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ABSTRACT 24 

The impact of COVID-19 disease on health and economy has been global, and the magnitude of 25 

devastation is unparalleled in modern history. Any potential course of action to manage this 26 

complex disease requires the systematic and efficient analysis of data that can delineate the 27 

underlying pathogenesis. We have developed a mathematical model of disease progression to 28 

predict the clinical outcome, utilizing a set of causal factors known to contribute to COVID-19 29 

pathology such as age, comorbidities, and certain viral and immunological parameters. Viral load 30 

and selected indicators of a dysfunctional immune response, such as cytokines IL-6 and IFNα, 31 

which contribute to the cytokine storm and fever, parameters of inflammation d-dimer and 32 

ferritin, aberrations in lymphocyte number, lymphopenia, and neutralizing antibodies were 33 

included for the analysis.  The model provides a framework to unravel the multi-factorial 34 

complexities of the immune response manifested in SARS-CoV-2 infected individuals.  Further, 35 

this model can be valuable to predict clinical outcome at an individual level, and to develop 36 

strategies for allocating appropriate resources to mitigate severe cases at a population level. 37 

38 
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INTRODUCTION 39 

The COVID-19 pandemic caused by infection with SARS-CoV-2 was officially announced in 40 

March 2020 by the CDC and WHO [1, 2]. As of this publication, more than 100 million 41 

infections and over 2.6 million deaths have been reported worldwide. Majority of the subjects 42 

have asymptomatic infections. The rate of fatality is disproportionately high in the elderly and 43 

patients with comorbidities such as diabetes, cardiac disease, and kidney disease [3, 4]. The 44 

consequences of the pandemic are fraught with potential loss of lives, social and economic 45 

distress, and the uncertainty of disease progression because of variable individual pathogenesis. 46 

A unique and dysregulated immune response has been shown to be a hallmark of 47 

COVID-19 [5-9].  Figure 1 schematically depicts the cascade of events that contribute to the 48 

progression of disease. Mathematical models have been utilized by several investigators to 49 

understand the mechanisms of disease pathogenesis, immune pathways involved and course of 50 

viral infections [10, 11]. In this article, we have proposed a predictive model that utilizes the 51 

levels of clinical and laboratory parameters to determine the severity of clinical outcomes 52 

ranging from asymptomatic to mild, moderate, severe, and critical disease states. The proposed 53 

model can be useful to predict clinical outcome at the individual-level and develop efficient and 54 

effective treatment strategies to manage public health challenges at the population-level. 55 

The questions the model attempts to answer are: i) At an individual level, what is the 56 

probability of an individual infected with SARS-CoV-2, given the clinical signs and laboratory 57 

values on various days, likely to progress to severe disease, and ii) At a population level, what 58 

are the prioritized clinical and laboratory parameters that are most likely to contribute to 59 

progression to severe disease. We have used a multiple regression based model to predict 60 
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severity of the outcome of COVID-19. To evaluate the combinatorics that are not observed in the 61 

sample, we have applied resampling methods based on Monte Carlo simulation. 62 

 63 

METHODS 64 

Development of a Simulated Dataset 65 

A simulated data set of 45 individual subjects was created with 15 subjects assumed to be 66 

asymptomatic, 15 with moderate disease, and 15 with severe COVID-19 [12, 13]. The simulated 67 

values for the viral and immune parameters were generated using data from clinical reports 68 

published in the last year for each of the selected parameters. Table 1 provides the ranges and 69 

the related references for the values for all parameters and Figure 2 shows the box-and-whisker 70 

plots for the distribution of the values for each parameter. 71 

Data Modeling 72 

We have applied Multiple Linear Regression approach to the simulated data set for COVID-19 73 

subjects generated and analyzed to understand the impact of each of the parameters on the 74 

outcome of disease severity. We chose a multiple regression model since both, the outcomes and 75 

predictors, were numeric. We used regression models to establish a predictive transfer function 76 

and evaluated significance of results. In this model, the relationship between independent 77 

variables (x1, x2…xn) with dependent variable (y) can be visualized by the equation, y=f (x1, 78 

x2…xn). This is the transfer function that is derived through analysis. The validity of the model 79 

