
Appendix A:    

 

A simplified SIR model for the first peak in daily cases  

 

We model the Covid-19 pandemic using a simplified version of the SIR model [A1], which 

partitions the population into three compartments, Susceptibles (S), Infectious (I) and Removed 

R: Recovered or Dead after being infected. Such models have been used to study the global spread 

of diseases in a variety of contexts (For some recent reviews, see [A2-A4]).  

 

So far, the Covid-19 pandemic, in places such as NYC Boroughs and surrounding counties, which 

implemented measures such as limiting movement of people via partial or total lockdowns for 

some time, had the following dynamics, at least in the early stages of the pandemic: After being 

infected, an individual  remains able to infect others for an average of TL days.  After a time TL, 

the infected individual becomes sick, gets tested, is identified as infected and is removed from the 

pool by quarantine or hospitalization.  

 

Assuming this dynamics, our simplified model is defined as follows: At t=0, there is a pool of N 

interacting individuals, almost all in the S compartment, except for the few infected cases in the I 

compartment. The R compartment is empty at t=0. Over time, individuals move from S to I and 

from I to R. In R, they either recover or die.  Since the Recovered pool is populated only from the 

Infected pool, on average, the number removed each day must equal the number infected sometime 

in the past; i.e. the two are related by a fixed time displacement and a “mortality probability” 

factor. We assume that the number of deaths and the number of individuals recovered each day are 

proportional to the number Removed each day by fixed probabilities, and that these remain 

invariant over the time of the lockdown/quarantine. In other words, the number of dead or 

recovered each day are proportional to the number infected on some previous day, with different 

time delays and probabilities.  

 

Define:   

 

X1 (t)  = number of Susceptible individuals at time t,    (A1) 

X2 (t)  = number of Infected individuals at time t,      (A2) 

X3 (t)  = number of individuals Removed at time t     (A3) 

X1 (t) + X2 (t) + X3 (t) =   N  = constant      (A4) 

 

A fraction δ of the infected individuals will die after being identified as infected. On average, there 

will be a time delay TD between when a person is identified to be infected (tests positive) and when 

he/she dies of the disease. TD will depend on a variety of factors, such as quality of care, age, 

severity of disease, co-morbidities, immune status, whether vaccinated or not etc. 

 

Under these assumptions, the number of deaths X4(t) at time t is related to the number of Infected 

cases X2  by: 

 

X4(t) =  δ X2(t − TD) = number of individuals that died on day t   (A5a) 

 

Similarly, the number of Recovered at time t will be: 



 

X5(t) =   X2(t − TRe) = number of individuals that recovered on day t  (A5b) 

 

Further define:  

 

• : the transmission rate, the probability of infection per day per contact between an infected 

person and a susceptible person.       (A6a) 

• : the rate at which individuals leave the infected population   (A6b) 

 

Note that 
1

𝛾
=  TL:  is the time period when an infected individual is able to infect a susceptible 

individual          (A6c) 

 

 

With these assumptions, the basic equations of our model are: 

 
dX1(t)

dt
=  −αX1(t)X2(t)        (A7a) 

 
dX2(t)

dt
=  αX1(t)X2(t) − γX2(t)       (A7b) 

 

and the boundary conditions at t = 0 are:  

 

X1(t = 0) = (N − a) and  X2(t =  0) = a      (A7c) 

 

Eliminating t from (A7a) and (A7b) by taking their ratio, it is easy to show that  

 iX1and X2 are related by : 

 

X2(t) =  N − a + 
N

R
log (

X1(t)

N−a
) − X1(t)      (A8) 

 

From (A7b) we find that the maximum in X2 is at X1 =   
γ

α
=

N

R
   (A9) 

 

where R 
αN

γ
          (A10) 

 

R is the so called “Pandemic Parameter”. In our simple model, R is a constant.   

 

Substituting (A9) into (A8) gives:  

 

Maximum value of X2  ≡ P =   N −
N

R
[ 1 + log(R)]    (A11) 

 

For small t, we can expand the log in (A8) as follows: 

 

log (
X1(t)

N−a
) = log [1 − (1 − (

X1(t)

N−a
))]~ − (1 − (

X1(t)

N−a
))    (A12) 

 



Substituting (A12) into (A8) gives, after some simple algebra, 

 

X2(t) =  
R−1

R
 [N − X1(t) (1 −

a

(R−1)N
)] ~ 

R−1

R
 [N − X1(t)]    (A13) 

 

    

Finally, substituting (A13) into (A7a) gives a Logistic Equation for X1,  which is correct to O(1/N): 

 
dX1

dt
=  − γ(R − 1)X1(t)[1 −

X1(t)

N
]       (A14) 

 

whose solution, with the boundary condition (A7c) is: 

 

X1(t) =
N

[1+
a

N−a
 eγ(R−1)t]

        (A15) 

 

For small t, we can expand the denominator to get: 

  

X1(t) ~ N [ 1 −
a

N−a
eγ(R−1)t], t small       (A16) 

 

Substituting into (A13) gives, 

 

X2(t) ~  
(R−1)aN

R(N−a)
eγ(R−1)t        (A17) 

 

Thus, for small t, X2(t) increases exponentially, fed by a movement of individuals from the S 

compartment to the I compartment.   

