 0.7759±0.0000 0.6387±0.0000
RF 0.9654±0.0005 0.5231±0.0106 0.9138±0.0025 0.5761±0.0100 0.7957±0.0025 0.6626±0.0049

XGB 0.9629±0.0000 0.5558±0.0000 0.9169±0.0000 0.6216±0.0000 0.8142±0.0000 0.7077±0.0000

b Threshold-independent metrics for mortality prediction

Model Experiment (iv) Experiment (v)
ROC AUC PR AUC ROC AUC PR AUC

RE 0.5000±0.0000 0.1592±0.0351 0.5000±0.0000 0.1320±0.0000
BF 0.7599±0.0748 0.4320±0.1021 0.7483±0.0000 0.3938±0.0000

SNN 0.8656±0.0356 0.5866±0.1196 0.8478±0.0053 0.4917±0.0110
KNN 0.8207±0.0550 0.5527±0.1137 0.8272±0.0000 0.4669±0.0000
LR 0.8613±0.0351 0.5555±0.1281 0.8388±0.0088 0.4784±0.0173

SVM 0.8587±0.0306 0.5679±0.1010 0.8271±0.0000 0.4185±0.0001
RF 0.8813±0.0214 0.6267±0.1065 0.8572±0.0071 0.5556±0.0127

XGB 0.8501±0.0210 0.5196±0.1005 0.8038±0.0000 0.4334±0.0013

c Threshold-dependent metrics of RF in experiment (i)
NPV val 0.999 0.995 0.990 0.980

NPV 0.999±0.000 0.995±0.000 0.990±0.000 0.988±0.000
PPV 0.066±0.002 0.414±0.015 0.823±0.014 1.000±0.000

BACC 0.887±0.002 0.812±0.005 0.588±0.003 0.501±0.001
ACC 0.834±0.007 0.984±0.000 0.989±0.000 0.988±0.000

Sensitivity 0.941±0.004 0.635±0.010 0.176±0.006 0.002±0.003
Specificity 0.832±0.007 0.989±0.000 1.000±0.000 1.000±0.000

F1 0.124±0.004 0.501±0.009 0.290±0.008 0.004±0.006
Threshold 0.081±0.040 0.444±0.098 0.931±0.020 0.995±0.001

d Threshold-dependent metrics of RF in experiment (iv)
NPV val 0.990 0.980 0.975 0.950 0.900 0.850

NPV 0.973±0.021 0.979±0.021 0.971±0.022 0.929±0.034 0.867±0.041 0.849±0.031
PPV 0.318±0.096 0.299±0.109 0.369±0.156 0.523±0.161 0.789±0.173 1.000±0.000

BACC 0.748±0.023 0.746±0.030 0.775±0.032 0.748±0.041 0.596±0.063 0.527±0.014
ACC 0.629±0.086 0.609±0.101 0.681±0.105 0.822±0.085 0.859±0.033 0.850±0.030

Sensitivity 0.921±0.062 0.937±0.064 0.905± 0.077 0.634±0.181 0.206±0.141 0.055±0.029
Specificity 0.575±0.107 0.554±0.121 0.644±0.136 0.862±0.127 0.985±0.016 1.000±0.000

F1 0.460±0.091 0.439±0.107 0.498±0.125 0.536±0.097 0.290±0.155 0.103±0.053
Threshold 0.146±0.070 0.151±0.062 0.169±0.067 0.332±0.106 0.592±0.072 0.793±0.089

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.06.21254997doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.06.21254997
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mar Apr Jun Jul Aug Sep Oct Nov Dec

Mar Apr Jun Jul Aug Sep Oct Nov Dec

... Mar Apr Jun Jul Aug Sep Oct Nov Dec

...

...

...
20202019

1 2 3 4 5 76
Model training frequency (months)

0.75

0.85

0.80

0.70R
O
C
A
U
C

Training Test

May

May

May

COVID-19

Mar Apr Jun Jul Aug Sep Oct Nov Dec

Mar Apr Jun Jul Aug Sep Oct Nov Dec

... Mar Apr Jun Jul Aug Sep Oct Nov Dec

...

...

