Supplementary material

Contents

Software	
Model development	
Stage 12	
Stage 2	
Stage 36	
Stage 47	
Model performance in the development cohort	
Predicted risk given by prognostic scores in the validation cohort9	
Model performance to predict mortality in the validation cohort	
References	

Software

Statistical analysis was performed using Stata 14.2, except for generalised additive models (GAM),which were performed in R (version 4.0.3) with the mgcv library (version 1.8-33) [1]. Missing data were handled by multiple imputation using chained equations and predictive mean matching (with five nearest neighbours) for continuous variables in 10 datasets, each with 10 iterations [2, 3]. The selection of variables for the final model was performed using least absolute shrinkage and selection operator (LASSO) logistic regression with theory-driven penalization, which have shown to reduce the risk of overfitting compared with other penalization methods (rlassologit command from the lassopack version 1.4.1) [4]. Calibration slopes were calculated with the coefficient of a logistic model for the outcome and the model linear predictor as the independent variable; and calibration-in-the-large was calculated with the intercept of a logistic model for the outcome with the model linear predictor as an offset term.

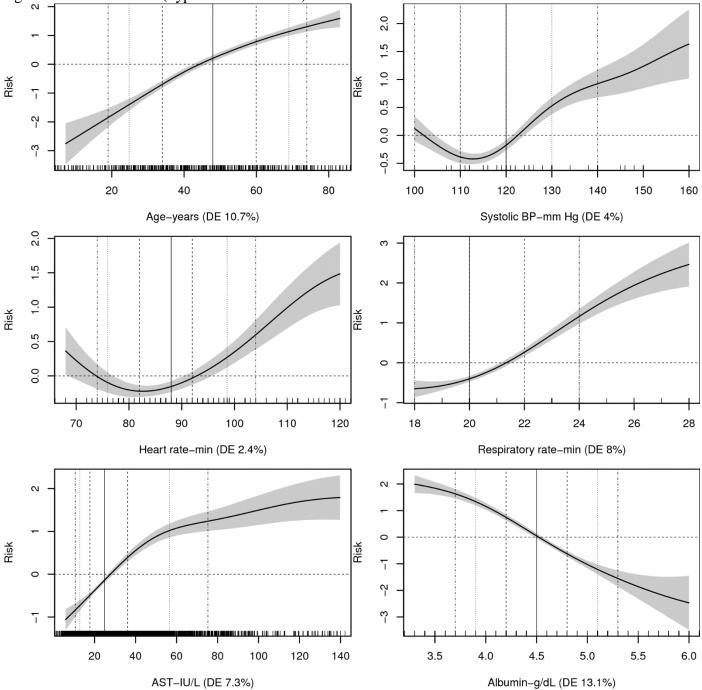
Model development

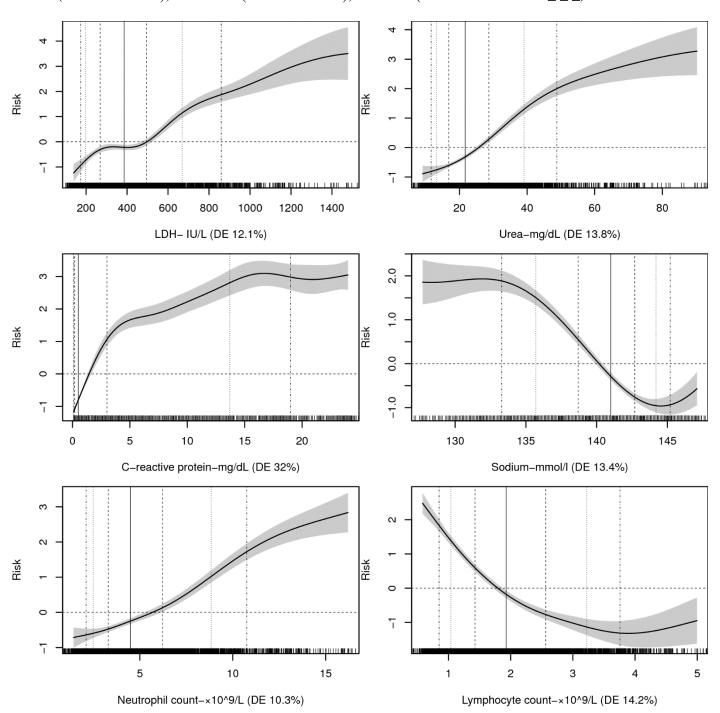
Our aim was to construct a simple predictive score that could be used bedside by clinicians without the need of computers or mobile applications. The model was developed in four stages.