was established using ‘Goodness of Fit’ and ANOVA. The statistical significance of the model 80 

was tested by evaluating residuals and F Ratio in one-way ANOVA, based on the criteria of p 81 
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<0.05 and goodness-of-fit with Adj. RSq >90%. The assumption for this analysis was that each 82 

of the parameters was independent. However, in cases where factual patient datasets will be 83 

subjected to this type of analysis, there may be multi-co-linearity within the parameters that 84 

should be rationalized using dimensionality reduction methods [14, 15]. 85 

Since the model may not exhibit multiple combination of parameters in the limited 86 

dataset of 45 subjects, we have used resampling methods using Monte Carlo simulation to 87 

achieve a better density of combinations. The simulation was applied for resampling of the 88 

transfer function with 2000 runs, where a convergence was achieved after multiple runs.  The 89 

simulation was performed in order to understand the impact of possible parameter combinations 90 

on clinical outcomes. Monte Carlo simulation uses random variates from selected range of values 91 

to model the impact of progression of events leading to outcomes. 92 

Data analysis using training and testing data sets 93 

Model building involved partitioning the data set into ‘training’ and ‘testing’ sets. We 94 

apportioned 70% of the data to train the model and used the remaining 30% to test the model, 95 

using random selection algorithms. Following development of the model, we analyzed a set of 96 

test data to compare predicted versus observed results to validate the model. The regression 97 

model generated a prediction formula as follows: 98 

Outcome = -36.898 - 0.020 AGE + 0.894 COMORBID - 0.048 Viral Load - 0.004 IFNα + 0.444 99 

Fever - 0.003 IL6 + 0.271 D-Dimer + 0.000 Ferritin - 0.000 Lymphocyte Count - 0.037 O2 100 

saturation - 2.57034e-006 NAB 101 

 102 

The linear coefficients of the prediction equation determined the weights of each parameter to 103 

predict the clinical outcome.   104 
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Estimation of the coefficients of input parameters 105 

The modeling approach was based on utilizing clinical and laboratory parameters to fit the 106 

regression models. Since direct comparison of regression coefficients was not necessary, and 107 

interactions in factors were not considered on account of assumption of independence of factors, 108 

we chose to leave the factor-data in the original scales. 109 

Rationale for the parameters included in the analysis 110 

The input parameters selected for this model, which requires cause (clinical and laboratory 111 

parameters) and effect (clinical outcome) relationships, were based on the data reported in recent 112 

scientific publications. Figure 1 shows the schematic representation of the stage of disease 113 

progression and parameters associated with the increasing severity of diseases. The following 114 

parameters were chosen:  115 

1. Comorbidities: Though the precise mechanism(s) of disease progression in patients with 116 

comorbidities has yet to be elucidated, pre-existing conditions such as diabetes, cancer, 117 

neurological, cardiac and lung and kidney disease have been reported to contribute towards 118 

severity of COVID-19 [16, 17].  The simulated data for comorbidity was generated using 119 

an arbitrary range of 1 to 4, where 1 represented a healthy individual and 4 represented an 120 

individual with a severe co-morbidity. 121 

2. Age: A range of 18 to 100 years was utilized for generating the mock data set. The 122 

assumption used in generating the data was that disease progression was directly 123 

proportional to age [17]. Reports of certain rare pathogenic conditions in children, e.g., 124 
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Kawasaki disease [18, 19], have not been considered in the current model. Reports indicate 125 

that majority of children infected with SARS-CoV-2 are asymptomatic [19]. 126 

3. Viral load: SARS-CoV-2 infects individuals through the nasopharyngeal pathway. This 127 

infection is the cause of all subsequent effects. Viral load is measured by reverse-128 

transcriptase quantitative PCR (RT-qPCR), which detects viral RNA from nasopharyngeal 129 

swabs [20]. The test relies on multiple cycles of RNA amplification to produce detectable 130 

amount of RNA in the mixed nucleic acid sample, reflected in the Cycle-time (Ct) value, 131 

which is defined as the number of cycles necessary to detect the virus. A Ct value of less 132 

than 20 is considered a high viral load while a Ct value of 35 and higher indicates a lower 133 