...
20202019

Validation Test

May

May

May

Training, sample weights

... Mar Apr Jun Jul Aug Sep Oct Nov DecMay

Mar Apr Jun Jul Aug Sep Oct Nov Dec... May

Mortality

a

b

c

Figure 4: Lifelong learning. a, Evaluation for a model training frequency of two months. The model is evaluated
with an intercept of one month, but the model is evaluated on the two subsequent months after training. b, Effect
of model training frequency on performance. The mean and the 95 % confidence intervals (error bars) of the ROC
AUCs. The ROC AUC performance decreases with lower model training frequency. c, Current samples are weighted
higher in training to counter the domain shifts. The weighting is selected on the validation months starting from May
until October. The selected weighting is evaluated on the test months November and December.

positive cohort) in Figure 5. The plotted features are
selected based on their ROC AUC on the five experi-
ments, the top-10 features as predictors for all five tasks
are listed in Table 5 in the supplementary material.

3 Discussion
Through multiple experiments we expose domain
shifts and their detrimental effect on ML models for
COVID-19 diagnosis. We suggest to carefully assess
the model performance frequently to avoid unexpected
behavior with potentially adverse consequences, such
as even greater spread of the disease due to trusting
the wrongly classifying model. The model should be
re-trained after particular time-periods to exploit newly
acquired samples and, thus, to countermand the do-
main shift effect. To this end, we propose to assign
a higher weight to recent samples, which, as we show,
increases the predictive performance.

In this large-scale study, we train and evaluate our
models with more samples than most studies18–22. Be-
sides our large number of tested subjects, we also ex-
ploit pre-pandemic negative samples, which vastly in-
creases our data set size. In comparison to Soltan et
al.23 and Plante et al.24 we use the pre-pandemic as
well as the pandemic negatives in our data set.

We achieve high predictive performance with our
models, comparable to previous studies18,19,21,25,35, al-
though the results can not be directly compared as our
assessment procedure is more rigorous. Different assess-
ment procedures within our study also yield highly vari-

able performance estimates. Some studies suggested
logistic regression models for COVID-19 and mortality
prediction39,53, however, most identified (X)GB or RF
as the best model classes18,20,25,31,38. We confirm these
findings and suggest to use XGB or RF for COVID-19
diagnosis and RF for mortality prediction, as these ex-
hibit the highest performance in our experiments.

Our models only require a small set of features of
a patient, concretely a minimum of twelve blood test
parameters and the age, gender and hospital admis-
sion type; in total at least 15 features. In case many
blood test parameters are available, the model exploits
up to 100 pre-selected features. Missing features are
imputed, thereby allowing model application also on
samples with a small number of features. This en-
ables automatically scanning the blood tests without
additional effort by the hospital staff, as opposed to
published models, which require more expensive fea-
tures, e.g., vital signs, which might not be as easily
available19,22,23.

One limitation of our work could be that we did not
evaluate the generalization of our model to other hospi-
tals. A transfer of a COVID-19 diagnostic model should
only be done with thorough re-assessments, as a do-
main shift between hospitals might be present. Besides
others, such domain shifts from one institution to an-
other could result from different testing strategies, lab-
oratory equipment or demographics of the population
in the hospital catchment area. Re-training of models
rather than transferring to another hospital should be
considered to obtain a skilled and trustworthy model.
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Figure 5: Features with discriminating capability. a, Measured features in the 2019 and 2020 cohort for COVID-19
diagnosis prediction for negative and positive class. b, Features with discriminating capability for COVID-19 diagnosis
prediction in the 2020 cohort, which contains the RT-PCR tested patients. c, Measured features of positives cohort
for mortality prediction for survivors and deceased. Abbreviations: C-reactive protein (CRP), immature granulocytes
(IG), type of hospital admission (Adm. type), inpatient (i), outpatient (o), lactate dehydrogenase (LDH), pH-value
(pH), blood urea nitrogen (BUN), red cell distribution width (RDW), oxyhemoglobin fraction (FO2Hb), cholinesterase
(CHE), procalcitonin (PCT).
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However, this is not part of our investigation. Our find-
ings and suggestions about domain shifts should be ac-
counted for in all hospitals when applying a COVID-19
model.

We evaluate our models on different cohorts to show
the high performance as well as to reveal the domain
shifts. However, the 2020 cohort only contains subjects
that were tested for COVID-19 and where a blood test
was taken. Hence, the 2020 cohort only is a subset of
the total patient cohort on which the model will be ap-
plied. To counteract missing samples from a particular
group, we also use the pre-pandemic negatives, which
should cover a wide variety of negatives due to the large
data set. An evaluation of all blood tests of 2020 just
is not possible due to the lack of RT-PCR tests which
serve as labels in our ML approach. Non-tested sub-
jects of 2020 cannot be assumed to be negatives, there-
fore we discard them. This could only be circumvented
by explicitly testing a large number of patients for this
study, who would not be tested otherwise.

