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Abstract 

Endometriosis, polycystic ovary syndrome (PCOS) and uterine fibroids have been proposed 

as endometrial cancer risk factors; however, disentangling their relationships with 

endometrial cancer is complicated due to shared risk factors and comorbidities. Using 

genome-wide association study (GWAS) data, we explored the relationships between these 

non-cancerous gynecological diseases and endometrial cancer risk by assessing genetic 

correlation, causal relationships and shared risk loci. We found significant genetic correlation 

between endometrial cancer and PCOS, and uterine fibroids. Adjustment for genetically 

predicted body mass index (a risk factor for PCOS, uterine fibroids and endometrial cancer) 

substantially attenuated the genetic correlation between endometrial cancer and PCOS but did 

not affect the correlation with uterine fibroids. Mendelian randomization analyses provided 

evidence of a causal relationship between only uterine fibroids and endometrial cancer. Gene-

based analyses revealed risk regions shared between endometrial cancer and endometriosis, 

and uterine fibroids. Multi-trait GWAS analysis of endometrial cancer and the genetically 

correlated gynecological diseases identified a novel genome-wide significant endometrial 

cancer risk locus at 1p36.12, which replicated in an independent endometrial cancer dataset. 

Interrogation of functional genomic data at 1p36.12 revealed biologically relevant genes, 

including WNT4 which is necessary for the development of the female reproductive system. 

In summary, our study provides genetic evidence for a causal relationship between uterine 

fibroids and endometrial cancer. It further provides evidence that the comorbidity of 

endometrial cancer, PCOS and uterine fibroids may partly be due to shared genetic 

architecture. Notably, this shared architecture has revealed a novel genome-wide risk locus 

for endometrial cancer. 

 

Keywords 

Endometrial cancer, endometriosis, polycystic ovary syndrome, uterine fibroids, genetic 

correlation, Mendelian randomization. 
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Introduction 

Endometriosis, polycystic ovary syndrome (PCOS) and uterine fibroids are three common 

non-cancerous gynecological diseases affecting 10-15% (Parasar et al. 2017), 6-9% (Azziz et 

al. 2011) and 5-69% (Stewart et al. 2017) of women of reproductive age, respectively; 

however, their prevalence is likely underestimated because of under diagnosis (Agarwal et al. 

2019; De La Cruz and Buchanan 2017). Although these non-cancerous gynecological 

diseases primarily affect premenopausal women and endometrial cancer is largely a 

postmenopausal malignancy, many risk factors are shared with endometrial cancer (e.g. 

chronic estrogen exposure, inflammation, insulin resistance and obesity (Harris and Terry 

2016; Li et al. 2019; Wise et al. 2016)), suggesting some shared biological relationship.  

 

A number of studies have used observational data to assess associations between the three 

non-cancerous gynecological diseases and endometrial cancer risk, the findings of which 

have been heterogeneous (Harris and Terry 2016; Johnatty et al. 2020; Li et al. 2019; Wise et 

al. 2016). Indeed, the use of observational studies to evaluate these associations could be 

confounded by: (i) the failure to adequately account for potential confounders that are 

associated with risk of endometrial cancer and/or gynecological disease e.g. oral 

contraceptive use; (ii) the reliance of disease status classification on self-reported data which 

is subject to misclassification bias from asymptomatic undiagnosed cases; (iii) misdiagnosis 

of early stage endometrial cancer as uterine fibroids due to shared clinical presentation (Wise 

et al. 2016); (iv) detection bias in cohort studies as a result of an increased surveillance for 

endometrial cancer among patients with non-cancerous gynecological diseases; and (v) the 

comorbidity of non-cancerous gynecological diseases (Choi et al. 2017; Johnatty et al. 2020; 

Matalliotaki et al. 2018; Nagai et al. 2015; Uimari et al. 2011; Wise et al. 2007). Thus, it 

remains difficult to determine from observational studies the precise nature of the 

relationships between endometrial cancer and these non-cancerous gynecological diseases.  

 
Genome-wide association study (GWAS) data have demonstrated genetic correlation 

between endometrial cancer and endometriosis (Masuda et al. 2020; Painter et al. 2018), and 

uterine fibroids (Masuda et al. 2020), which may partly explain the comorbidities of these 

diseases; whether these comorbidities are due to causal relationships or shared genetic 

etiology remains to be explained. In this study, we have used a variety of approaches to 

analyze GWAS data and elucidate relationships between endometrial cancer and non-
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cancerous gynecological disease (summarized in Supplementary Figure 1). Firstly, we have 

performed genetic correlation analysis, using the largest currently available datasets to clarify 

the shared genetic risk between the non-cancerous gynecological diseases and endometrial 

cancer. As inherited genetic variants are less influenced by confounding inherent in 

observational studies, we have performed genetic causal inference analyses using 

gynecological disease-associated variants to investigate causal relationships. It is possible 

that these diseases may not be genetically correlated or causally related to endometrial cancer 

but share overlapping genetic risk regions. To assess this possibility, we have performed 

gene-based association analyses. Lastly, we have performed multi-trait GWAS, leveraging 

genetic correlation between endometrial cancer and non-cancerous gynecological diseases to 

discover novel GWAS risk loci.  