level or near absence of viral infection [20]. Viral load in patients is dependent on various 134 

factors, including number of ACE2 and TMPRSS2 receptors [21, 22], comorbidities, 135 

cytokines, number of viral particles at infection, and the overall immune health status of the 136 

patients [23-26]. Viral loads have been demonstrated to have a direct correlation with 137 

severity of disease and mortality in COVID-19 [27, 28]. 138 

4. Cytokine Storm: High viral loads evoke defensive mechanisms that can induce 139 

inflammation leading to a dysregulated innate immune response that could result in a 140 

cytokine storm characterized by fever-inducing levels of cytokines such as IL6, IFNα, 141 

IL1β and CXCL-10 [27, 29-33]. CXCL-10, interestingly was also found to be indicative of 142 

severe outcomes in patients affected by the SARS CoV1 outbreak in 2002 [34].  Cytokine 143 

storm has been implicated in contributing to pulmonary immunopathology, leading to 144 

severe clinical disease and mortality. In this model, we have included levels of IFNα and 145 

IL6 obtained from the published data. 146 
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5. Systemic Inflammation: Laboratory based parameters indicating inflammation in the 147 

serum, such as D-Dimer and Ferritin, have been shown to lead to a reduction in blood 148 

oxygen saturation levels, reflecting inadequate oxygenation in the lungs [35, 36]. 149 

6. Lymphopenia: Viral infection can lead to marked lymphopenia that can affect both CD4+ 150 

and CD8+ T cells [3, 28, 36]. Lymphopenia, reflected by significantly reduced CD4 and 151 

CD8 T cells in peripheral blood, is likely due to sequestration and cell death and reflected 152 

by significantly reduced CD4 and CD8 T cells in peripheral blood, has been reported in 153 

moderate and severe COVID-19 patients. In addition, antigen specific CD8 Cytotoxic T 154 

lymphocyte (CTL) responses have been detected approximately a week following viral 155 

infection, and the magnitude of the response was observed to have protective or damaging 156 

effects [37]. 157 

7. Neutralizing antibodies: Neutralizing antibodies bind to specific surface receptors on 158 

infectious agents such as viruses and toxins, reducing or eliminating their ability to exert 159 

harmful effects on cells. SARS-CoV-2 infected individuals generate a robust and long-160 

lasting neutralizing antibody response, and plasma from convalescent COVID-19 patients 161 

has been used for treatment of severe disease with some success [38, 39]. It has recently 162 

been reported that neutralizing antibodies to SARS-CoV-2 can predict severity and 163 

survival, with higher titers being associated with severe disease in some instances [40]. 164 

.  165 
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RESULTS 166 

We evaluated multiple approaches to develop mathematical models using parameters that can 167 

predict the progression of disease. Candidate parameters were selected from mechanistic 168 

understanding of the process of pathogenesis of COVID-19 to evaluate their possible impact on 169 

the clinical outcome. Regression models utilize data to build predictive models. Hypotheses are 170 

examined and confirmed with pre-determined statistical confidence and inferential power. These 171 

models incorporate all the experimental variability in the data set. Since the models contained 172 

numeric factors and numeric ordinal outcomes, we utilized methods of Multiple Linear 173 

Regression [41]. In this approach, we used the simulated data set from COVID-19 affected 174 

subjects, organized, and analyzed it to understand the variability of each of the parameters.   175 

Regression modeling approach 176 

The data set was parsed into training and testing partitions using methods of randomization. The 177 

validity of the model was based on goodness-of-fit of R Sq. > 90% and ANOVA, [p value <0.05] 178 

and a consequent F Ratio (Table 2a and 2b). These statistical results confirmed acceptable 179 

degree of predictability of the model. 180 

Following this multiple-regression analysis, we conducted 2,000 bootstrap samplings using the 181 

predicted coefficients and random variates from chosen intervals of parameters. The assumption 182 

for this analysis was that each of the parameters were independent variables. The coefficients of 183 

each parameter were determined by using multiple regression analyses, which is the multiplier to 184 

the parameter value in a linear regression equation. The inclusion of all the variables in analysis 185 

ensures their contribution to the model [41]. However, analysts applying this model in the future 186 

may, at their judgment, evaluate statistical significance of regression coefficients. Parameters 187 
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that are not significant maybe excluded using step wise regression. In our analysis, results based 188 

on training dataset predictors matched with those from the test dataset confirming an acceptable 189 

degree of predictability of the model. We invite the readers of this article to contact us to analyze 190 

the predictive potential of the model using their data. 191 

Monte Carlo simulation 192 

To determine the factors that contribute to the clinical outcome at the population level, Monte 193 