For lifelong learning and assessment, testing of a sub-
set of the patients with an RT-PCR test still is nec-
essary to identify and counter the temporal domain
shift. However, this does not diminish the benefit of
the model as by automatically scanning all blood tests a
large number of patients can be checked for COVID-19,
which would not be feasible with expensive and slow
RT-PCR tests. The benefit of the model also trans-
fers to hospitals or areas with limited testing capacity.
Rather than replacing RT-PCR tests, the model can
be applied as a complement to or replacement for anti-
gen tests. The model can be retrained with the already
implemented pipeline. The computational effort is rel-
atively low, as the model only requires tabular data
and no time series (sound recordings) or images (CT,
X-ray)11–17. Other studies do not consider the domain
shifts and the associated necessity for re-training, al-
though it is indispensable for clinical utility. Lifelong
learning and assessment does not only provide a per-
formance gain for diagnostic models in pandemics like
COVID-19, but also for other medical tasks, or in gen-
eral, other applications of ML, where we face a contin-
uous stream of data.

We demonstrate the high capability of ML models
in detecting COVID-19 infections and COVID-19-asso-
ciated mortality risk on the basis of blood tests on a
large-scale data set. With our findings concerning do-
main shifts and lifelong learning and assessment, we
want to advance the ML models to be accurate and
trustworthy in real world hospital settings. Lifelong
learning and assessment is an important tool to allow
the transition of research results to actual application in
hospitals. By advancing this field of research, we want
to increase patient safety and protect clinical staff and

we wish to make a contribution in banning the pan-
demic.

4 Methods

4.1 Ethics approval

Ethics approval for this study was obtained from the
ethics committee of the Johannes Kepler University,
Linz (approval number: 1104/2020). The study is con-
ducted on the blood tests (including age, gender and
hospital admission type) from July 2019 until Decem-
ber 2020 and the COVID-19 RT-PCR tests from 2020
of the Kepler University Hospital, Med Campus III,
Linz, Austria. In our study, we analyze anonymized
data only.

4.2 Data set preparation

We predict the result of the RT-PCR COVID-19 test
on the basis of routinely acquired blood tests. A block
diagram of the data set is sketched in Figure 2. We
only use the blood tests before the RT-PCR test to
avoid bias caused by the test result. We limit the time
deviation of the blood test to the COVID-19 RT-PCR
test to 48 hours to ensure that the blood test matches
the determined COVID-19 status. Additionally, we in-
corporate pre-pandemic blood tests from the year 2019
as negatives to our data set to cover a wide variety
of COVID-19 negative blood tests. For the data from
the year 2020, we aggregate the blood tests of the last
48 hours before the test. If parameters are measured
more than once, we take the most recent one, see Fig-
ure 2 b. In case no COVID-19 test follows the blood test
within 48 hours, the blood test samples are discarded.
Additionally, we discard all samples with a deviating
RT-PCR test result within the next 48 hours, as the
label might be incorrect. The data from 2019 does not
contain COVID-19 tests, therefore, blood tests with a
temporal distance of less than 48 hours are aggregated.
The features age, gender and admission type (inpatient
or outpatient) are added to the samples. For the predic-
tion of the COVID-19 diagnosis, we select the 100 most
frequent features in the 2019 cohort as the feature set.
For the mortality task the 100 most frequent features
are selected based on the positives cohort, as the model
is only applied to COVID-19 positive samples. Each
sample requires a minimum of 15 features (minimum of
any twelve blood test features and age, gender and hos-
pital admission type). All other features and samples
are discarded. The fact that the samples only require
a minimum of 15 features can lead to many missing
entries as the feature vector has a length of 100. For
each sample we create 100 additional binary entries,
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which indicate whether each of the features is missing
or measured. The missing values are filled by median
imputation. Hence, the models can be applied to blood
tests with few measured values.

4.3 Experiments for model perfor-
mance under domain shift

Given the presence of domain shifts, we define five
experimental designs to estimate the performance.
The experiments differ at the data split into training,
validation and test set. These splits are conducted on
patient level, such that one patient only occurs in one
of the sets. In the first three experiments we train
models for COVID-19 diagnosis prediction. We train
and evaluate the COVID-19 diagnosis models with five
random seeds with a fixed data split.

(i) In our first experiment we randomly shuffle all
patients and we split regardless of the patient co-
horts (60 % training, 20 % validation, 20 % test-
ing).