Stage 1

We assessed the goodness of fit between the outcome and predictors using GAM models. We excluded predictors with a deviance explained below 2% (female gender, diastolic blood pressure, temperature, haemoglobin concentration and platelet count). To avoid multicollinearity problems, when two predictors were highly correlated (such as Alanine transaminase (ALT) and Aspartate transaminase (AST); and white cell count and neutrophil count), we excluded the ones that had lower goodness of fit (ALT and white cell count).

Predictors	\mathbb{R}^2	DE	REML	
Female gender	0.011	1.1%	2195.1	Excluded
Age-years	0.107	10.7%	1979.4	
Systolic BP-mm Hg	0.050	4.0%	1754.8	
Diastolic BP-mm Hg	0.009	0.8%	1810.2	Excluded
Heart rate-min	0.030	2.4%	1781.4	
Respiratory rate-min	0.103	8.0%	1675.4	
Temperature-°F	0.017	1.6%	1802.0	Excluded
AST-IU/L	0.084	7.3%	2057.6	
ALT-IU/L	0.041	3.7%	2136.7	Excluded
Albumin-g/dL	0.144	13.1%	1925.6	
LDH- IU/L	0.147	12.1%	1959.7	
Creatinine-mg/dL	0.076	6.8%	2072.6	
Urea-mg/dL	0.169	13.8%	1919.9	
C-reactive protein-mg/dL	0.370	32.0%	1518.9	
Sodium-mmol/l	0.156	13.4%	1933.0	
Haemoglobin-g/dL	0.002	0.3%	2185.6	Excluded
Platelet count-×10^9/L	0.010	0.9%	2174.8	Excluded
White cell count-×10^9/L	0.081	6.4%	2056.5	Excluded
Neutrophil count-×10^9/L	0.129	10.3%	1970.5	
Lymphocyte count-×10^9/L	0.165	14.2%	1886.9	
Neutrophil/Lymphocyte ratio	0.272	23.1%	1691.2	


Table S1.


DE, deviance explained, REML, restricted maximum likelihood; BP, blood pressure; ALT, Alanine transaminase; AST, Aspartate transaminase; LDH, Lactate dehydrogenase.

Stage 2

We selected optimal cut-off values to categorize continuous variables based on visual inspection of the GAM models [5], taking into account clinically important points, the laboratory reference range for normal values (we avoided cut-off values within the normal range), cut-off values used in other risk scores, and the distribution of values in the dataset (we avoided placing cut-off values far below the percentile 5 or far above the percentile 95). To minimise the loss of information produced by categorizing continuous variables, we tried to keep similar "risk-distance" between cut-off values (Figures S1-S3 and Table S2).

Figure S1. GAM models 1. DE=deviance explained. Vertical lines represent percentile 50 (solid line); 25 and 75 (dashed line ----); 10 and 90 (dotted line); 5 and 95 (dashed/dotted lines _._.). Risk denotes the log-odds of the outcome (hypoxaemia or death).

Figure S2. GAM models 2. DE=deviance explained. Vertical lines represent percentile 50 (solid line); 25 and 75 (dashed line ----); 10 and 90 (dotted line); 5 and 95 (dashed/dotted lines _.__)

Figure S3. GAM models 3. DE=deviance explained. Vertical lines represent percentile 50 (solid line); 25 and 75 (dashed line ----); 10 and 90 (dotted line); 5 and 95 (dashed/dotted lines _.__)

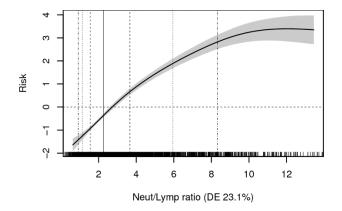


 Table S2. Selected cut-off values for continuous variables.