Carlo simulation was performed on a sample set of laboratory and clinical parameters covering 194 

the full range, from asymptomatic to severe disease, of outcomes (stages 1-7 [Figure 2]) [12, 13].  195 

The histogram and cumulative data (Figure 3a) show the distribution of asymptomatic to severe 196 

outcomes. The Tornado chart (Figure 3b) shows the sensitivity of parameter to the outcome in 197 

the selected range. 198 

The predictive model 199 

Based on the correlation coefficient of the parameters and the outcome from the training data set, 200 

we developed a model using the prediction equation. Table 4 shows the process of predicting the 201 

outcome. When the numerical values of the individual parameters for each patient are entered 202 

into the columns, the model predicts the outcome. The validation of the model will require data 203 

from patients and clinical trials. The goal of this exercise was to develop a model that can be 204 

used to predict the outcome in a large number of patients.   205 

  206 
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DISCUSSION 207 

We have evaluated multiple regression analysis for mathematically modeling the course of 208 

COVID-19 to predict clinical outcome. The premise of this model is that quantitatively measured 209 

clinical and laboratory parameters involved in the pathogenesis of disease progression can be 210 

mathematically mapped to a multiple-regression model. COVID-19 is initiated by infection of 211 

the subject with SARS-CoV-2 with subsequent replication in the epithelial cells of the lung. The 212 

factors that contribute to the viral load include number of cells that express the ACE2 and other 213 

receptors, and inflammatory cytokines. Comorbidities contribute towards a more serious disease 214 

progression. Virus infection of antigen presenting cells, such as dendritic cells, macrophages, and 215 

other cell types including endothelial cells, results in activation of biochemical signals, which 216 

lead to secretion of a battery of cytokines that include IL1β and IL-6. The viral infection as well 217 

as inflammatory cytokines cause fever and an increase in serum inflammatory factors such as D-218 

Dimer and Ferritin. Induction of an inflammatory response contributes to reduction of the total 219 

numbers of lymphocytes from circulation. The inflammation results in a loss of lung function 220 

(e.g., reduction in blood-oxygen levels), cardiac function (blood pressure) and can culminate in 221 

multi-organ failure. 222 

Subjects with a normal immune response can generally mount an adequate innate and 223 

adaptive response to the virus. These individuals clear the virus by generating adaptive T cell 224 

responses and neutralizing antibodies. Subjects with comorbid conditions can have compromised 225 

immune function which could result in dysfunctional activation of inflammatory responses, 226 

leading to worse clinical outcomes. 227 
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Selection of the parameters that were included in the model building process was 228 

influenced by their perceived significance from current research reports. This list of factors is by 229 

no means complete and it is expected that in due course a more comprehensive list will emerge.  230 

This report provides a basis for creating a tool, independent of the number and type of 231 

parameters, that could find utility in predicting the disease outcome using those parameters. 232 

Viral Load. Association of viral load and progression of diseases has been reported for several 233 

viral infections [42-44].  Viral load in COVID-19 is measured by qRT-PCR of SARS-CoV-2 234 

using primers for the spike gene [43]. The correlation of high viral load with severity of disease 235 

progression has been extensively demonstrated. The systemic dissemination of the virus has been 236 

associated with expression of the ACE2 receptor on endothelial cells [21]]. Comorbid conditions 237 

could enhance the expression of receptors and enable distribution of virus, thereby enhancing the 238 

viral load, which can result in progression of disease.   239 

IFNα. The critical role of Type I interferons in innate and adaptive immunity, leading to both 240 

protective and pathogenic responses, has been reported in the case of several viral and bacterial 241 

infections [45]. SARS-CoV-2 infection has been shown to result in a diverse range of effects on 242 