(ii) The training and validation sets include the 2019
cohort and 80 % (60 % training, 20 % valida-
tion) of the 2020 cohort. The test set comprises
the remaining samples (20 %) of the 2020 cohort.
Therefore, the performance is estimated on pa-
tients who actually were tested for COVID-19.

(iii) The training and validation sets include the
2019 cohort and the 2020 cohort before November
(80 % training, 20 % validation). We conduct a
prospective performance estimate for the test set
with all samples from November and December
2020.

In experiment (iv) and (v) we train the models to pre-
dict the mortality risk of COVID-19 positive patients.

(iv) The training (60 %), validation (20 %) and test
(20 %) sets comprise the positive cases from the
2020 cohort. Due to the limited number of sam-
ples, we predict performance with five-fold nested
cross validation.

(v) The training and validation sets include the posi-
tive cases from 2020 before November (80 % train-
ing, 20 % validation). The test set comprises the
cases from November and December. The test
set is fixed, but again, we train and evaluate the
models with five random seeds.

Z-score normalization is applied to the entire data
set, with the mean and standard deviation calculated
from the respective training set.

We compare multiple different models suitable for
tabular data. The pre-processing, training and eval-
uation is implemented in Python 3.8.3. In particular,
the model classes RF, KNN and SVM are trained with
the scikit-learn package 0.22.1. XGB is trained with the
XGBClassifier from the Python package XGBoost 1.3.1.
The SNN and LR are trained with Pytorch 1.5.0.

The models are selected and evaluated based on the
ROC AUC56, which is a measure of the model’s dis-
criminating power between the two classes. Further,
we report the PR AUC56 and we calculate thresh-
old-dependent metrics, where the classes are separated
into positives and negatives, instead of probability es-
timates. These metrics are negative predictive value
(NPV), positive predictive value (PPV), balanced ac-
curacy (BACC), accuracy (ACC), sensitivity, specificity
and the F1-score (F1)57. We additionally report the
thresholds, which are determined on the validation set
to achieve the intended NPV.

We perform a grid search over hyperparameters of
the models, see Table 2 in the supplementary mate-
rial. The best hyperparameters are selected based on
the ROC AUC on the validation set. In the COVID-19
diagnosis prediction tasks (experiment (i)-(iii)) we use
one fixed validation fold due to the high number of sam-
ples. The models are trained and evaluated with five
random seeds. For the mortality prediction tasks (ex-
periment (iv) and (v)) the mean ROC AUC over five
validation folds is calculated to select the hyperparam-
eters. Further, the selected models are evaluated on the
test set to estimate the performance. Experiment (iv) is
evaluated with five-fold nested cross validation and all
other experiments use a fixed test set. The mean and
standard deviation of the models, which are trained,
validated and tested with five random seeds, are re-
ported.

4.4 Experiments for lifelong learning
and assessment

We conduct three experiments to show the necessity
of lifelong learning and assessment for trustworthy and
accurate models. The first experiment investigates the
deviation of the estimated to the actual performance.
Therefore, we test the models on the months June until
December. The performance estimate is calculated on
the respective preceding month (May until November),
see Figure 1 b. The 95 % confidence intervals are deter-
mined via bootstrapping by sampling 1,000 times with
replacement. The deviations of estimated and actual
performance are checked for significance. For this pur-
pose, XGB is trained with the selected hyperparameters
of experiment (iii).

Further, we check the effect of the model training
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frequency on the performance. We evaluate the trained
model on different numbers of subsequent months with-
out re-training. We also refer to this number of subse-
quent months as model training frequency. A model
training frequency of two months is sketched in Fig-
ure 4 a. We evaluate the different model training fre-
quencies with an increment of one month, concatenate
the predictions as well as the targets and calculate the
ROC AUC and its 95 % confidence interval with boot-
strapping 1,000 times with replacement. We do not
report PR AUC, as the prevalence in the test sets of
the different model training frequencies are not compa-
rable.

In our third experiment for lifelong learning and as-
sessment, we investigate the effect of higher weights
for current samples during training, as shown in Fig-
ure 4 c. Therefore, we define May until October as
our validation months to select the optimal weighting
and we evaluate the selection on November and Decem-
ber. We train the models with all available data before
the respective validation month with the best hyper-
parameters determined in experiment (iii). The pre-
dictions and targets are concatenated for all validation
months. With a one-sided, paired DeLong test58, we
test our hypothesis that the ROC AUC increases when
current samples are weighted higher than older samples,
in comparison to the ROC AUC when all samples are
equally weighted. We pass the concatenated prediction
and target vectors to the DeLong test, which returns
the p-value and ROC AUC, calculated with the pROC
package 1.17.0.1 in R.