	Laboratory NR	Cut-off
Age-years	NA	40,50,60,70
Systolic BP-mm Hg	NA	140
Heart rate-min	NA	100
Respiratory rate-min	NA	22
AST-IU/L	0-40	40, 80
Albumin-g/dL	3.5-5.3	3.5
LDH- IU/L	207-414	400, 700, 900
Urea-mg/dL	15-39	40, 50
C-reactive protein-mg/dL	0-0.5	0.5,1,2,4,6,9,12
Sodium-mmol/L	135-148	135
Neutrophil count-×10^9/L	1.2-8	8, 10
Lymphocyte count-×10^9/L	1-5	0.8, 1
Neutrophil/Lymphocyte ratio	NA	3,4,6,8

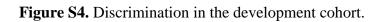
NR, normal range; BP, blood pressure; AST, Aspartate transaminase; LDH, Lactate dehydrogenase

Stage 3

Using the initial cut-off values selected in Stage 2, we performed LASSO logistic regression for each imputed dataset looking for overall agreement to select the cut-off values for the final model [2]. There was a 100% agreement among the imputed datasets. All initial cut-off values were included by the LASSO model except albumin (which was excluded from the final model) and LDH 400 IU/L. See table S3. **Table S3.** Selection of cut-off values using LASSO regression.

1 Turdes using Er 186 6 Te	0
Initial selection (Stage 2)	LASSO selection
40,50,60,70	40,50,60,70
140	140
100	100
22	22
40, 80	40, 80
3.5	Excluded
400, 700, 900	700, 900
40, 50	40, 50
0.5,1,2,4,6,9,12	0.5,1,2,4,6,9,12
135	135
8, 10	8, 10
0.8, 1	0.8, 1
3,4,6,8	3,4,6,8
	Initial selection (Stage 2) 40,50,60,70 140 22 40, 80 3.5 400, 700, 900 40, 50 0.5,1,2,4,6,9,12 135 8, 10 0.8, 1

BP, blood pressure; AST, Aspartate transaminase; LDH, Lactate dehydrogenase

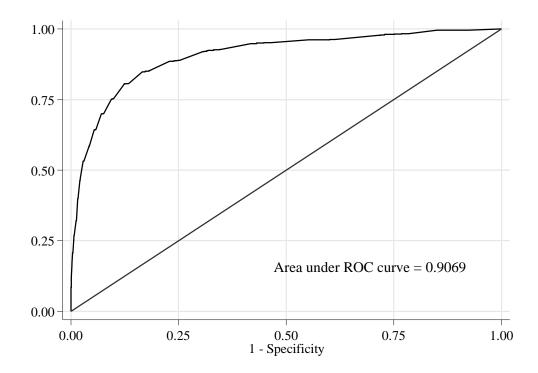
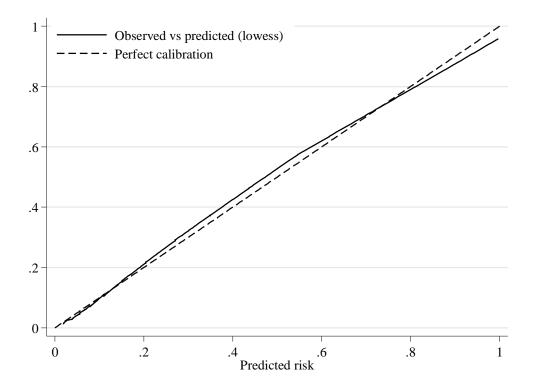

Stage 4

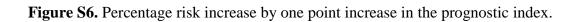
We combined logistic regression models from the imputed datasets using Rubin's rules. Coefficients from this logistic model and LASSO penalised coefficients were combined and scaled (x3) to produce the prognostic index.