 

The coefficient of t in the exponential rise of X2(t)  for small t is  γ(R − 1).  (A18) 

 

 

Fitting the Model to Data 

 

The first confirmed cases in NY were registered on March 1, in NJ on March 4, and in CT on 

March 8. Each of the tri-states responded by declaring a state of emergency (NY and NJ on March 

7, and CT on March 10) and issuing a joint mandate that banned crowds of over 50 people, closed 

casinos, movie theatres, and gyms,  limited access to bars and restaurants to takeout service, and 

set a night curfew. This was followed by each state ending in-person schooling, closing all non-

essential businesses, and issuing a “stay-at-home” order in an attempt at full-scale quarantine. All 

three states stayed in these lockdown conditions until a phased reopening began with Phase 1 (NY 

on June 8, NJ on June 10, CT on May 20). This reopening extended throughout June and July.  

 

Data on Covid-19 cases and deaths for NYC Boroughs and the surrounding counties in NJ, CT 

and NY was downloaded from  https://github.com/CSSEGISandData/COVID-

19/tree/master/csse_covid_19_data/csse_covid_19_time_series  

 

(a) The cumulative number I(t) and daily number X2(t)  of confirmed cases     (A19)  

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series


and  

(b) The cumulative number  D(t) and daily number  X4(t) of deaths    (A20) 

 

 

These are related by:  

 X2(t) =  I(t) − I(t − 1)         (A21) 

 

and,  

 

X4(t) =  D(t) − D(t − 1) .         (A22) 

 

 

We note that the data identifies Confirmed cases, whereas the model described above requires the 

number of Infected cases. These are in general quite different, since many infected cases are likely 

not included in the confirmed cases. This raises the following two complications which we cannot 

model for lack of data: 

 

• An infected, unconfirmed individual infects a susceptible individual who is then counted 

among the confirmed cases: Iunconfirmed → infects Susceptible → who is confirmed 

• An infected and confirmed individual infects a susceptible individual who is not counted  

among the confirmed infected.  Iconfirmed → infects Susceptible → who is not confirmed 

 

To deal with these complications, for which data is not available, we have to make the following 

simplifying assumptions: 

 

• At any given time, the number of confirmed cases is proportional to the number of infected 

cases.  

• The fraction of individuals that move in the two directions described above is fixed. 

 

With these assumptions, we can use the data of confirmed cases at a given time as an 

approximation for the number of infected cases.  

 

Although we do not analyze the data for the deaths in this paper, it is possible to extend the model 

to find the parameters  𝛿, 𝛽, 𝑇𝐷, 𝑇𝑅𝑒.  It is worth noting that the dynamics of the number removed 

each day and the total number of removed do not enter our analysis explicitly. Some connection 

to the full SIR model [A1] can be made by noting that the total number of removed individuals 

increases asymptotically at large times to  N(1 − S1(∞)), where,    

 

 S1(∞) =
X1(∞)

N
         (A23a)  

  

This quantity is also related to R by: 

 

R = − 
log(S1(∞))

[1−S1(∞)]
         (A23b) 

  



We determine the following parameters for NYC Boroughs and each county in NJ, CT and NY 

that we analyzed:  

 

• 𝐍, as defined in (A4) 

• 𝛂, the transmission rate or the number of infections per day per contact (A6)  

• 𝛄,  the average rate at which individuals leave the infected pool (A7) 

• 𝐑 , the average number of transmissions per individual 

• 𝐓𝐋, the infective period = 1/𝛄.  

 

The parameters N, α, γ, R were obtained as follows: 

 

• Using (A10), we can define α in terms of N, γ, R. This eliminates α. 

• Choosing a value for R and estimating P from the data as the maximum in the daily cases 

determines N in terms of R using (A11). This eliminates N. 
•  γ(R − 1)  is determined as the coefficient of t in the exponential increase in X2(t) for 

small t (A17-18). This eliminates γ. 
 

Finally, the optimum value of R is obtained by iterating the sequence above, using a numerical 

solver to fit the observed data for X2(t) to find the value of R that best fits the data. We emphasize 

that in determining these parameters, we are only using the ascending limb and the peak in the data 

for X2(t) and using these to predict how X2(t) will evolve in time for some period past the peak.  
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