 

Materials and Methods 

GWAS data 

GWAS summary data publicly available for PCOS (Day et al. 2018) 

(https://doi.org/10.17863/CAM.27720) and uterine fibroids (Gallagher et al. 2019) 

(ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GallagherCS_31649266_GCST00

9158), and via collaboration for endometriosis (Sapkota et al. 2017), were used for all 

analyses except Mendelian randomization. For PCOS and uterine fibroids, GWAS summary 

data from the 23andMe, Inc., cohort had been excluded because of restrictions related to data 

sharing agreements (Day et al. 2018; Gallagher et al. 2019). For Mendelian randomization 

analyses, risk estimates and respective standard errors of genome-wide significant variants 

were accessed from the largest published GWAS for each disease (Day et al. 2018; Gallagher 

et al. 2019; Rahmioglu et al. 2018). Details of studies and sample sizes used in each analysis 

are shown in Supplementary Table 1. Detailed descriptions of the quality control 

procedures and GWAS analysis can be found in the corresponding publications.  

 

GWAS summary data for endometrial cancer were available from O'Mara et al. (2018). As 

the GWAS for endometrial cancer (O'Mara et al. 2018), endometriosis (Rahmioglu et al. 

2018), and uterine fibroids (Gallagher et al. 2019) included participants from the UK Biobank 

(https://www.ukbiobank.ac.uk/), we re-analyzed the endometrial cancer dataset, excluding 

these participants to avoid sample overlap bias in the two sample Mendelian randomization 

analysis. This also allowed us to use the UK Biobank endometrial cancer dataset as part of 
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the replication set to confirm multi-trait GWAS results. This revised endometrial cancer 

GWAS meta-analysis consisted of 12,270 cases and 46,126 controls of European descent. 

Genetic variants with minor allele frequency (MAF) < 1% and imputation information score 

< 0.4 were excluded, leaving ~9 million genetic variants. The revised endometrial cancer 

GWAS data were used only in Mendelian randomization and multi-trait GWAS analyses, 

while the published endometrial cancer GWAS data (O'Mara et al. 2018) were used in all 

other analyses. Prior to genetic correlation analysis, genetic variants in the extended human 

major histocompatibility complex region (26–34 Mb on chromosome 6) were removed due to 

the complex linkage disequilibrium (LD) structure in this region. 

 

Genetic correlation between endometrial cancer and non-cancerous gynecological diseases  

We used LD Score regression (Bulik-Sullivan et al. 2015) to estimate the genetic correlation 

between endometrial cancer and each non-cancerous gynecological disease. Genetic 

correlation analyses were restricted to common HapMap3 variants (MAF > 0.01). To reduce 

bias from potential residual confounding in genetic correlation analyses, including bias from 

unknown sample overlap, we used the estimated genetic covariance intercept, obtained 

without constraint. Genetic correlation values range from -1 to 1; positive values indicated 

that shared genetic variants have concordant effects across the genome, whereas negative 

values indicated divergent effects. 

 

Obesity is a major risk factor for endometrial cancer, and is prevalent amongst women with 

PCOS and uterine fibroids (Ilaria and Marci 2018; Sam 2007). For genetic correlation 

analysis between endometrial cancer and PCOS or uterine fibroids, we thus additionally 

corrected for the effect of obesity, as measured by genetically predicted BMI. PCOS and 

uterine fibroids GWAS were conditioned using summary data from a large GWAS of BMI 

(Yengo et al. 2018) in GCTA-mtCOJO analysis (Zhu et al. 2018) before performing LD score 

regression analysis. 

 

Genetic causal inference tests 

We performed two-sample Mendelian randomization analysis to explore potential causal 

relationships between non-cancerous gynecological diseases and endometrial cancer. 

Independent (LD r2 < 0.01) genetic variants associated with the non-cancerous gynecological 

diseases at genome wide significance (P < 5 × 10-8) were used as genetic instruments. The list 

of genetic instruments and the respective risk association estimates were extracted from the 
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largest GWAS of endometriosis (Rahmioglu et al. 2018), PCOS (Day et al. 2018) and uterine 

fibroids (Gallagher et al. 2019). We excluded independent genetic variants with ambiguous 

alleles and intermediate frequencies (i.e., variants with A/T or C/G alleles and minor allele 

frequency of more than 0.42), leaving 26 variants as genetic instruments for endometriosis, 

14 for PCOS and 23 for uterine fibroids.  

 

As the three non-cancerous gynecological diseases mostly affect premenopausal women and 

endometrial cancer primarily affects postmenopausal women, we performed a unidirectional 

Mendelian randomization analysis, assessing the effect of genetic predisposition to non-

cancerous gynecological disease on endometrial cancer risk. We used inverse variance 

weighted (IVW) analysis as the primary analysis by regressing the genetic variant-

endometrial cancer association on the genetic variant-non-cancerous gynecological disease 

association, weighted by inverse of their variance. This method has the most power to detect 

associations although it has a strong assumption of no heterogeneity (potentially resulting 

from pleiotropy) amongst genetic variants (Hemani et al. 2018); thus, this method assumes all 

genetic variants for the exposure of interest have a proportional effect on outcome risk.  

