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Abstract 

INTRODUCTION: Research into quantitative neuroimaging biomarkers of dementia risk rarely uses 

data representative of everyday clinic practice. METHODS: We analysed T1-weighted MRI scans 

from memory clinic patients (n=1140; 60.2% female and mean [SD] age of 70.0 [10.8] years) to 

derive ‘brain-age’, an index of age-related brain health. We determined which patients went on to 

develop dementia (n=476) via linkage to electronic health records. RESULTS: Cox regression 

indicated a 3% increased risk of dementia per brain-PAD year (brain-PAD = brain-age minus 

chronological age), HR(95% CI)=1.03(1.02, 1.04), p<0.001, adjusted for age, age2, sex, MMSE and 

normalised brain volume. Brain-PAD remained significant even with a minimum time-to-diagnosis of 

3 years (HR=1.06) and with MMSE score ≥ 27 (HR=1.03). DISCUSSION: Memory clinic patients with 

older‐appearing brains are more likely to receive a subsequent dementia diagnosis. These results 

from a ‘real-world’ dataset suggest quantitative neuroimaging biomarkers like brain-age could be 

readily used in the clinic.  

 
Research in Context  

SYSTEMATIC REVIEW: Multiple previous studies were identified that have modelled dementia risk 

using quantitative neuroimaging, however, screening of participants based on comorbidities and 

contraindications alongside sociodemographic and healthcare sampling biases, limits the 

generalisation of these studies to real-world clinical settings. To facilitate better translation from 

research to the clinic, datasets that are more representative of dementia patient groups are 

warranted. INTERPRETATION: Brain-age is an index of ‘biological’ age based on a quantitative 

analysis of T1-weighted MRI scans. Memory clinic patients with biologically older-appearing brains 

are more likely to receive a subsequent dementia diagnosis, independent of medical history, age, 

sex, MMSE score and normalised brain volumes. These findings suggest that brain-age has potential 

to be used early-on in memory clinics as a biomarker to aid detection of patients at high‐risk of 

developing dementia. FUTURE DIRECTIONS: Does the addition of T2-weighted MRI scan information 

and/or localised brain-age values improve dementia prediction?   
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1 Introduction 

The growing global burden of dementia motivates efforts to improve the early identification of 

people at highest risk. Early dementia-risk identification has important implications for future care 

planning, the timing of possible interventions and for stratified clinical trial enrolment. 

Consequently, this growing clinical need potentially warrants a shift of emphasis away from 

fundamental science underlying dementia to the research into clinical prognosis – the science of 

predicting the risk of disease [1].  

Investigations of predictive models of dementia abound and include cognitive and behavioural 

markers [2, 3] as well as biomarkers targeting features such as abnormal protein aggregation (e.g., 

amyloid, tau, neurofilament light) and brain structure, function and metabolism [4, 5]. However, 

there remains a gap, or “valley of death”, between these basic research findings and their use in the 

clinic [6, 7]. One common origin of this gap is a deficiency of ecological validity, which refers to both 

‘representativeness’ and ‘generalisability’ [8, 9]. A widespread cause of poor ecological validity is 

selection bias, where participants with certain characteristics are more or less likely to be included in 

the study than others [10, 11]. The resulting sample misrepresentation limits generalisation to the 

target population. For example, recruiting patients from a dementia clinic whilst selecting controls 

from a primary care clinic may lead to potentially erroneous conclusions, such as arthritis and 

cataracts being more common in controls [12]. As the authors admit, this is likely driven by an 

asymmetrical representation of non-neurological conditions. Another example is the large 

prospective cohort study, UK Biobank, which displays a ‘healthy volunteer’ bias whereby the 

included participants were found to be more health-conscious compared with the general 

population [13]. Typically, dementia risk prediction studies exclude participants with current or past 

comorbidities [14-16], which is not representative of most people at risk of dementia [17-19]. 
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Neuroimaging is a strong candidate for predicting dementia, particularly magnetic resonance 

imaging (MRI) as it is routinely collected in clinical contexts [20]. Previous work has been consistent 

in reporting brain atrophy [16, 21], thinner cortical thickness [14, 15], microstructure abnormalities 

including white-matter hyperintensities [22, 23] and differences in functional connectivity [24] as 

associated to future dementia. One promising approach to predict health outcomes in 

neurodegenerative diseases is the brain-age paradigm. Brain-age is an index of the brain’s biological 

age, with previous studies supporting the idea that ‘older’-appearing brains are indicative of a 

greater risk of age-associated brain diseases and poor health outcomes, including mortality [25-31]. 