We identify the best weighting by combining all
listed options of weights of the 2019 cohort and of the
most recent, previous months on the validation set.
The default weight of the samples is 1. We restrict
the 2019 cohort weights to the set: {1, 0.1, 0.01, 0.001},
and the weights of the previous months to:
{[1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5]},
with the last entry in each square bracket being the
weight of the last month, the second last of the second
last month, and so forth. Afterwards, we normalize the
weights to the length of the training samples, thereby
we only change the relative weighting. As determined
by the hyperparameter search, we also pass the scaling
factor to scale_pos_weight to the model to balance
positive and negative samples. The best weighting
parameters are selected on the validation set and
tested on November and December.

4.5 Features with discriminating capa-
bility

Besides the ML models, we additionally report statis-
tical evaluations to allow clinical insight: we calculate

the ROC AUCs of individual features equally to the five
experiments in Section 4.3. For these evaluations, the
features themselves are considered as predictors. This
way, we can identify features with discriminating capa-
bility and compare these with the ML models. The
ROC AUC is equivalent to the concordance-statistic
(c-statistic) for binary outcomes59. Note that we do
not train a model for this purpose, we simply use the
positive or negative feature value as a predictor on the
test set. Thereby, we identify important features for the
COVID-19 diagnosis and the mortality task (Table 5
in supplementary material). Additionally, we visually
prepare the most important features selected from the
above described evaluation. The features of the full
data set (2019 and 2020 cohort) and the 2020 cohort
are plotted for the COVID-19 diagnosis as well as for
the 2020 cohort for the mortality prediction in Figure 5.
The violin plots only contain measured features, im-
puted feature values are not displayed for better visual
clarity.

5 Data availability
The data set is not available for public use due to data
privacy reasons.

6 Code availability
Code is provided at https://github.com/ml-jku/covid.
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A Supplementary material

Table 2: Hyperparameters for grid search.

Model Hyperparameters
SNN lr : {1e-3, 2e-4, 1e-4}, n_val_stops: {20}, weight_decay: {1e-5},

intermediate_size: {4, 16, 64}, n_layers: {1,3,6}, alpha_dropout: 0, 0.9, optimizer : {Adam}
KNN n_neighbors: {3,11,25,51,101,201,301}, weights: {uniform, distance}
LR lr : {1e-2, 1e-3, 5e-4, 1e-4}, n_val_stops: {20}, weight_decay: {1e-5}, optimizer : {Adam}

SVM (COVID-19) class: {LinearSVC}, dual: {False}, class_weight: {None, balanced}
SVM (Mortality) class: {SVC}, kernel: {linear, poly, rbf, sigmoid, precomputed}, probability: {True},

class_weight: {None, balanced}
RF n_estimators: {501}, criterion: {gini, entropy}, max_depth: {2,8,32,None},

min_samples_split: {2}, min_samples_leaf : {1,8,32}, max_features: {auto, log2, None},
max_leaf_nodes: {None}, class_weight: {balanced, None}

XGB objective: {binary:logistic}, booster : {gbtree, gblinear, dart}, eta: {0.1, 0.3, 0.6},
gamma: {0}, max_depth: {2,6,32}, scale_pos_weight: {True, False},
grow_policy: {depthwise, lossguide}
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Table 3: Comparison of estimated and actual performance. These metrics are calculated on the basis of the
COVID-19 diagnosis prediction task with XGB. At significantly different deviations, the confidence intervals (CI) are
colored in red. a, The actual performance is calculated on the listed month and the estimate is determined on the
respective previous month. b, The estimate is determined by random samples from the 2020 cohort. c, The estimate
is determined by random samples from the 2019 and 2020 cohort.

a Jun Jul Aug Sep Oct Nov Dec Sum Mean
ROC AUC actual 0.7994 0.7474 0.9225 0.8076 0.7766 0.7975 0.7419 0.7990

AUC estimate 0.8182 0.7767 0.7880 0.9202 0.8302 0.7934 0.8219 0.8212
∆ ROC AUC actual - estimate 0.0188 0.0293 0.1345 0.1126 0.0536 0.0042 0.0800 0.4329 0.0618
CI95 lower ROC AUC actual 0.6973 0.6687 0.8405 0.7014 0.7383 0.7789 0.7068
CI95 upper ROC AUC actual 0.8851 0.8262 0.9808 0.9014 0.8142 0.8179 0.7782