 

We also performed several sensitivity analyses for Mendelian randomization that are more 

robust to heterogeneity amongst genetic variants: MR-Egger, weighted median, and weighted 

mode analysis. MR-Egger analysis regresses the genetic variant-outcome association on the 

genetic variant-exposure association, without constraining the regression intercept (Bowden 

et al. 2015). If the MR-Egger regression intercept is non-zero, it provides evidence that 

directional horizontal pleiotropy amongst genetic variants is driving the causal estimates (i.e. 

genetic variation influences the outcome through a pathway other than the exposure and 

indicates that the ratio of genetic variants with positive and negative pleiotropic effects is not 

balanced). The MR-Egger regression slope represents a valid effect estimate after adjustment 

for pleiotropic effects, provided the Instrument Strength Independent of Direct Effect 

(InSIDE) assumption is met (i.e. the association of a genetic variant with the exposure of 

interest is independent from its direct effect on outcome) (Bowden et al. 2015). We also 

performed weighted median (Bowden et al. 2016) and weighted mode (Hartwig et al. 2017) 

analyses, which are more robust to violation of the InSIDE assumption. Weighted median 

analysis relies on the assumption that more than 50% of the weights come from valid genetic 

instruments (Bowden et al. 2016), while weighted mode analysis relies on the assumption 

that most of the weights come from valid genetic instruments (Hartwig et al. 2017). 
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Cochran’s Q statistic was used to assess the heterogeneity in the effects of variants (a 

potential indicator of horizontal pleiotropy) (Bowden et al. 2018), and leave-one-out analysis 

was used to assess whether a single variant drives the causal association (Hemani et al. 2018).  

 

Two-sample Mendelian randomization analysis was performed using the “TwoSampleMR” 

(Hemani et al. 2018) package in R. Unless stated otherwise, results with a Bonferroni-

corrected p-value for testing the effects of the three non-cancerous gynecological diseases (P 

< 0.05/3 = 0.017) on endometrial cancer risk were considered statistically significant. 

 

Gene-based association analysis 

To identify genetic risk regions shared between the non-cancerous gynecological diseases 

and endometrial cancer, we performed gene-based analysis using the fast and flexible set-

based association test (fastBAT) (Bakshi et al. 2016). fastBAT was used to perform an 

enrichment analysis on GWAS risk variants, located within 50kb of gene regions, for the 

non-cancerous gynecological cancers and endometrial cancer. A random sample of 10,000 

unrelated participants from the UK Biobank was used as the reference panel in these 

analyses. We applied a false discovery rate (FDR) < 0.05 for the gene-based analysis, and 

adjacent risk-associated genes were considered a single risk region if within 1 Mb of each 

other.  

 

Multi-trait analysis of GWAS (MTAG)  

MTAG (Turley et al. 2018) was used to improve endometrial cancer risk loci discovery 

through joint analysis of endometrial cancer and non-cancerous gynecological diseases that 

showed evidence of genetic correlation with endometrial cancer (i.e. PCOS and uterine 

fibroids). GWAS summary statistics were used as input and bivariate LD score regression 

was used to account for sample overlap. Using pre-computed LD scores for Europeans, 

MTAG analysis was performed on common variants (MAF > 0.01). Alleles of genetic 

variants were aligned across GWAS, and only variants present across included studies were 

assessed by MTAG. The final number of included variants for MTAG was 4,734,443. 

Summary statistics were produced for each trait where effect sizes and standard error 

estimates could be interpreted as the output from a single-trait GWAS.   

 

Replication of novel endometrial cancer GWAS risk loci 
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MTAG assumes that the variance-covariance matrix across traits is homogenous across the 

genome, but it is likely some variants are null for one trait and not null for another trait(s). 

Violation of this assumption could increase false positive discovery in MTAG (discussed in 

(Turley et al. 2018)). To address this issue, we tested the replication of novel genome-wide 

significant endometrial cancer risk variants from MTAG in an independent GWAS meta-

analysis using data from the Finnish Biobank Study (FinnGen; https://www.finngen.fi/en) 

and the UK Biobank. Endometrial cancer GWAS summary statistics for 566 cases and 

75,822 controls were downloaded directly from FinnGen (data freeze 2; http://r2.finngen.fi/). 

Quality control procedures for the FinnGen GWAS data are described in 

https://finngen.gitbook.io/documentation/. For UK Biobank, we performed an endometrial 

cancer GWAS using genotype and phenotype data obtained under the application number 

25331. Endometrial cancer cases were defined based on ICD10 code (C54) in the data fields 

of 40006, 41270 and 41202. Controls were selected randomly from unrelated women 

participants (π� < 0.1) with no history of any cancers. GWAS was performed on 1,866 

cases and 18,660 controls using REGENIE (Mbatchou et al. 2020) to implement a logistic 

mixed model, adjusting for genotyping array and the top 10 principal components. A genetic 

relationship matrix was included in the model as a random effect to account for cryptic 

relatedness and population stratification. As recommended by REGENIE, we excluded 

genetic variants with MAF < 0.01, minor allele count below 100, genotype missingness 

above 10% and variants which deviated from Hardy-Weinberg equilibrium (P value < 1×10-

15). After quality control exclusion, a total of 9,789,172 SNPs remained in the GWAS 

analysis. 

 

To create a replication set, the FinnGen and UK Biobank GWAS results were meta-analysed 

by a fixed-effect inverse variance weighted model using “meta” software in R. Novel 

endometrial cancer genome-wide significant variants identified by MTAG were considered to 

have replicated if they had the same effect direction, and a P-value < 0.05 for association in 

the replication set.  