Brain-age has also been associated with subsequent dementia in observational research cohorts [32, 

33]. When compared with other AD neuroimaging biomarkers such as CSF-based amyloid and tau 

markers, or PET markers, brain-age provided an independent contribution in predicting conversion 

from Mild Cognitive Impairment (MCI) to AD [34].  

While promising, these research studies have a key limitation; they are unrepresentative of the 

general population at-risk for dementia, as research participants are likely to be more highly 

educated, have a higher IQ, be less ethnically diverse and have fewer comorbidities than the general 

population [35]. Even in research studies that have gone to great lengths to obtain a representative 

sample [36], the aforementioned healthy-volunteer bias is challenging to overcome and factors such 

as the threshold for contraindications for undergoing MRI will differ between research and clinical 

settings.  

In the present study, we sought to improve ecological validity using a large real-world dataset of 

patients referred to memory clinics for MRI assessment. We hypothesised that brain-age would 

significantly improve prediction of if and when memory clinic patients would subsequently develop 

dementia. This retrospective study analysed structural MRI scans of memory clinic patients whose 

subsequent presence or absence of dementia was determined via linkage to electronic health 

records (EHRs). This study was pre-registered (aspredicted.org ref.26262) before data access. 
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2 Method  

2.1 Participants 

This study analysed 1140 memory clinic patients who were referred for a neuroimaging 

assessment at the South London and the Maudsley (SLaM) NHS trust. SLaM is one of the largest 

secondary mental healthcare providers in Europe, serving over 1.36 million residents from 

predominantly four London boroughs (Croydon, Lambeth, Lewisham and Southwark) [37, 38]. 

BRCMEM and BRCDEM are ongoing studies and the oldest scan date in our sample is 28/01/2011. 

Patients’ demographic and clinical data were available from de-identified electronic health 

records (EHRs), which were accessed via the Clinical Record Interactive Search (CRIS) based at the 

BRC [37-39]. CRIS is a clinical database with a robust data governance framework with ethical 

approval for secondary data analysis (Oxford REC C reference 18/SC/0372). CRIS provided linkage 

between EHRs and the BRCMEM and BRCDEM neuroimaging data, as well as linkage to two other 

datasets, the Hospital Episode Statistics (HES) and the Office of National Statistics (ONS). HES is a 

national dataset that contains data of outpatient appointments and hospital admissions at NHS 

hospitals in England [40]. ONS contains the date and cause of death for all deaths registered in 

England and Wales [41]. HES and ONS were used to supplement the EHRs with diagnostic and 

mortality data. 

Permission to access EHRs, HES, ONS, BRCMEM and BRCDEM databases was granted via CRIS 

(reference 19-008) and accessed on 11/10/2019. Informed consent for research-use of 

neuroimaging data was originally obtained from the BRCMEM and BRCDEM participants at time of 

assessment. Data preparation was carried out via two routes, clinical and neuroimaging (Figure 1). 