CI95 lower ROC AUC estimate 0.6983 0.6717 0.6959 0.8308 0.7276 0.7541 0.8040
CI95 upper ROC AUC estimate 0.9205 0.8684 0.8747 0.9878 0.9188 0.8297 0.8389

PR AUC actual 0.2413 0.1180 0.5155 0.3913 0.4540 0.7069 0.5878 0.4307
PR AUC estimate 0.3123 0.2487 0.3948 0.6699 0.4678 0.5274 0.7256 0.4781

∆ PR AUC actual - estimate 0.0711 0.1307 0.1207 0.2786 0.0138 0.1796 0.1378 0.9322 0.1332
CI95 lower PR AUC actual 0.1058 0.0704 0.2501 0.1967 0.3784 0.6714 0.5288
CI95 upper PR AUC actual 0.3941 0.1870 0.7190 0.5821 0.5325 0.7396 0.6428

CI95 lower PR AUC estimate 0.1442 0.1118 0.2397 0.4430 0.2768 0.4481 0.6916
CI95 upper PR AUC estimate 0.5236 0.4003 0 .5448 0.8476 0.6356 0.6034 0.7617

b Jun Jul Aug Sep Oct Nov Dec Sum Mean
ROC AUC actual 0.8116 0.7913 0.9531 0.8242 0.787 0.8227 0.7515 0.8202

ROC AUC estimate 0.8959 0.8238 0.9075 0.8742 0.8922 0.8641 0.896 0.8791
∆ 0.0843 0.0325 0.0456 0.0501 0.1052 0.0414 0.1444 0.5034 0.0719

CI95 lower ROC AUC actual 0.7096 0.6982 0.8955 0.7214 0.7500 0.8051 0.7156
CI95 upper ROC AUC actual 0.9074 0.8717 0.9889 0.9145 0.8237 0.8409 0.7888

CI95 lower ROC AUC estimate 0.8304 0.7229 0.8405 0.8072 0.8382 0.8151 0.8729
CI95 upper ROC AUC estimate 0.9598 0.9061 0.9589 0.9313 0.9394 0.9129 0.9185

PR AUC actual 0.2209 0.3593 0.6543 0.4538 0.5141 0.7191 0.6087 0.5043
P AUC estimate 0.4047 0.4106 0.5428 0.3366 0.5122 0.5237 0.7129 0.4919

∆ 0.1838 0.0513 0.1115 0.1172 0.002 0.1954 0.1042 0.7654 0.1093
CI95 lower PR AUC actual 0.1177 0.2050 0.4516 0.2654 0.4364 0.6856 0.545
CI95 upper PR AUC actual 0.4167 0.5227 0.8221 0.6239 0.5921 0.7522 0.6695

CI95 lower PR AUC estimate 0.2259 0.2431 0.3912 0.2057 0.3461 0.4121 0.6592
CI95 upper PR AUC estimate 0.6419 0.5858 0.7075 0.4794 0.6604 0.6353 0.7626

c Jun Jul Aug Sep Oct Nov Dec Sum Mean
ROC AUC actual 0,7819 0.7638 0.9060 0.8483 0.7939 0.8226 0.7507 0.8096

ROC AUC estimate 0.9900 0.9286 0.9820 0.9814 0.9623 0.9517 0.9734 0.9671
∆ 0.2082 0.1647 0.0760 0.1332 0.1684 0.1291 0.2227 1.1024 0.1575

CI95 lower ROC AUC actual 0.6805 0.6603 0.7956 0.7448 0.7553 0.8048 0.7118
CI95 upper ROC AUC actual 0.8737 0.8567 0.9855 0.9338 0.8319 0.8412 0.7868

CI95 lower ROC AUC estimate 0.9800 0.8596 0.9656 0.9662 0.9197 0.9249 0.9648
CI95 upper ROC AUC estimate 0.9974 0.9807 0.9937 0.9929 0.9908 0.9746 0.9812

PR AUC actual 0.2274 0.3821 0.6260 0.4627 0.5326 0.7227 0.6073 0.5087
PR AUC estimate 0.4554 0.4508 0.3643 0.4093 0.2814 0.2938 .5585 0.4019

∆ 0.2280 0.0688 0.2617 0.0535 0.2512 0.4289 0.0487 1.3408 0.1915
CI95 lower PR AUC actual 0.0973 0.2407 0.4050 0.2670 0.4548 0.6902 0.5489
CI95 upper PR AUC actual 0.3881 0.5292 0.8022 0.6256 0.6064 0.7565 0.6673