 

Identification of candidate target genes at the 1p36.12 endometrial cancer risk locus 

We used previously generated promoter-associated HiChIP chromatin looping data from 

endometrial (one immortalized and three tumor) cell lines (O'Mara et al. 2019) to explore 

potential regulatory interactions between credible causal risk variants and gene promoters at 
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the 1p36.12 locus. Credible causal risk variants were defined as variants with P-value for 

association within two orders of magnitude of the lead variant P-value. We also explored the 

candidate target genes through overlap of credible causal variants with lead cis-eQTLs from 

GTEx v8 and the Blood eQTL Browser data (Munz et al. 2020).  

 

Results 

We found endometrial cancer to be significantly genetically correlated with PCOS (rG = 0.36, 

se = 0.12) and uterine fibroids (rG = 0.24, se = 0.09) but not with endometriosis (Table 1). 

After adjusting for genetically predicted BMI, the genetic correlation between PCOS and 

endometrial cancer was no longer statistically significant, indicating that the initial genetic 

correlation was, at least partly, mediated by genetically predicted BMI (Table 1). In contrast, 

there was no material difference in the genetic correlation between uterine fibroids and 

endometrial cancer after adjusting for genetically predicted BMI (Table 1), consistent with a 

previous observation of no significant differences in BMI for endometrial cancer cases with 

or without uterine fibroids (Johnatty et al. 2020).  

 

IVW Mendelian randomization analysis for the effects of genetic predisposition to the non-

cancerous gynecological diseases on endometrial cancer provided evidence only for uterine 

fibroids (Table 2, Figure 1). Although sensitivity analyses were not statistically significant, 

the directionality of the associations between uterine fibroids and endometrial cancer were 

consistent with the IVW result (Table 2, Figure 1). The MR-Egger intercept did not 

significantly differ from zero (Table 2) providing no evidence for confounding by directional 

horizontal pleiotropy amongst genetic instruments. However, Cochran’s Q statistics indicated 

evidence of heterogeneity between causal estimates based on individual variants (Cochran’s 

Q statistics = 42.1, degrees of freedom = 22, P = 6×10-3), suggesting that some variants may 

be associated with endometrial cancer risk through pathways other than uterine fibroids. 

Leave-one-out analysis showed that no single variant was driving the causal association 

revealed by the IVW analysis (Supplementary Figure 2).  

 

While genetic correlation analysis assesses the average genetic concordance across the 

genome for two traits, it does not reveal common genomic regions that harbor trait-associated 

variation. Further, a lack of evidence for genetic correlation may reflect opposing pleiotropic 

effects across the genome. Thus, we performed gene-based analyses to identify common risk 

regions across endometrial cancer and the non-cancerous gynecological diseases. The initial 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 1, 2021. ; https://doi.org/10.1101/2020.11.09.20228114doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.09.20228114
http://creativecommons.org/licenses/by/4.0/


11 

 

analysis revealed 24 genetic regions associated with endometrial cancer risk, 28 regions with 

endometriosis risk and 41 regions with uterine fibroids (Supplementary Table 2). No 

associations with PCOS passed FDR < 0.05, potentially reflecting a lack of power due to the 

small sample size of this cohort. We found four genetic risk regions (3q21.3, 9p21.3, 15q15.1 

and 17q21.32), containing seven shared candidate susceptibility genes, were shared between 

endometriosis and endometrial cancer (Table 3). Three of these regions (9p21.3, 15q15.1 and 

17q21.32) have independently been associated with the risks of endometrial cancer (O'Mara 

et al. 2018) and endometriosis through GWAS (Rahmioglu et al. 2018). The LD of lead risk 

variants at each gene was compared and only one region (17q21.32) demonstrated evidence 

of a shared genetic risk signal (r2 > 0.9; Table 3).  Additionally, we found two genetic risk 

regions (5p15.33 and 11p13), containing five shared candidate susceptibility genes, were 

shared between uterine fibroids and endometrial cancer (Table 3). 5p15.33 has been 

associated with uterine fibroids risk through GWAS (Gallagher et al. 2019) while 11p13 has 

independently associated with uterine fibroids and endometrial cancer risk in GWAS 

(Gallagher et al. 2019; O'Mara et al. 2018). The LD of lead risk variants at each gene was 

compared but there was no strong genetic correlation at either 5p15.33 or 11p13 (r2 ≤ 0.4; 

Table 3), suggesting that the genetic risk signals may be independent.  

 

Incorporation of the two gynecological diseases genetically correlated with endometrial 

cancer (uterine fibroids and PCOS) in MTAG revealed ten genome-wide significant risk loci 

for endometrial cancer (Table 4, Figure 2). We observed an inflation of median test statistics 

in the MTAG result (λ = 1.06), which was likely due to a polygenic signal (LD score 

regression intercept = 0.98, se = 0.01) rather than population stratification. Two of the risk 

loci (5p15.33 and 1p36.12) were novel endometrial cancer genome-wide risk loci. We 

assessed both these risk loci in an independent endometrial cancer dataset and found that only 

the association at the 1p36.12 locus replicated (Table 4).  

 

To identify candidate target genes at the replicated novel endometrial cancer GWAS risk 

locus (1p36.12), we intersected candidate causal variants with promoter-associated chromatin 

loops from four endometrial (immortalized and tumor) cell lines (O'Mara et al. 2019). We 

identified six candidate target genes through chromatin looping, including WNT4 for which a 

candidate causal risk variant was revealed as a lead eQTL in lung tissue (Supplementary 

Tables 3 and 4; Figure 3). Additionally, we identified CDC42 as a candidate target gene 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 1, 2021. ; https://doi.org/10.1101/2020.11.09.20228114doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.09.20228114
http://creativecommons.org/licenses/by/4.0/


12 

 

through a candidate causal risk variant located in a chromatin looping anchor at its promoter 

(Supplementary Table 3; Figure 3). Furthermore, candidate causal risk variants were lead 

eQTLs for CDC42 in peripheral blood (Westra et al. 2013) (Supplementary Table 4), 

providing additional evidence for regulatory targeting.  

