
Supplementary Materials

Data and code availability

All data and code used in this study are publicly available (github.com/ziyimo/circ-immu).

Data collection

Epidemiological data of influenza at the state level since the 2010-11 season were

acquired from FluView, a weekly influenza surveillance report by the CDC

(www.cdc.gov/flu/weekly). These include the numbers of total weekly tests and positive

influenza A/B tests reported by WHO/NREVSS Collaborating Labs, as well as statistics for

influenza-like illness (ILI) visits from the US Outpatient Influenza-like Illness Surveillance

Network (ILINet). State-level COVID-19 death and hospitalization data were obtained from The

COVID Tracking Project (covidtracking.com/data/download/all-states-history.csv). The number

of COVID-19-related deaths in 31 major cities worldwide was acquired from the Unified

COVID-19 Dataset30 and the UK government COVID-19 website

(https://api.coronavirus.data.gov.uk). To account for the periodic oscillations in reported deaths,

we applied a seven day moving average to the data. In addition, extreme single day outlier

values in Madrid, Delhi, Mexico City and Santiago were replaced with local average values from

the six closest days.

Day lengths and sunrise times were calculated with the astral package

(pypi.org/project/astral/), whereas near-surface specific humidity came from the ERA5 dataset

(doi: 10.24381/cds.20d54e34). Following ref. 1, day length, sunrise and humidity variables at the

state level were calculated as population-weighted averages using population density in 2015

reported in GPWv4 from CIESIN (doi: 10.7927/H49C6VHW). Weighting was not conducted for

the city level environmental variables, and in this case day length and sunrise were based on
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the geopy (pypi.org/project/geopy/) longitude and latitude for each city. Our R0 models aim to

capture broad patterns of seasonal dynamics and therefore year-to-year variations in the

climatological variable were disregarded by averaging over 5 years of humidity data from 2014

to 2018. Since the day length and sunrise variables exhibit negligible year-to-year variation, we

used values calculated by astral for the year 2019. Curated data used to fit the model are

available via github (github.com/ziyimo/circ-immu/tree/main/state_lv_data).

SIRS model for influenza

We applied a classical SIRS framework1,11 (Supplementary Fig. S2A) to model the

epidemiology of influenza as an endemic. The susceptible (S), infected (I) and recovered (R)

compartments in the population (N) are governed by the following differential equations:

We treated D, the mean infection period and L, the duration of immunity as known for a

certain disease (e.g., D = 5 days and L = 40 weeks for flu1). Therefore, the transmission

dynamics are driven by the time-varying reproductive number R0(t), which is simply a scaled

version of the contact rate β(t), .

Modified SIRS model for COVID-19

We modeled COVID-19 death counts data following ref. 16. In addition, an exposed (E)

compartment was introduced to account for the non-trivial incubation period of COVID-19. The

flow of population among the susceptible (S), exposed (E), infected (I), resolving (G) and

removed (Rem) compartments are defined by (see also Supplementary Fig. S2B):
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Here, we introduced an incubation period σ = 5 days, a mean infection period (time from

symptom onset to patient isolation) γ = 5 days and a mean time of case resolution ѱ = 10

days16,31. As before, the time-varying contact rate—here given by β(t) = R0(t) / γ—was fitted to

data through our R0 models. The number of newly reported deaths on a particular day was

treated as a binomial sample from the G compartment on that day with a probability equal to the

resolving death rate α = δψ-1 = 0.001 (see discussions of model likelihood below for details).

This corresponds to a death rate of 1% (we also fitted the models under alternative death rates

of 0.7% and 0.5%, see Supplementary Tables S3 & S4)16.

A simplified version of the model proposed in ref.17 was used to model hospitalizations

(Supplementary Fig. S2C), as follows:

with σ and γ defined the same way as above, and additional parameters including a

hospitalization rate η = 2.6% (we also fitted the models under an alternative value of 5%, see

Supplementary Tables S5-S7; Supplementary Figs. S4-S6) and a mean length of

hospitalization κ = 10 days31–33.
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Models for R0(t)

The compartmental models allowed us to model the epidemiological dynamics as driven

by some choice of underlying variables that directly determine R0(t). We could subsequently

evaluate the goodness of fit by calculating the model likelihood. For the model comparison

study, we considered the following R0 models.

1. A sinusoidal R0 model (base)

In this model, R0 depends solely on the day of the year t, and fluctuates annually between

R0,min and R0,max in a sinusoidal wave. A single free parameter which governs

the day of the year when R0 reaches its maximum is fitted to the data. This was considered

the base model in the model comparison study.