CI95 lower PR AUC estimate 0.2223 0.2635 0.2093 0.2563 0.1170 0.1982 0.4848
CI95 upper PR AUC estimate 0.6704 0.6217 0.5347 0.5634 0.4402 0.4298 0.6293
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Figure 6: Comparison of ML models for different experiments. ROC and PR curves for test set of a and b,
experiment (ii); c and d, experiment (iii); e and f, experiment (v); the curves are plotted for different models (one
random seed) and compared with best feature (BF) and random estimator (RE).
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Figure 7: Performance of models in dependence of the minimum number of days until death. In this figure
we answer, how early before death we can predict the risk of dying. Samples at which the death has occurred within
the next days (minimum days until death), are excluded from the test set (but not from the training and validation
set). a, The mean of ROC AUC and b, PR AUC values of five test folds is plotted. c, The mean of ROC AUC and d,
PR AUC values of five random seeds in prospective evaluation are shown. For visual clarity, the standard deviations
(error bars) are only plotted for the RF. The mortality risk can be estimated early before death, as the discriminating
capability of the models remains high with increasing number of minimum days until death. The mean PR AUC in b
and d is decreasing with increasing minimum days until death, equally to the random estimator baseline, due to the
decreasing ratio of deceased to survivors.
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Figure 8: Deviation of estimated from actual performance with three options to determine the performance
estimate. a, The actual ROC AUC differs significantly from the estimate in December, the PR AUC in November
and December. b, Significant difference in October and November for ROC AUC and in November for PR AUC.
c, Estimated and actual ROC AUC are significantly different in all month but August, due to heavy domain shifts, and
PR AUC in October and November. The mean deviation of estimated and actual ROC AUC and PR AUC is higher in
c compared to a and b. d, Three options to determine the performance estimate. In a, the performance estimate is
calculated from the preceding month. In b, the samples for the estimate are randomly selected from the 2020 cohort
(20 %), and in c they are randomly sampled from the 2019 and the 2020 cohort (20 % of the 2020 cohort and equal
proportion from the 2019 cohort).
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Figure 9: Deviation of estimated from actual performance for mortality risk with two options to determine the
performance estimate. a, The estimate is determined on the respective previous month. Note that the confidence
interval at an early stage of the pandemic is high due to a low number of samples. b, The estimate is determined
on randomly sampled 20 % of the COVID-19 positives, who occurred before the actual performance month. There
is a significant difference in October for ROC AUC and PR AUC, which means that the performance estimate is
overoptimistic in October.

Table 4: Comparison of estimated and actual performance for mortality risk prediction. These metrics are
calculated from the predictions of a RF, trained with the hyperparameters as determined in experiment (v). At
significantly different deviations, the confidence intervals (CI) are colored in red. a, The actual performance is
calculated on the listed month and the estimate was determined from the respective previous month. b, The estimate
is determined by random samples from the positives cohort, occurring before the month, which the actual performance
is calculated on.

a Sep Oct Nov Dec Sum Mean
ROC AUC actual 0.8167 0.7427 0.7894 0.8403 0.7973

AUC estimate 0.7279 0.9067 0.7716 0.8524 0.8146
∆ ROC AUC actual - estimate 0.0887 0.1640 0.0179 0.0121 0.2826 0.0707
CI95 lower ROC AUC actual 0.6462 0.6591 0.7525 0.7679
CI95 upper ROC AUC actual 0.9538 0.8146 0.8282 0.8980

CI95 lower ROC AUC estimate 0.3519 0.7619 0.6843 0.8156
CI95 upper ROC AUC estimate 1.0000 1.0000 0.8485 0.8888

PR AUC actual 0.3705 0.2645 0.2967 0.5548 0.3716
PR AUC estimate 0.5233 0.6694 0.4188 0.5172 0.5322

∆ PR AUC actual - estimate 0.1528 0.4049 0.1221 0.0376 0.7174 0.1793
CI95 lower PR AUC actual 0.1329 0.1791 0.2321 0.3846
CI95 upper PR AUC actual 0.8302 0.3642 0.3724 0.7012

CI95 lower PR AUC estimate 0.0556 0.2417 0.2591 0.4242
CI95 upper PR AUC estimate 1.0000 1.0000 0.6097 0.6256

b Sep Oct Nov Dec Sum Mean
ROC AUC actual 0.8500 0.7714 0.8341 0.8686 0.8310

AUC estimate 0.9063 0.9647 0.8564 0.8962 0.9059
∆ ROC AUC actual - estimate 0.0563 0.1933 0.0223 0.0276 0.2995 0.0749
CI95 lower ROC AUC actual 0.7071 0.6757 0.7915 0.8079
CI95 upper ROC AUC actual 0.9692 0.8463 0.8722 0.9155