Type I immune responses. Most patients elicit a strong IFNα response along with a battery of 243 

inflammatory cytokines, some of which progress to a cytokine storm [46, 47]. Specific blocking 244 

of the type I mediated signal transduction by various proteins of SARS-CoV-2 has been 245 

demonstrated [48]. A remarkably high proportion of male subjects experiencing severe or critical 246 

COVID-19 disease expressed an inability to produce sufficient levels of IFNα due to various 247 

types of errors in the IFN genes. Curiously, majority of the male subjects possessed circulating 248 

IFNα autoantibodies that had the ability to neutralize the endogenously produced cytokine, 249 
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thereby effectively reducing the available IFNα.  The discovery of these two mechanisms for 250 

lowering IFNα levels underscores its relevance in controlling the progression of disease in 251 

individuals infected with the SARS-CoV-2 [49]. 252 

D-Dimer. D-Dimer is routinely measured in clinical situations because its levels correlate with 253 

serious underlying conditions including venous thromboembolism, cancer and sepsis [48]. In the 254 

case of COVID-19 patients, introduction of the virus brings about infection-induced 255 

inflammatory alterations leading to coagulopathy. Lungs being the target of SARS-CoV-2, acute 256 

injury to the lung as well as multi organ failure have been caused by the virus-induced cascade of 257 

the inflammatory pathway. In an early study on 41 COVID-19 patients, those with severe disease 258 

had higher levels of D-Dimer along with high levels of IL-8, TNFα and IL-2R [31]. Male 259 

patients were found to have higher levels of IL-6, IL-2R, Ferritin and other markers of 260 

inflammation compared to female. High levels of IL-6 showed a statistically significant 261 

correlation with severe disease in a retrospective study as well [27]. One can hypothesize that 262 

such patients would likely benefit from anticoagulation therapy. 263 

Ferritin. A high level of ferritin, measure of stored iron, was found to be associated with severe 264 

disease in COVID-19 patients and was linked to high fatality rates in a 72 patient prospective 265 

study [33, 50, 51]. In another study on 39 patients, those with mild COVID-19 symptoms had 266 

lower levels of ferritin while those with moderate or severe symptoms expressed higher levels of 267 

ferritin [50]. 268 

Lymphopenia.  Loss of lymphocytes after viral infections has been associated with severe 269 

disease. The mechanisms involved in lymphodepletion can been implicated to be due to cell 270 

death, cytokine storm and/or redistribution of lymphocyte populations [3, 33, 37].  In this model, 271 
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we have utilized lymphopenia as a measure of severity of disease progression. Loss of immune 272 

function could result in several potential mechanisms of pathogenesis including autoimmunity, 273 

hyperactivation, increased susceptibility to infections and organ dysfunction. 274 

 275 

Neutralizing Antibodies. Induction of neutralizing antibodies directed to the receptor-binding 276 

domain of the spike protein is critical for restricting entry of the virus into the cells and has been 277 

one of the central tenets of a protective immune response. In this model, we have used a range of 278 

IgG titers to spike protein for the simulated data set [52]. However, the role of neutralizing 279 

antibodies induced in a large proportion of subjects following natural infection is still being 280 

studied [53]. Some subjects do not elicit strong antibody responses. Sub-optimal levels of 281 

antibodies may catalyze generation of virus mutants [54]. Neutralizing antibodies to the virus 282 

have generally not correlated with reduced severity of disease in the primary infection. In 283 

addition, it will be interesting to decipher the role of pre-existing antibodies reported recently in 284 

the modulation of disease and its impact on vaccination regimens. Thus, the mechanisms 285 

involved in the induction of antibodies, the repertoire and diversity of responses, and effects on 286 

protection versus progression, remains to be clearly established. 287 

The predictive model can have multiple applications, such as forecasting the percentage 288 

of the population that will progress to severe disease in each geography, enabling logistics 289 

planning for hospital beds, health care providers and personal-protective safety equipment. 290 