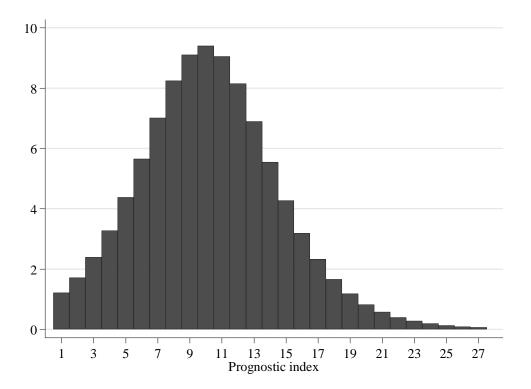
	Penalised coefficient	Logit coefficient (95% CI)	Prognostic score
Age (years)			
40-49	0.16	0.65 (0.32 to 0.98)	1
50-59	0.53	0.98 (0.67 to 1.29)	2
60-69	0.76	1.24 (0.91 to 1.58)	3
>=70	0.87	1.38 (0.97 to 1.8)	4
Systolic BP (mm Hg)		· · · ·	
>= 140	0.32	0.39 (0.02 to 0.76)	1
Heart rate (pm)		· · · · · · · · · · · · · · · · · · ·	
>=100	0.19	0.31 (-0.04 to 0.65)	1
Respiratory rate (pm)			
>=22	0.64	0.77 (0.54 to 1)	2
AST-IU/L	0.01		
40-79	0.38	0.43 (0.17 to 0.69)	1
>=80	0.61	0.85 (0.38 to 1.32)	2
LDH- IU/L	0.01	0.00 (0.00 to 1.02)	
700-899	0.3	0.37 (-0.05 to 0.8)	1
>=900	0.58	0.71 (0.2 to 1.23)	2
Urea-mg/dL	0.50	0.71 (0.2 to 1.23)	2
40-49.9	0.54	0.61 (0.21 to 1.01)	2
>=50	0.95	1.01 (0.55 to 1.48)	3
C-reactive protein-mg/dL	0.95	1.01 (0.55 to 1.48)	5
0.5-0.9	0.23	0.73 (0.37 to 1.09)	1
1-1.9	0.23	1.04 (0.69 to 1.4)	2
2-3.9	0.93	1.32 (0.96 to 1.68)	3
4-5.9	1.44	1.83 (1.4 to 2.25)	4
6-8.9	1.44	2.24 (1.79 to 2.69)	5
9-11.9	2.05	2.24 (1.79 to 2.05) 2.47 (1.99 to 2.95)	6
>=12	2.46	2.8 (2.44 to 3.16)	7
Sodium-mmol/L	2.40	2.0 (2.44 to 5.10)	1
<135	0.49	0.46 (0.14 to 0.79)	1
Lymphocyte count-×10^9/L	0.49	0.40 (0.14 10 0.79)	1
<0.8	0.86	1.06 (0.54 to 1.58)	3
0.8-0.99	0.80		
	0.24	0.32 (-0.11 to 0.75)	1
Neutrophil count-×10^9/L	0.1	0.25 (0.17 (0.00)	1
8 - 9.9	0.1	0.25 (-0.17 to 0.66)	1
>=10	0.67	0.88 (0.37 to 1.39)	2
Neutrophil/Lymphocyte ratio	0.07		1
3-3.9	0.25	0.36 (0.07 to 0.65)	1
4-5.9	0.47	0.52 (0.19 to 0.84)	2
6-7.9	0.77	0.83 (0.32 to 1.35)	3
>=8	1.07	1.15 (0.52 to 1.77)	4

 Table S4. LASSO regression, logistic regression coefficients and final prognostic index.