CI95 lower ROC AUC estimate 0.8031 0.9050 0.7514 0.8448
CI95 upper ROC AUC estimate 0.9824 1.0000 0.9477 0.9428

PR AUC actual 0.5203 0.3519 0.4746 0.5772 0.4810
PR AUC estimate 0.7729 0.9367 0.702 0.7164 0.7820

∆ PR AUC actual - estimate 0.2526 0.5848 0.2274 0.1393 1.2041 0.3010
CI95 lower PR AUC actual 0.1694 0.2241 0.3763 0.4277
CI95 upper PR AUC actual 0.8972 0.5302 0.5750 0.7167

CI95 lower PR AUC estimate 0.5043 0.7980 0.4771 0.5783
CI95 upper PR AUC estimate 0.9455 1.0000 0.8756 0.8256
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Table 5: Features with discriminating capability. Top-10 features as predictors for COVID-19 diagnosis (experi-
ment (i)-(iii)) and mortality prediction (experiment (iv) and (v)). The sign in brackets indicates whether the target is
connected with the positive (+) or the negative sign of the feature value (−), i.e., patients with high ferritin and low
calcium have higher probability for class COVID-19 positive. The standard deviation (±) is listed for experiment (iv),
for the other experiments the test set is fixed. Abbreviations: absolute eosinophil count (AEC), immature granulocytes
(IG), absolute basophil count (ABC), lactate dehydrogenase (LDH), C-reactive protein (CRP), absolute lymphocyte
count (ALC), red cell distribution width (RDW).

Feature Experiment (i) Feature Experiment (ii) Feature Experiment (iii)
ROC AUC PR AUC ROC AUC PR AUC ROC AUC PR AUC

Calcium (−) 0.67 0.02 Ferritin (+) 0.68 0.31 Ferritin (+) 0.66 0.57
AEC (−) 0.66 0.11 AEC (−) 0.66 0.25 AEC (−) 0.64 0.53

Ferritin (+) 0.66 0.08 Fibrinogen (+) 0.66 0.21 ABC (−) 0.63 0.50
Age (+) 0.66 0.03 Eosinophils (−) 0.64 0.25 Fibrinogen (+) 0.62 0.50
CRP (+) 0.66 0.02 Calcium (−) 0.64 0.12 IG (+) 0.62 0.45

Eosinophils (−) 0.65 0.12 IG (+) 0.64 0.16 Calcium (−) 0.62 0.41
IG (+) 0.65 0.03 LDH (+) 0.63 0.13 Eosinophils (−) 0.62 0.51

ALC (−) 0.65 0.02 Phosphor (−) 0.62 0.17 Leukocytes (−) 0.61 0.40
Fibrinogen (+) 0.65 0.05 pH (+) 0.61 0.14 ALC (−) 0.61 0.43
Phosphor (−) 0.64 0.04 ABC (−) 0.60 0.16 pH (+) 0.61 0.45

Feature Experiment (iv) Feature Experiment (v)
ROC AUC PR AUC ROC AUC PR AUC

Neutrophils (+) 0.76±0.03 0.42±0.10 Neutrophils (+) 0.75 0.39
Lymphocytes (−) 0.76±0.04 0.41±0.11 Lymphocytes (−) 0.74 0.35

Blood Urea Nitrogen (+) 0.75±0.04 0.38±0.12 CRP (+) 0.71 0.36
RDW (+) 0.73±0.04 0.35±0.10 Oxyhemoglobin Fraction (+) 0.71 0.42
CRP (+) 0.72±0.04 0.39±0.09 Monocytes (−) 0.70 0.35

Oxyhemoglobin Fraction (+) 0.70±0.05 0.46±0.10 Blood Urea Nitrogen (+) 0.70 0.33
Cholinesterase (−) 0.70±0.03 0.37±0.11 Neutrophils abs. (+) 0.69 0.26

ALC (−) 0.69±0.05 0.33±0.08 RDW (+) 0.68 0.21
Monocytes (−) 0.68±0.04 0.32±0.07 Procalcitonin (+) 0.68 0.36
Hemoglobin (−) 0.68±0.02 0.30±0.08 Cholinesterase (−) 0.68 0.30
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