The analyses code will be made available here: https://github.com/biondof/BARCODE. 
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Figure 1 Data pre-processing pipeline. (A) Memory clinic patients from the BRCDEM and BRCMEM studies were 
classified into two types: dementia (orange) or non-dementia (grey) (B) Neuroimaging data preparation: 
BrainageR v2.1 software was applied to T1-weighted MRI scans to obtain a brain-age estimate and normalised 
brain volume for each patient. Quality Control (QC) aimed to remove cases with image artefacts and occurred at 
two stages, before and after segmentation. (C) Clinical data preparation: clinical data was retrieved across three 
databases, EHRs, HES and ONS which were accessed and linked to the neuroimaging data via CRIS (Clinical Record 
Interactive Search). These databases provided diagnostic, demographic, cognitive and mortality data. This 
allowed us to determine which patients went on to get, or not, a dementia diagnosis in their medical journey 
allowing labelling into dementia or non-dementia types. Patients who were diagnosed with dementia before, or 
up to 3 months after the neuroimaging assessment, were excluded from our analyses. (D) Merging the 
neuroimaging and clinical data: the final dataset (N=1140) included only complete cases for the following 
variables: sex, age, brain-age, normalised brain volume, MMSE (Mini Mental State Examination) and scanner 
information. BRCDEM, BRCMEM: names of two clinical-research studies for memory clinic patients based and 
part of routine clinical care at SLaM (South London and Maudsley Hospital); EHRs (Electronic Health Records); 
HES (Hospital Episodes Statistics); ONS (Office of National Statistics); CRIS (Clinical Record Interactive Search). 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2021. ; https://doi.org/10.1101/2021.04.03.21254781doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.03.21254781
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 Brain-age predicts dementia 

 
 

7 
 

2.2 Clinical data preparation 

The CRIS-enabled linkage of neuroimaging data to EHRs, identified a total of 3666 patients. Of 

these, 2472 were classified as dementia patients and 1194 as non-dementia patients. Classification 

was achieved by extraction of diagnostic information and/or cause of death across EHRs. A dementia 

diagnosis was operationalised as a positive search result for the following terms: ICD-10 codes F00-

F03, G30-G32, "dementia", "Alzheimer’s disease", "Alzheimer" and "Lewy". The search was carried 

out in both structured and unstructured fields of the EHRs. Unstructured fields included free-text 

clinical notes and the search was achieved via natural language processing (NLP) applications 

developed within CRIS at the BRC [38, 39]. A negative search result classified the patient as a non-

dementia type. 

For the dementia patients, the diagnosis time was the date of the first instance of a dementia 

diagnosis after the neuroimaging assessment. For the non-dementia patients, the diagnosis time was 

the last instance of a diagnostic clinical entry after the neuroimaging assessment. A dementia 

diagnosis was detected before the neuroimaging assessment in 745 dementia patients (suggesting 

the diagnosis had been made based on clinical assessment after referral to the MRI unit, but before 

the actual scan); these were excluded. Seventy-two non-dementia cases were excluded because 

their most recent non-dementia diagnosis preceded the neuroimaging assessment. 

We did not exclude anyone based on their medical histories (except dementia, as previously 

described). This deviates from our pre-registered statement because, in retrospect, we opted to 

better capture the heterogeneity of memory clinic patients as this would increase ecological validity. 

As the time between diagnosis and neuroimaging assessment narrows, the predictive value of 

the MRI scan becomes more redundant. To address this, we set a minimum threshold of 3 months 

between neuroimaging assessment and diagnosis, based on SLaM NHS clinical guidelines of the 

maximum wait for a diagnosis. Thresholding reduced the sample from 2848 to 1386. 
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In addition to diagnostic information, the following variables ascertained at, or closest to, the 

neuroimaging assessment were obtained from the EHRs: age, sex, Mini-Mental State Examination 

(MMSE) and Addenbrookes’ Cognitive Examination (ACE). The MMSE and ACE are brief cognitive 

functioning tests commonly used in the clinic and helpful at detecting dementia [42, 43]. The scores 

range from 0-30 and 0-100, respectively, with low scores indicating poor cognition. NLPs were used 

to extract MMSE and ACE scores from both structured and unstructured EHRs fields.  

 

2.3 Neuroimaging data preparation 

In total, 3682 T1-weighted MRI scans were accessed via the BRCDEM and BRCMEM studies. 

These used similar but not identical acquisition parameters (see Supplementary Materials). Visual 

quality control (QC) was conducted to detect image artefacts; 63 scans were excluded due to poor 

quality such as motion artefacts and field inhomogeneities. 

Brain-age was calculated using brainageR (v2.0), an open-access software designed to generate 

brain-predicted age from raw T1-weighted MRI scans (https://github.com/james-

cole/brainageR)[29]. The brainageR software involves two main stages, pre-processing and 

prediction. In the pre-processing stage, the images were segmented and normalised via SPM12 

software (www.fil.ion.ucl.ac.uk/spm/software/spm12/). PNGs of these processes were generated via 

the slicesdir FSL function that facilitated a second visual QC to verify segmentation accuracy; 123 

images were excluded due to gross segmentation errors. Normalised images were loaded into R [44] 

and vectorised. GM, WM and CSF vectors were masked using a 0.3-thresholded average image 

template based on the brainageR’s model training dataset and then combined.  