 

Discussion 

Using large-scale genome-wide datasets, we observed evidence of positive genetic 

correlation between endometrial cancer and PCOS, and uterine fibroids, but not 

endometriosis. The observed genetic correlation between endometrial cancer and PCOS was 

at least partly mediated by genetically predicted BMI, consistent with the role of BMI as a 

risk factor for both PCOS and endometrial cancer. Mendelian randomization analysis 

provided evidence for a causal relationship only between genetic predisposition to uterine 

fibroids and endometrial cancer risk. Gene-based analyses revealed several genetic risk 

regions shared between endometrial cancer and endometriosis, and uterine fibroids. This 

included one apparent joint genetic risk signal, for endometrial cancer and endometriosis at 

17q21.32. Multi-trait GWAS analysis, including endometrial cancer and the genetically 

correlated gynecological diseases identified two novel genome-wide significant risk loci for 

endometrial cancer, one of which (1p36.12) replicated in an independent endometrial cancer 

dataset. Lastly, functional analyses highlighted CDC42 and WNT4 as candidate target genes 

at the 1p36.12 endometrial cancer risk locus. 

 

Two previous studies have reported a positive genetic correlation between endometriosis and 

endometrial cancer (Masuda et al. 2020; Painter et al. 2018), but we found no evidence for 

such genetic correlation. This discrepancy may be related to: i) the smaller sample sets used 

by the prior studies; ii) the ethnicity studied (Masuda et al. (2020) analyzed a Japanese 

population); or iii) the different genetic correlation analysis approaches used. For example, 

unlike Painter et al. (2018), we used an unconstrained LD score regression intercept to 

account for potential residual confounding, resulting in a conservative estimate of genetic 

correlation. Indeed, we found the estimated genetic covariance intercept to be significantly 

different from zero, suggesting the presence of bias from population stratification and/or 

sample overlap. The null results from the genetic causal inference analyses of endometriosis 

and endometrial cancer are concordant with observational studies that observed no 

associations after controlling for ascertainment bias by excluding recent endometriosis 

diagnosis (Melin et al. 2007; Olson et al. 2002; Rowlands et al. 2011).  
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Although there was minimal evidence for genetic correlation or a causal relationship between 

endometriosis and endometrial cancer, we identified four shared genetic risk regions, three of 

which (9p21.3, 15q15.1 and 17q21.32) have independently been associated with risk of both 

diseases through GWAS (O'Mara et al. 2018; Rahmioglu et al. 2018). Notably, the shared 

candidate susceptibility genes at 9p21.3 (CDKN2B-AS1), 15q15.1 (BMF) and 17q21.32 

(CBX1, MIR1203, SKAP1 and SNX11) have been previously identified as candidate target 

genes at endometrial cancer GWAS risk loci through promoter-associated chromatin looping 

studies (O'Mara et al. 2019). The remaining shared endometriosis and endometrial cancer risk 

region at 3q21.3 has not been independently identified by GWAS for either disease and may 

represent a novel GWAS risk locus for both in future studies. Indeed, this region was recently 

reported as an endometrial cancer risk region in a cross-cancer GWAS meta-analysis of 

endometrial, breast, ovarian and prostate cancer (Kar et al. 2020).  

 

We found PCOS and endometrial cancer to be genetically correlated but no association was 

observed in genetic causal inference analyses, concordant with observational studies that 

account for the effect of obesity (Fearnley et al. 2010; Zucchetto et al. 2009). These findings 

are consistent with our observation of substantial attenuation in genetic correlation between 

PCOS and endometrial cancer after adjusting for genetic components of BMI.  

 

We detected evidence of positive genetic correlation between uterine fibroids and 

endometrial cancer risk, consistent with observational studies (Fortuny et al. 2009; Rowlands 

et al. 2011; Wise et al. 2016). IVW Mendelian randomization analysis provided evidence of a 

causal relationship between genetic predisposition to uterine fibroids and endometrial cancer 

risk. However, Cochran’s Q statistics showed evidence that variants used in the IVW analysis 

had heterogeneous effects, suggesting that not all variants that increase uterine fibroids risk 

are expected to increase endometrial cancer risk. Although results from subsequent sensitivity 

analyses that are robust to the presence of varying levels of pleiotropy were not statistically 

significant, they showed concordant effect directions with IVW result. It is important to note 

that the Mendelian randomization sensitivity analyses have lower power to detect causal 

relationships compared with IVW analysis. As genetic causal inference tests rely on the 

statistical power of GWAS used, future larger GWAS are required to provide more accurate 

causal estimates and thus greater confidence with regards to the nature of the relationship 

between uterine fibroids and endometrial cancer. 
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Gene-based analysis revealed two genetic risk regions (5p15.33 and 11p13) that were shared 

by endometrial cancer and uterine fibroids. The 11p13 shared risk region has been associated 

with the risks of uterine fibroids (Gallagher et al. 2019) and endometrial cancer (O'Mara et al. 