2. A climate R0 model (h)

This is the climate model from refs. 1,13. The climate dependency parameter

governs the rate of exponential decay in R0 as the specific humidity h increases. We also

experimented with a Gaussian form for the climate model and found that the model in its

original exponential form provided a better fit.

3. A day-length R0 model (d)

The Gaussian day-length model estimates , the value of day length when R0

attains its maximum, from the data, and therefore permits either a monotonic or peaked

relationship between R0 and the day length d. The width of the curve is governed by

. In practice, the best-fit models specified a monotonically decreasing relationship

28

https://www.zotero.org/google-docs/?djpUZV


between R0 and day length (d0 < dmin, where dmin is the minimum observed value of the day

length covariate, see Supplementary Tables S1, S2 & S5).

4. A sunrise/day-length R0 model (sd)

A composite model with controlling the dependence of R0 on sunrise time s, and

controlling the dependence of R0 on day length d. s0 is defined in a similar fashion to

d0 described above. However, in contrast to d0, best fit values of s0 did specify “peaks” of R0

(Supplementary Tables S1, S4 & S7).

5. A climate/day-length R0 model (hd)

A composite model with controlling the dependence of R0 on specific humidity h,

and controlling the dependence of R0 on day length d.

6. A climate/sunrise/day-length R0 model (hsd)

The most comprehensive composite model with controlling the dependence of R0

on specific humidity h, controlling the dependence of R0 on sunrise time s, and

controlling the dependence of R0 on day length d.

For all of the above models, the day length d was scaled between 0 (0 hr) and 1 (24 hrs)

whereas sunrise time s was scaled between 0 (midnight) and 1 (noon). For influenza models,

R0,max was fixed to 2 and R0,min was fixed to 1.2, based on reproductive numbers from the

literature and an expected largest reduction in R0 of 40%1. The range of R0 values for COVID,

on the other hand, was fitted to data.

Model likelihood for influenza testing data
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The epidemiological data for flu consist of the total number of tests conducted in a week,

Nt, the number of positive tests, kt, and the proportion of Influenza-like illness (ILI) visits, πt. We

modeled testing as a binomial sampling process, such that , where qt is the

probability of testing positive in week t. We further assume that qt is proportional to pt, the rate of

flu infection in the general population in week t, which can be obtained from our model as the

proportion of the population that falls in the I compartment in week t (we use the daily value

corresponding to day 4 of week t). Indeed, we could define if it were true that 1) the

rate of flu infection among hospital visitors equals that in the general population, and 2) all true

positive flu cases exhibit symptoms and register as ILI visits. For various reasons, however, we

expect these assumptions to be too restrictive and to unrealistically inflate qt, so we allowed for

a free parameter to serve as a flexible constant of proportionality to be estimated

from the data, that is, .

A complication with this strategy is that, unless c is strictly bounded, some choices of

model parameters still may lead to , making the binomial likelihood ill-defined.

Furthermore, strictly capping c so that this scenario never occurs is too restrictive, owing to

noise in the data and the need to explore a broad range of parameter values during

optimization. To address this problem, we adopted a penalized likelihood strategy for truncation

of q, forcing it to remain below a designated cap qcap but penalizing the truncation when it is

applied.   Specifically, we assume a penalized negative log likelihood as follows:

where and the hyperparameter λ determines how heavily the model is

penalized for exceeding the cap. qcap was set to either the upper 99.9% binomial confidence

interval calculated from the maximum test positivity rate in the data, or 0.999, whichever is
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lower. As noted in the text, we experimented with various values of λ and found that our results

were fairly insensitive to this parameter (we focus on the case of λ=10 in our main results).

For the purpose of plotting the raw data (as in Fig. 2), we used an estimator for the rate

of flu infection in the general population in week t given by , where c was

estimated in our penalized likelihood framework In addition, we used this same estimator to

calculate correlation coefficients between the raw data and our climate model (h) fit,to allow

comparison with a previous study13. We found that modeling the specific humidity covariate

alone, our model achieved a similar Pearson’s correlation to the data of about r = 0.7.

Model likelihoods for COVID-19 death and hospitalization data

The difference in the nature of death and hospitalization data necessitated slightly

different approaches to calculating model likelihood. Death data consists of the daily number of

newly reported fatalities. We could therefore model the absolute number of deaths on each day

as a binomial sample of the resolving cases on that day. This results in a very similar likelihood

model to that of the flu testing data. Formally, using a probability of ɑ = δψ-1 (resolving death

rate) and a sample size of Gt (number of resolving cases on day t predicted by the model), the

probability of observing dt deaths  follows a distribution. To accommodate likelihood

calculation of extremely misspecified models proposed during the optimization process, we

used an adjusted sample size Gt’ = dt in cases where Gt < dt, and explicitly penalize such cases

in our likelihood calculation as follows:

where . The hospitalization counts, on the other hand, are cumulative

measures that reflect the current number of hospitalized patients and therefore were modeled

by the H compartment itself. We therefore treated the number of current hospitalization as a
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homoscedastic observation of the H compartment, and calculated model likelihood using a

normal probability distribution with uniform variance.