In the prediction stage, the brainageR model was applied to the vectorised and masked study 

images to estimate a brain-age score for each. BrainageR had been previously trained to predict age 

from normalised brain volumetric maps of n=3377 healthy individuals from seven publicly-available 

datasets using a Gaussian Processes Regression. Using principal component analysis, the top 
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principal components capturing 80% of the variance in age were retained. The resulting rotation 

matrix for 435 principal components was then applied to the new imaging data to predict age. 

Model performance (Pearson's correlation between chronological age and brain-predicted age, r; 

mean absolute error, MAE) for internal and external validation was: n=857, r = 0.973, MAE = 3.933 

years and n=611, r = 0.947, MAE = 4.90 years, respectively. 

For each image, the final output of brainageR was a brain-predicted age value with 95% 

confidence intervals. Brain-predicted age difference (brain-PAD) was calculated by subtracting 

chronological age from brain-predicted age. Volumetric measures of GM, WM and CSF were 

generated by SPM Segment. Normalised brain volume was calculated as the sum of GM and WM 

volumes, divided by the sum of GM, WM and CSF volumes. 

Neuroimaging data were subsequently merged with the clinical data. Out of 1386 cases, 81 were 

removed because of a missing brain-age score or a different MRI scanner and 165 were removed 

because of missing MMSE scores. The final sample (n=1140) consisted of 664 dementia and 476 non-

dementia patients.  

 

2.5 Statistical analyses 

To examine whether brain-age was associated with subsequent dementia diagnosis (at least 3 

months later), we ran two analyses. First, we used logistic regression to test whether baseline brain-

PAD was associated with future dementia status (dementia versus non-dementia). Secondly, we 

conducted a survival analysis using Cox proportional hazards regression to determine whether 

baseline brain-PAD predicted time-to-dementia. Cox regression allows for the predictive modelling 

of the time-to-event (time-to-dementia), also referred to as survival time or event time. For the non-

dementia patients, time-to-event was right-censored using the data of the most recent diagnostic 

clinical entry. For both analyses, the predictor of interest was brain-PAD and covariates were sex, 

age, age2, MMSE score and normalised brain volume. Age and age2 were included to address the 
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bias due to the correlation between chronological age and brain-PAD [45]. The problem of 

multicollinearity between age and age2 was minimized by using their polynomial terms.  

Next, we ran two sensitivity analyses by subsetting the sample data and re-running both logistic 

and cox regression analyses. Firstly, we examined whether brain-PAD was predictive of dementia 

over a longer period, using a minimum duration of 3 years between neuroimaging assessment and 

diagnosis. Secondly, we tested whether brain-PAD was predictive of dementia in patients appearing 

to be largely cognitively unimpaired, by excluding those with MMSE scores below 27 [46]. 

3 Results 

Baseline characteristics of the final sample (n=1140) are described in Table 1. At the time of 

neuroimaging assessment, 60.18% were female, the mean age was 69.99 (SD 10.80) years, the mean 

MMSE score was 23.01 (SD 6.90), the mean ACE score was 72.30 (SD 15.63) and the mean 

normalised brain volume was 0.7239 (SD 0.0591) litres. Compared with the non-dementia group, the 

dementia group had more females, was older, had lower MMSE and ACE scores and had smaller 

brain volumes.  

The median time-to-dementia diagnosis was 0.81 years (interquartile range 0.41-1.92). 