2018) in GWAS. From the gene-based analysis, we identified WT1 and WT1-AS as candidate 

susceptibility genes for both uterine fibroids and endometrial cancer at 11p13. Consistent 

with this finding, we had previously established both genes as candidate targets of 

endometrial cancer risk GWAS variation through promoter-associated chromatin looping 

studies (O'Mara et al. 2019) and WT1 had also been identified through chromatin looping as a 

candidate target of uterine fibroids risk variants (Rafnar et al. 2018). WT1 encodes a 

transcription factor that is essential for urogenital development (reviewed by Roberts (2005)) 

and in the GTEx database of tissue gene expression it is most highly expressed in the uterus 

(https://gtexportal.org/home/). These observations suggest that alteration of uterine WT1 

expression by endometrial cancer and uterine fibroids genetic risk variation may affect 

susceptibility to these diseases. 

 

The 5p15.33 region was found to associate with endometrial cancer risk through both the 

gene-based analysis and the multi-trait GWAS. However, the multi-trait GWAS association 

did not replicate in the independent endometrial cancer dataset, with discordant effect 

directions and non-overlapping confidence intervals. Previously, this region has associated 

with uterine fibroids risk in a GWAS (Gallagher et al. 2019), with endometrial cancer risk in 

a candidate locus study (Carvajal-Carmona et al. 2015) and in a cross-cancer GWAS meta-

analysis of endometrial cancer and ovarian cancer (Glubb et al. 2021). The gene-based 

analysis at this region revealed three candidate risk genes that were shared between uterine 

fibroids and endometrial cancer. The most biologically relevant of these genes is TERT, 

which encodes telomerase reverse transcriptase and maintains chromosomal stability by 

elongating the telomere (Rubtsova et al. 2012). Relevantly, chromosomes in uterine fibroids 

(Bonatz et al. 1998; Rogalla et al. 1995) and in endometrial tumors (reviewed by Alnafakh et 

al. (2019)) have been shown to have shorter telomere length. Indeed, a recent Mendelian 

randomization study found genetically predicted telomere length to be strongly associated 

with endometrial cancer risk (Telomeres Mendelian Randomization et al. 2017).   

 

The novel 1p36.12 endometrial cancer risk locus, revealed by the multi-trait GWAS, 

replicated in the independent endometrial cancer GWAS dataset. Genetic variation at this 
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region has associated with traits that are genetically correlated or causally related to 

endometrial cancer (e.g. heel bone mineral density (Morris et al. 2019), body mass index 

(Pulit et al. 2019), diabetes (Vujkovic et al. 2020), age at menarche (Kichaev et al. 2019) and 

ovarian cancer (Kuchenbaecker et al. 2015)). Furthermore, genetic variation at 1p36.12 has 

associated with endometriosis and the lead endometrial cancer risk variant from the multi-

trait GWAS also represents a GWAS risk signal for pelvic organ prolapse (Olafsdottir et al. 

2020). Promoter-associated chromatin looping data from endometrial cell lines highlighted 

seven candidate target genes, two of which (CDC42 and WNT4) were supported by candidate 

causal risk variants that represent eQTLs for these genes. The lead candidate causal risk 

variant at 1p36.12 (rs3820282) and two candidate causal variants (rs61768001 & 

rs12037376) have previously been associated with expression of CDC42 in blood and a long 

non-coding RNA (LINC00339) in blood and the endometrium (Mortlock et al. 2020). Semi-

quantitative chromatin looping analysis in an endometrial cancer cell line demonstrated 

evidence of an interaction between a region containing rs3820282 and a ~15 kb region 

containing the promoter of LINC00339 (Powell et al. 2016). However, the quantitative 

chromatin looping data from the HiChIP analysis of the normal immortalized and tumoral 

endometrial cell lines (O'Mara et al. 2019)), which also has much greater resolution (Lareau 

and Aryee 2018), did not provide evidence for a physical interaction between LINC00339 and 

candidate causal endometrial cancer risk variants.  

 

LINC00339, CDC42 and WNT4 all have biological function relevant to endometrial cancer. 

LINC00339 has been found to promote oncogenesis in several different cancer types (Gao et 

al. 2020; Ye et al. 2020; Zhao et al. 2020), although not specifically endometrial cancer. 

CDC42 encodes a small GTPase of the Rho-subfamily that regulates cell cycle, cell-cell 

adhesion, cell migration and cancer progression (Qadir et al. 2015). Notably, CDC42 binds to 

PAK6 (encoded by an endometrial cancer GWAS risk candidate target gene (O'Mara et al. 

2019)) and this complex, which localizes to cell-cell adhesions, is correlated with epithelial 

colony escape (Morse et al. 2016). WNT4 encodes a protein that activates WNT/β-catenin 

signaling and appears to be crucial for the development of the female reproductive system, 

including the uterus (reviewed in (Biason-Lauber and Konrad 2008)). Moreover, genes 

belonging to the WNT/β-catenin pathway are frequently mutated in cancer, including the 

gene encoding β-catenin which is mutated in ~25% of endometrial tumors (Kandoth et al. 