Model performance in the development cohort

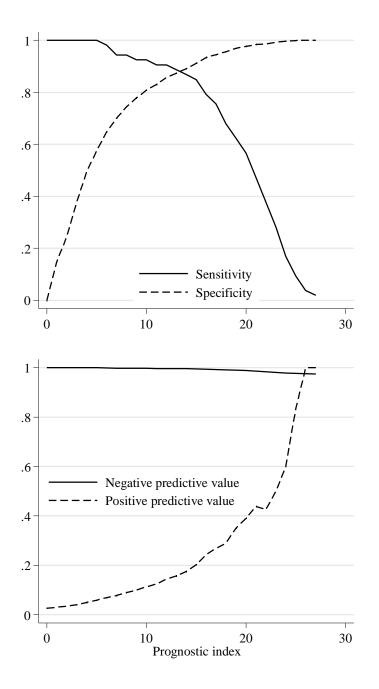



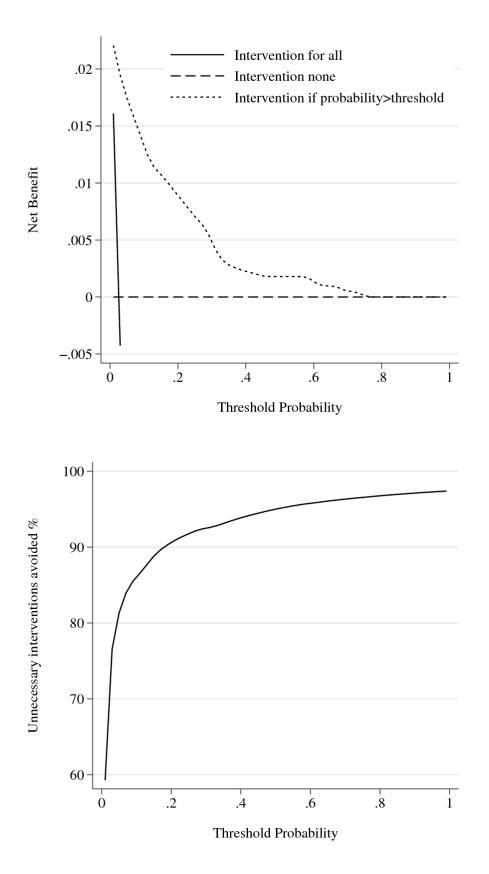

Figure S5. Calibration in the development cohort.



Predicted risk given by prognostic scores in the validation cohort

Table S5. Distribution of patients and predicted risk of the outcome (hypoxaemia or death) and mortality in the validation cohort.


	Distribution		Predicted risk		
Prognostic index	Ν	Percent	Cumulative percent	Outcome	Mortality
0	297	14.52	14.52	2.74%	0.05%
1	191	9.34	23.85	3.95%	0.07%
2	267	13.05	36.9	5.66%	0.10%
3	231	11.29	48.19	8.05%	0.14%
4	161	7.87	56.06	11.31%	0.19%
5	145	7.09	63.15	15.68%	0.26%
6	108	5.28	68.43	21.35%	0.35%
7	86	4.2	72.63	28.34%	0.49%
8	71	3.47	76.1	36.58%	0.67%
9	57	2.79	78.89	45.68%	0.92%
10	45	2.2	81.09	55.09%	1.26%
11	54	2.64	83.72	64.14%	1.73%
12	34	1.66	85.39	72.28%	2.36%
13	36	1.76	87.15	79.18%	3.23%
14	41	2	89.15	84.72%	4.39%
15	49	2.39	91.54	88.99%	5.94%
16	24	1.17	92.72	92.18%	8.00%
17	25	1.22	93.94	94.50%	10.70%
18	30	1.47	95.41	96.16%	14.16%
19	17	0.83	96.24	97.34%	18.51%
20	20	0.98	97.21	98.16%	23.83%
21	10	0.49	97.7	98.73%	30.11%
22	17	0.83	98.53	99.13%	37.23%
23	15	0.73	99.27	99.40%	44.95%
24	9	0.44	99.71	99.59%	52.93%
25	4	0.2	99.9	99.72%	60.76%
26	1	0.05	99.95	99.81%	68.07%
27	1	0.05	100	99.87%	74.59%



Model performance to predict mortality in the validation cohort

Figure S7. Sensitivity, specificity, negative predictive value and positive predictive value of the predictive model to predict mortality in the validation cohort.

Figure S8. Decision curves. Net benefit (upper panel) and number of intervention avoided (lower panel) of the prognostic model for mortality in the validation cohort.

References

1. Wood SN. Generalized additive models: an introduction with R. CRC press; 2017.

2. Wood AM, White IR, Royston P. How should variable selection be performed with multiply imputed data? Stat Med. 2008;27:3227–46.

3. Morris TP, White IR, Royston P. Tuning multiple imputation by predictive mean matching and local residual draws. BMC Med Res Methodol. 2014;14:75.

4. Ahrens A, Hansen CB, Schaffer ME. lassopack: Model selection and prediction with regularized regression in Stata. Stata J. 2020;20:176–235.

5. Barrio I, Arostegui I, Quintana JM, Group I-C. Use of generalised additive models to categorise continuous variables in clinical prediction. BMC Med Res Methodol. 2013;13:83.