Associations between brain-PAD and outcomes of dementia diagnosis (logistic regression) and time-

to-dementia diagnosis (Cox regression) are presented in Table 2. A higher brain-PAD was 

significantly associated with a dementia diagnosis in both the logistic regression: odds ratio (OR) = 

1.03 (CI 1.02-1.05), and the Cox regression: hazards ratio (HR) = 1.03 (CI 1.02-1.04). Age, sex, MMSE 

and normalised brain volume, but not age2, were also significantly associated with outcome (see 

Supplementary Materials). These results indicated that while keeping the covariates constant, every 

+1 year of brain-PAD was accompanied with a 3% relative increased risk of a dementia diagnosis 

(p<0.0001), both when considering time-to-dementia (Cox regression) or dementia/non-dementia 

status (logistic regression) (Figure 2).  
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Table 1 Sample Characteristics 

Group All Non-dementia Dementia 
Non-dem 
vs. Dem 
(p-value) 

N 1140 664 476  

Female % 60.18 57.68 63.66 0.0422 

Age 
Complete cases % 100.00 100.00 100.00 

 

Mean (SD) 69.99 (10.80) 66.95 (11.12) 74.24 (8.74) <0.0001 

Median 71.00 68.00 75.00  

Min-Max 27.00-95.00 27.00-95.00 42.00-95.00  

MMSE 
Complete cases % 100.00 100.00 100.00 

 

Mean (SD) 23.01 (6.90) 23.88 (6.59) 21.79 (7.15) <0.0001 

Median 26.00 26.00 24.00  

Min-Max 0.00-30.00 1.00-30.00 0.00-30.00  

Time-to-Event 
Complete cases % 100.00 100.00 100.00 

 

Mean (SD) 1.86 (1.61) 2.18 (1.66) 1.41 (1.42)  

Median 1.29 1.70 0.81  

Min-Max 0.25-7.81 0.25-7.81 0.25-7.49  

ACE 
Complete cases % 35.09 39.31 29.20 

 

Mean (SD) 72.30 (15.63) 74.81 (14.82) 67.58 (16.05) <0.0001 

Median 75.00 78.00 70.00  

Min-Max 22.00-99.00 26.00-99.00 22.00-96.00  

Normalised brain volume 
Complete cases % 100.00 100.00 100.00 

 

Mean (SD) 0.7239 (0.0591) 0.7405 (0.0571) 0.7009 (0.0538) <0.0001 

Median 0.7261 0.7453 0.7073  

Min-Max 0.4728-0.8800 0.4738-0.8800 0.4728-0.8633  

SD = Standard Deviation; MMSE = Mini-Mental State Examination score; normalised brain volume is 
measured in litres. 
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Table 2 Association of brainPAD (adjusted for covariates) with incident dementia assessed by 

logistic regression and Cox proportional hazards models, in the total study sample and in 

subsamples based on sensitivity analyses 

  Logistic regression  Cox regression 
  n/N OR (95% CI) p-value     HR (95% CI) p-value   
Main 
analysis 476/1140 1.03 (1.02-1.05) <0.0001 ***  1.03 (1.02-1.04) <0.0001 *** 

Sensitivity 
analysis I 66/249 1.06 (1.03-1.10) 0.0011 **  1.06 (1.02-1.09) <0.0001 *** 

Sensitivity 
analysis II 146/471   1.02 (1.00-1.05) 0.0544     1.03 (1.01-1.05) <0.0001 *** 

OR= Odds Ratio; CI= Confidence Intervals; number of dementia cases (n); total number of participants (N)  
*** p-value<0.001, ** p-value<0.01        
Sensitivity analysis I= minimum 3 years for time-to-diagnosis; Sensitivity analysis II= MMSE score ≥ 27 
 

The table above shows results from three analyses: the main analysis using the total study sample (N=1140); 
sensitivity analysis I (N=249) which included patients that were diagnosed at least 3 years after the neuroimaging 
assessment and, sensitivity analysis II (N=471) which included only a subsample of patients who scored 27 or 
more on the MMSE at the time of the neuroimaging assessment. OR = odds ratio; HR = hazards ratio 

 

 

 

Figure 2 depicts a Kaplan-Meier plot illustrating the probability of being dementia-free based on brainPAD score. 
At the time of the neuroimaging assessment (time 0 on the x-axis), all patients are dementia-free. Over time, 
patients with higher brainPAD scores (pink) are more likely to get a dementia diagnosis and more rapidly than 
the ones with lower brainPAD scores (blue). 
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Figure 3 The scatterplots show chronological age (x-axis) and brain-age (y-axis) split by group, non-dementia 
(grey) in the left panel and dementia (orange) in the right panel. The identity line (green) shows the ideal case 
when chronological age matches the brain-age estimate, x=y. Lines of best fit (orange, grey) within each group 
are both positive showing that brain-age estimates tend to be larger than chronological age for both groups of 
patients and in particular for the dementia group.  