2013). As with CDC42, there are also links between WNT4 and other genes located at 

endometrial cancer GWAS risk loci, such as WT1 and RSPO1 (O'Mara et al. 2018). For 
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example, in the ovary there is evidence of WNT4 regulation by proteins encoded by both of 

these genes (Biason-Lauber 2012; Gao et al. 2014) and RSPO protein activity potentiates 

WNT signaling (Bugter et al. 2021). There also appears to be some connection between 

CDC42 and WNT4: both genes have been found to be differentially expressed in the 

endometrium during the menstrual cycle (Powell et al. 2016).  

 

To reduce confounding inherent in the comorbidity observational studies of endometrial 

cancer and gynecological disease, prospective studies with long follow-up, large sample sizes 

and case identification using surgical confirmation would ideally be performed. Nevertheless, 

our study has demonstrated the utility of genetic causal inference analysis as a cost-effective 

alternative approach for unravelling relationships while reducing bias from unmeasured 

confounding. However, a limitation of our study is that the sample size of PCOS GWAS (the 

largest publicly available) was relatively small, reducing power to identify shared genetic risk 

regions or a causal relationship between PCOS and endometrial cancer. Consequently, these 

analyses should be revisited when more genome-wide significant variants are revealed in 

future PCOS GWAS.  

 

In conclusion, our study has provided insights into the comorbidity of non-cancerous 

gynecological diseases and endometrial cancer by revealing shared genetic risk architecture, a 

potential causal relationship between uterine fibroids and endometrial cancer, and shared 

candidate risk regions and genes. Furthermore, our study has leveraged this shared genetic 

architecture to identify a novel risk locus for endometrial cancer, uncovering biologically 

relevant candidate target genes and furthering our understanding of endometrial cancer 

etiology.  
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Tables 

Table 1. Genetic correlation between non-cancerous gynecological diseases and endometrial cancer  

Non-cancerous gynecological disease Covariate rG SE P-value 

Endometriosis - -0.02 0.09 0.83 

PCOS - 0.36 0.12 1.6×10-3 

PCOS BMI 0.19 0.14 0.17 

Uterine fibroids - 0.24 0.09 5.4×10-3 

Uterine fibroids BMI 0.23 0.10 0.02 

 rG: genetic correlation, SE: standard error. Results passing Bonferroni correction (P < 0.017) are bolded 
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Table 2. Genetic causal inference results for effects of non-cancerous gynecological diseases on endometrial cancer  

Gynecological disease Genetic causal inference analysis Beta SE P-value 

Endometriosis IVW 0.09 0.09 0.34 

MR-Egger 0.44 0.30 0.15 

MR-Egger (intercept) -0.03 0.03 0.23 

Weighted median 0.11 0.08 0.15 

Weighted mode 0.13 0.11 0.26 

PCOS IVW -0.05 0.04 0.26 

MR-Egger 0.07 0.21 0.75 

MR-Egger (intercept) -0.02 0.03 0.57 

Weighted median -0.08 0.06 0.21 

Weighted mode -0.19 0.12 0.13 

Uterine fibroids IVW 0.17 0.07 0.01 

MR-Egger 0.15 0.15 0.32 

MR-Egger (intercept) 0.00 0.01 0.91 

Weighted median 0.07 0.07 0.35 

Weighted mode 0.01 0.12 0.96 
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Table 3. Shared candidate endometrial cancer and non-cancerous gynecological diseases risk regions 

Region Gene TopSNPEC 

(p-value) 

TopSNPGyne 

(p-value) 

LD between 

TopSNPs (r2)* 

fastBATEC 

p-value 

fastBATEC 

FDR 

fastBATGyne 

p-value 

fastBATGyne  

FDR 

Endometrial cancer and endometriosis 

3q21.3 RUVBL1 rs872267 

(9.95×10-7) 

rs4857864 

(5.35×10-6) 

0.47 8.49×10-6 8.01×10-3 8.26×10-5 0.043 

9p21.3 CDKN2B-AS1 rs568447 

(2.68×10-6) 

rs6475610 

(1.73×10-9) 

1.0×10-4 7.26×10-5 0.036 9.02×10-9 3.55×10-5 

15q15.1 BMF rs28371998 

(6.81×10-9) 

rs7183386 

(7.23×10-6) 

0.36 1.64×10-7 5.74×10-4 4.93×10-6 9.35×10-3 

17q21.32 CBX1 rs7225865 

(1.34×10-8) 

rs10445377 

(3.20×10-7) 

0.99 3.35×10-6 4.32×10-3 2.63×10-5 0.025 

17q21.32 MIR1203 rs4794505 

(9.50×10-9) 

rs10445377 

(3.20×10-7) 

0.99 5.88×10-7 1.44×10-3 4.93×10-6 9.35×10-3 

17q21.32 SKAP1 rs882380 

(4.66×10-9) 

rs10445377 

(3.20×10-7) 

0.96 5.80×10-6 5.93×10-3 7.93×10-6 0.013 

17q21.32 SNX11 rs17681336 

(1.17×10-8) 

rs10445377 

(3.20×10-7) 

0.99 1.55×10-6 3.17×10-3 4.51×10-6 9.35×10-3 

Endometrial cancer and uterine fibroids 

5p15.33 CLPTM1L rs2736100 

(5.17×10-6) 

rs72709458 

(6.07×10-15) 

0.28 3.93×10-7 1.20×10-3 1.00×10-9 1.53×10-6 
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Region Gene TopSNPEC 

(p-value) 

TopSNPGyne 

(p-value) 