Analysis of the coefficient of correlations of parameters with outcome of disease may provide 291 

clues to a better understanding of the mechanism of action of disease pathogenesis. The model 292 

can predict the probability of disease progression at an individual level, based on parameter data, 293 

and can be used to understand the effect and impact of therapeutic interventions. The predictive 294 
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model can be utilized to analyze large amounts of data to develop algorithms for personalized 295 

treatment regimens. 296 

In summary, we have developed a probabilistic model that can be utilized to predict progression 297 

of disease following infection with SARS-CoV-2. This model was developed using simulated 298 

data based on published levels of COVID-19 related clinical and laboratory parameters and 299 

provides an approach to predicting the outcome of disease. Validation of the model will require 300 

existing data and the clinical outcomes of patients. Prediction of disease progression can be 301 

highly valuable at an individual as well as population level. 302 

  303 
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TABLES LEGENDS: 304 

Table 1.  Ranges of values for the parameters used for developing the simulated dataset for 305 

the mathematical model. The range of comorbidities was assigned arbitrary nominal value 306 

between 1 to 4, with 1 being healthy, and 4 having multiple health-conditions (e.g., diabetes, 307 

cancer etc.). The age ranges in the model were 18-100 years. 308 

Table 2A.  Statistical analysis of coefficients for each parameter based on the multiple 309 

regression analysis.  The Table shows the regression statistics. The statistical terms are: DF 310 

(degrees of freedom); SeqSS (Sequential Sum Square); AdjSS (Adjusted Sum Square), AdjMS 311 

(Adjusted Mean Squares), F ratio, p value. 312 

Table 2B. Coefficient and standard error for parameters.  The coefficients for each 313 

parameter were determined by using multiple regression analyses, which is the multiplier to the 314 

parameter value in a linear regression equation.  The values of the coefficients of each of the 315 

parameters are shown using ANOVA.  The table shows the standard error, t and p values.  The p 316 

value denotes statistical significance to the outcome. 317 

Table 3.  The Ranges for the Monte Carlo Simulation.   318 

 319 

Table 4. The Prediction of outcome based on observed and predicted values.  The values of 320 

the parameters for each of the seven subjects are entered in columns, upon running of the model. 321 

The predicted values are calculated in numerical values in a range of 1-7, with 1 being 322 

asymptomatic, and 7 most severe. 323 

 324 
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FIGURE LEGENDS: 325 

Figure 1.  Schematic representation of the progression of disease.  The width of the triangles 326 

denotes increase in levels of viral load (purple), cytokine storm (blue), and anti-inflammatory 327 

symptoms (green); blue arrows denote T and B cell responses. 328 

Figure 2.  Box-and-whisker plots of the simulated data.  The figures show the visual 329 

representation of the summary, which includes median (Q2/50th percentile); first quartile (Q1/25th 330 

percentile); third quartile (Q3/75h percentile); interquartile range in whiskers, maximum and 331 

outliers. 332 

Figure 3a.  Histogram from Monte Carlo Simulation.  2,000 bootstrap samplings were 333 

generated using the predicted coefficients from the linear regression analysis, from the intervals 334 

of parameters.  The minimum and maximum values for each of the parameters was set to the 335 

levels.  The distribution of the severity of outcome is in this frequency histogram. The values on 336 

the x axis denote the disease severity, and y axis denote frequency of the population in each level 337 

of clinical outcome. 338 

Figure 3b. The Tornado Chart. The tornado chart shows the influence of each of the 339 

parameters on the outcome.  The positive values correlate positively towards the severity of 340 

disease, and negative values towards asymptomatic disease. 341 

  342 
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Table 1.  Ranges of values for the parameters used for developing the simulated dataset for 
the mathematical model. 