 

Assumptions for both regression models were met. For the logistic regression, the residuals 

were normally distributed and for the Cox regression, the standardised residuals of the covariates 

were not correlated to event time indicating proportional hazards (χ2(6)=11.5, p=0.074). 

Congruent with our main results, the non-dementia group’s brain-age showed a relatively 

smaller deviation from their chronological age compared with the dementia group, as illustrated in 

Figure 3, with the line of best fit closely aligned to the identity line in green (left panel) but less so 

for the dementia group (right panel). Also, the deviation negatively correlated with age, likely driven 

by a regression-to-the-mean effect, hence we accounted for this in our analyses by covarying age 

and age2 [45].  

The first sensitivity analysis restricted to patients with a time-to-diagnosis minimum of 3 years 

(n=249) resulted in an OR of 1.06 (CI 1.03-1.10) and HR of 1.06 (CI 1.02-1.09), which were both 

statistically significant. This indicated that for every +1 year of brain-PAD there was a 6% relative 
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increased risk of dementia, even when the neuroimaging assessment preceded diagnosis by at least 

3 years. The second sensitivity analysis restricted to patients with baseline MMSE scores of above 26 

(n=471), resulted in an HR of 1.03 (CI 1.01-1.05). This indicated a 3% increased risk of dementia for 

every +1 brain-PAD year, even when cognition was not clearly impaired. The latter analysis was 

statistically significant for the Cox regression but not using logistic regression. For other covariates’ 

OR and HR, see Supplementary Materials. 

4 Discussion 

In this study, we hypothesised that brain-age, a structural MRI-based biomarker, would predict 

subsequent dementia in a real-world sample of memory clinic patients. We found that every 

additional year of brain-PAD incurred a 3% relative increased risk of dementia. This implies that 

memory patient clinics with older-looking brains are more likely to receive a subsequent dementia 

diagnosis, independent of sex, baseline age, MMSE score and normalised brain volume. Accordingly, 

a patient with +5 brain-PAD years has 15% added risk of dementia compared to one with 0 brain-

PAD years, whilst keeping the covariates equal (e.g., both are female 65-year olds with similar MMSE 

scores and normalised brain volumes). Moreover, sensitivity analysis I revealed that this risk 

increased to 6% when the interval between neuroimaging assessment and dementia diagnosis was 

increased from a minimum of 3 months to at least 3 years. This could indicate that neuroimaging 

biomarkers are more informative in people further away from the development of manifest clinical 

symptoms of dementia. 

Our findings are consistent with previous studies that used the brain-age paradigm to predict 

subsequent dementia [32, 33]. For example, the Wang et al. [33] study showed that every year of 

brain-PAD had a 9% increased risk of incident dementia, even when assessment preceded diagnosis 

by 5 years. Also, the Gaser et al. [32] study reported a 10% increased risk in converting from MCI to 

AD with a 3-year follow-up. Some important differences exist between our study and these previous 

reports, particularly regarding sample characteristics. In Wang and colleagues’ study, the sample was 
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a population-based cohort in which participants who developed dementia were compared to those 

who did not and hence the latter are likely to have included many healthy participants. Instead, all 

our controls were patients who were referred to a memory clinic and who did eventually get a 

diagnosis, often a psychiatric or neurological one. Hence, the case-control contrast in the Wang’s 

study is expected to be larger than ours given that patients with psychiatric and neurological 

disorders are reported to show larger brain-PADs than healthy participants [25, 26, 30]. In our study, 

brain-PAD remained predictive despite our sample including co-morbidities and complex medical 

histories. 