LD between 

TopSNPs (r2)* 

fastBATEC 

p-value 

fastBATEC 

FDR 

fastBATGyne 

p-value 

fastBATGyne  

FDR 

5p15.33 MIR4457 rs2736100 

(5.17×10-6) 

rs72709458 

(6.07×10-15) 

0.28 1.50×10-6 3.17×10-3 8.01×10-11 1.63×10-7 

5p15.33 TERT rs2736100 

(5.17×10-6) 

rs72709458 

(6.07×10-15) 

0.28 1.72×10-6 3.25×10-3 1.50×10-11 4.06×10-8 

11p13 WT1 rs10835920 

(1.33×10-8) 

rs11031731 

(2.04×10-21) 

0.20 1.86×10-5 0.015 2.64×10-16 3.22×10-12 

11p13 WT1-AS rs10835920 

(1.33×10-8) 

rs11031762 

(9.95×10-14) 

0.40 1.91×10-6 3.34×10-3 1.04×10-12 4.24×10-9 

TopSNP: lead variant for gene from fastBAT analysis; EC: endometrial cancer; Gyne: non-cancerous gynecological diseases; LD: linkage disequilibrium; 

FDR: false discovery rate. 

*LD was estimated using the EUR 1000Genomes reference panel. 

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted A
pril 1, 2021. 

; 
https://doi.org/10.1101/2020.11.09.20228114

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2020.11.09.20228114
http://creativecommons.org/licenses/by/4.0/


26 

 

Table 4. Genome-wide significant endometrial cancer risk loci identified using MTAG 

Region SNP EA OA EAF Original GWAS MTAG Replication 
Beta SE P-value Beta SE P-value Beta P-value 

Known risk loci 
6p22.3 rs1740828 A G 0.49 -0.135 0.018 2.47×10-14 -0.111 0.015 3.23×10-13 - - 
8q24.21 rs10089519# G A 0.67 0.093 0.017 3.89×10-8 0.096 0.015 7.61×10-11 - - 

8q24.21 rs72724795# G T 0.12 0.150 0.024 3.40×10-10 0.126 0.021 1.53×10-9 - - 

11p13 rs10835917 C T 0.36 0.089 0.016 3.99×10-8 0.084 0.014 2.09×10-9 - - 
12q24.12 rs3184504 C T 0.52 0.099 0.016 3.59×10-10 0.100 0.014 5.61×10-13 - - 
13q22.1 rs7981863 T C 0.27 -0.154 0.018 9.78×10-18 -0.103 0.016 4.28×10-11 - - 
15q21.2 rs12595627 C T 0.67 0.120 0.017 1.35×10-12 0.085 0.015 6.73×10-9 - - 
17q12 rs11263761 A G 0.54 0.141 0.016 2.29×10-18 0.095 0.014 1.49×10-11 - - 
Novel risk loci* 
1p36.12 rs3820282 T C 0.17 0.078 0.021 2.66×10-4 0.134 0.018 2.74×10-13 0.12 4.36×10-3 
5p15.33 rs7713218 G A 0.52 -0.077 0.016 3.33×10-6 -0.09 0.014 3.63×10-10 0.02 0.62 
EA: effect allele; OA: other allele; EAF: effect allele frequency; SE: standard error; Beta, Se and P-values were estimated from MTAG analysis of 
endometrial cancer, PCOS and uterine fibroids.  
#LD between rs10089519 and rs72724795 is 0.02. 
*Located >1Mb from known endometrial cancer risk loci. 
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Figure legends 

 

Figure 1. Association between genetic predisposition to non-cancerous gynecological 

diseases and endometrial cancer, obtained from two-sample Mendelian randomization 

analysis. The boxes represent the risk of endometrial cancer (beta) per standard deviation 

increment in genetic predisposition to non-cancerous gynecological disease. Error bars 

represent 95% confidence intervals.  
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Figure 2. Manhattan plot of MTAG result for endometrial cancer risk. Known endometrial 

cancer GWAS risk loci are marked in black, and novel genome-wide significant risk loci that 

are located >1Mb from known endometrial cancer risk loci in red. 
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Figure 3. The upper panel depicts a regional association plot for the 1p36.12 novel 

endometrial cancer risk locus. Genetic variants at the locus are plotted by their genomic 

position (hg19) and MTAG -log10(P) for association with endometrial cancer risk is on the 

left y-axis. Recombination rate (cM/Mb) is on the right y-axis and plotted as blue lines. The 

color of the circles indicates the level of linkage disequilibrium between each variant and the 

lead variant, rs3820282 (purple diamond), from the 1000 Genomes 2014 EUR reference 

panel (see legend, inset). The lower panel shows promoter-associated chromatin looping at 

1p36.12 identified from HiChIP analysis of the ARK-1 endometrial cancer cell line. 

Promoter-associated loops that intersect with candidate causal variants (shown as red vertical 

lines) are shown as purple arcs. 
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Supplementary Figure 

Supplementary Figure 1. Study design to explore the relationships between non-cancerous gynecological diseases and en

cancer. Genetic analyses including genome-wide genetic analysis, gene-based analysis, Mendelian randomization analysis, multi-tra

of GWAS and GWAS functional analysis were used in this study.  
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endometrial 
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Supplementary Figure 2. Leave-one-out sensitivity analysis plot for association between 

genetic predisposition to uterine fibroids and endometrial cancer. Each black dot in the forest 

plot represents the IVW estimates after excluding the corresponding variant. The plot 

highlighted in red represents the IVW estimate for all variants.  
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