 

 

 

 

  

Parameter Unit Reference 
COVID-19 

Ranges 
COVID-19 

Ranges 
COVID-19 

Ranges 

   
Asymptomatic Moderate Severe 

Viral Load 
Cycle 
Time [20] >28 20-15 22-16 

IFNα pg/mL [45, 46] <10 10-100 10-2 

Fever °F [55, 56] 97-98.6 98.6-100 100-104 

D-Dimer μg/mL [31] <0.1 0.15-0.62 0.5-9.3 

Ferritin ng/L [31] 20-200 286-1,275 1,400-2,000 

Oxygen 
Saturation % [3, 56] 95-100 85-94 60-84 

IL-6 ng/mL [45, 46] <1 19-76 19-430 

Lymphocyte count x 106/mL [27] >785 588-785 169-415 

NAB Titer [57] 1,000-45,000 200-20,000 500-60,000 
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Table 2A.  Statistical analysis of coefficients for each parameter based on the multiple 

regression analysis.  The Table shows the regression statistics. The statistical terms are: DF 

(degrees of freedom); SeqSS (Sequential Sum Square); AdjSS (Adjusted Sum Square), AdjMS 

(Adjusted Mean Squares), F ratio, p value. 

 

Source DF SeqSS AjdSS AdjMS F p 

Regression 11 13.172 139.172 12.652 10.259 0 

  AGE 1 116.579 0.095 0.095 0.817 0.337 

  COMORBID 1 10.085 0.175 0.175 1.5 0.231 

  Viral Load 1 0.172 0.392 0.392 3.357 0.078 

  IFNα 1 1.037 0.136 0.135 1.161 0.291 

  Fever 1 8.159 0.378 0.378 3.238 0.083 

  IL6 1 0.808 0.172 0.171 1.469 0.236 

  D-Dimer 1 1.511 0.444 0.444 3.799 0.062 

  Ferritin 1 0.574 0.098 0.098 0.839 0.368 

  Lymphocyte Count 1 0.018 0.039 0.039 0.334 0.568 

Oxygen saturation 1 0.91 0.133 0.133 1.141 0.295 

NAB 1 0.039 0.039 0.039 0.337 0.566 

 

 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2021. ; https://doi.org/10.1101/2021.04.01.21254804doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.01.21254804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Table 2B. Coefficient and standard error for parameters.  The coefficients for each 

parameter were determined by using multiple regression analyses, which is the multiplier to the 

parameter value in a linear regression equation.  The values of the coefficients of each of the 

parameters are shown using ANOVA.  The table shows the standard error, t and p values.  The p 

value denotes statistical significance to the outcome. 

 

 

 

  

Term Coefficient Standard Error t p 

Constant -36.898 24.867 -1.484 0.150 

AGE -0.021 0.023 -0.904 0.374 

COMORBID 0.894 0.730 1.225 0.232 

Viral Load -0.048 0.026 -1.832 0.078 

IFN A -0.005 0.005 -1.077 0.291 

Fever 0.444 0.247 1.799 0.084 

IL6  -0.003 0.003 -1.212 0.236 

D-Dimer 0.271 0.139 1.949 0.062 

Ferritin 0.000 0.001 0.916 0.368 

Lymphocyte Count -0.001 0.001 -0.578 0.568 

Oxygen saturation -0.038 0.036 -1.068 0.295 

NAB 0.000 0.000 -0.580 0.567 

Error 26.000 3.039 3.039 0.117 

Total 37.000 142.211     
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Table 3.  The Ranges for the Monte Carlo Simulation.   
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Table 4. The Prediction of outcome based on observed and predicted values.  

 

 

 

Variable 
Subject 

1 
Subject 

2 
Subject 

3 
Subject 

4 
Subject 

5 
Subject 6 Subject 

7 

Age 20 52 55 55 62 73 80 

Comorbidity 1.1 2.2 2.3 2.4 2.6 3.2 3.5 

Viral Load 36 19 16 15 17 21 17 

IFNa 7 20 50 60 40 9 5 

Fever 98.6 99.1 99.8 100 99.4 100.1 100 

IL6 1 30 60 70 50 50 90 

D-Dimer 0.05 0.25 0.40 0.45 0.35 1.5 4.0 

Ferritin 30 350 800 1275 500 1500 1800 

Lymphocyte Count 800 740 620 580 640 340 200 

Oxygen Saturation 100 95 83 85 90 95 94 

NAB 2 20 150 200 100 220 400 

Calculated Outcome 
Rank 

0.723 3.299 4.008 4.237 3.228 4.916 6.427 

PREDICTED 1 3 4 4 3 5 6 

OBSERVED 1 3 4 4 4 5 6 
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