Another important finding came from our sensitivity analysis II; when cognitive functioning was 

unimpaired or at least not clearly impaired (MMSE ≥ 27), brain-PAD remained a significant predictor 

of the disease. It is precisely when routine assessments in the memory clinic yield ambiguous results 

that the clinician may consider other more invasive or expensive tests to aid decision-making. This 

further illustrates the potential role of quantitative neuroimaging biomarkers in the clinic for 

augmenting clinical decision-making. For example, it is not uncommon for memory clinic patients 

with poor cognition to receive ‘age appropriate’ radiological report on an MRI scan. Quantitative 

neuroimaging analysis could offer the possibility to reconcile such findings.   

One major strength of this study is having used data from pre-existing standard memory clinic 

workflows rather than by experimental, and hence, artificial design. This confers two main 

advantages. The first is added ecological validity. This means that our findings are more 

representative of our target population - memory clinic patients. Our sample is drawn from south-

east London and characterised by a highly diverse ethnic background, which is an asset given the 

widespread criticism for its scarcity. Notably, south-east London is not fully representative of 

nationwide memory clinic patients [38] but still offers an improvement over some sources of 

misrepresentation such as selection bias.  

Secondly, it illustrates the feasibility of implementing clinical predictive models involving 

quantitative neuroimaging biomarkers, which could be automatically integrated with other clinical 
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data (e.g., radiology reports or EHRs). Connecting neuroimaging biomarkers like brain-age with EHRs 

has broad potential; it could aid the memory clinician with prognosis and support clinical trials 

including stratification, staging of disease severity and outcome markers [5] and, neuropsychiatric 

research at large [26, 28, 30].   

To put our results into context we considered how the effect size of the risk conferred by brain-

PAD compared to common dementia risk factors. The study by Gottesman et al.[47] reports HR(CI) 

for incident dementia of 1.14 (0.99-1.31), 1.39 (1.22-1.59) and 1.77 (1.53-2.04) respectively for 

obesity, hypertension and diabetes relative to normal healthy conditions. Comparing these to brain-

PAD is not straightforward considering study differences such as sample characteristics and 

covariate adjustments. However, if we hypothetically put set aside these caveats, and converted 

these HRs to brain-PAD years based on our model, this would give +4.7, +11.8 and +20.5 brain-PAD 

years, respectively. Broadly speaking, this would mean that someone with a brain looking 11.8 years 

older than their chronological age would have a similar long-term risk of incident dementia to 

someone classified as having hypertension and 0 brain-PAD years.  

Various limitations of this study should be acknowledged. The first pertains to false negatives 

and false positives. The non-dementia group was defined on a negative search result for a dementia 

diagnosis, however, it is possible that some developed dementia that was unrecorded. Nevertheless, 

if our sample did contain such false negatives then, the contrast between dementia versus non-

dementia would reduce and consequently, our current finding would reflect a more conservative 

version than its true value. False positives - mistaken cases of dementia patients - are less likely 

though not impossible, despite constant efforts at improving validation of information extracted 

from EHRs [38, 39]. Future efforts in this direction could include enhanced triangulation of 

observations by linking EHRs to additional databases, such as general practitioner records. A second 

limitation pertains to the precision of the timestamps of EHRs events given the lack of consistency 

concerning whether the date reflects the time of the clinical event or the time the clinical event was 

recorded on the system. However, we assume that this inconsistency would exist at random across 
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groups and not by a large interval. Thirdly, brain-age was calculated using only one modality of 

structural MRI scans. Although a T1-weighted brain-age model has been extensively validated across 

many studies it leaves a rich resource of common clinical scans, T2-weighted ones, unused. A 

multimodal brain-age model could improve the utility of this biomarker [48]. Finally, although part of 

the appeal of the brain-age model lies in the simplicity of multivariate-to-univariate transformation 

(i.e., many voxels reduced to a single brain-age value), ongoing developments in brain-age modelling 

provide localised brain-age estimates [49] that could allow for novel composite brain-age scores of 

brain regions known to be critical to dementia (e.g., temporal lobe versus whole brain). 

 Overall, our findings demonstrate the value of using brain-age as a sensitive biomarker that has 

the potential to be used early‐on in memory clinics to detect patients at high risk of developing 

dementia. This ‘real-world’ study further paves the way for the role of quantitative neuroimaging in 

bridging the gap between basic research and clinical applications, in particular, prognostication and 

stratification of dementia syndromes.  
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