Model fitting and evaluation

An instance of the flu SIRS model was run for 50 years, all states in parallel, to allow it to

reach an equilibrium. Each state was initialized with a single infected individual in a population

corresponding to the 2010 census population of that state. The model was subsequently run

with annual R0 values calculated given the set of R0 model parameters (shared among all

states) and state-specific variables (humidity, day length, sunrise). In other words, each instance

of the model consists of a unified R0 model shared by all states, and a separate compartmental

model for each state. For model fitting, we took model output from the last number of years

corresponding to the number of years for which data were available.

The COVID-19 hospitalization model (SEIHRem) and death model (SEIGRem) were run

from March 13 2020, the day when the COVID-19 pandemic was declared a national

emergency in the U.S., until Jan 31 2021. In addition to the R0 model parameters, the initial

proportion of infected individuals for each state or city (Iinit/N) were treated as free in these

models. In the case of R0 models for COVID-19, each of the nine U.S. census divisions was

given its own sunrise “peak” s0, resulting in nine separate s0 parameters in total. For the city-

level modelling, each city was given its own s0 . The SEIHRem and SEIGRem models were run

jointly for multiple geographic units in an otherwise similar fashion to the SIRS model.

Optimization was conducted using the “DEoptim”34 and “pso”35 packages in R, which

implement the differential evolution and particle swarm optimization algorithms, respectively. We

fitted the 6 distinct R0 models to flu surveillance data in 40 states with fewer than 200 weeks of

missing data (out of 520 weeks total from the 2010-11 season to the 2019-20 season),

COVID-19 hospitalization data in 48 contiguous states (plus Hawaii and DC), and COVID-19

death data in 46 contiguous states (plus DC) until Jan 31 2021. States with fewer than 700 total
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deaths (AK, HI, VT, WY) were excluded from COVID-19 death data. Finally, model fit was

evaluated using Bayesian Information Criterion , where k is the

number of model parameters, n is the number of data points and is the maximized likelihood

of the model.

Forward simulations

To estimate the impact of daylight saving time changes on the endemic transmission

dynamics of flu, we ran forward simulations of the SIRS model with best-fit parameters of

the sunrise/day-length (sd) R0 model, estimated from 10 years worth of data. The model, with its

parameters set at the MLE, was run for 50 years using annual cycles of the covariates as

described previously. Finally, model prediction for the last year (which reflects the annual pattern

under an endemic steady-state) was taken to demonstrate the dynamics of a typical flu season.

We considered three alternative scenarios for sunrise time where 1) states follow their current

DST schedule (with AZ and HI opting out), 2) all states implement permanent standard time,

and 3) all states implement permanent DST.

We gauged the uncertainty in the counterfactual model predictions in two ways. First,

replicates of each set of simulations were performed with model parameters resampled from a

multivariate Gaussian distribution , where the covariance matrix is estimated as

the inverse of the negative Hessian of the log-likelihood function at ,

. The Hessian was calculated numerically by finite difference

approximation with the optimHess function in R. Second, we also performed replicates of

simulations with bootstrapped MLE model parameters12, which were obtained by optimizations

under datasets consisting of jurisdictions (i.e. states, or cities) resampled with replacement. The

standard deviation of bootstrap samples was used to report the variance in model prediction,
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unless specified otherwise. Similarly, simulations under these two approaches were performed

to estimate the counterfactual effect of time change on COVID epidemiology.

It is worth noting that estimates of parameter variance from the Hessian are based solely

on how sharply the likelihood surface is peaked around the MLE, and therefore cannot account

for uncertainty due to multi-modality of the likelihood surface, which is very likely the case for

our covariate-dependent R0 models. The bootstrapping procedure outlined above fares better at

estimating the true uncertainty in the model predictions. However, as discussed in the text,

neither approach is able to address the additional uncertainty due to modeling assumptions12.
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Supplementary Table S1. Maximum likelihood, best-fit parameters and BIC of R0 models fitted to U.S. influenza surveillance
data

λ=10

Model -log(L) c R0 model parameters k BIC

base 1166629.845 0.314597 φ = 336.091444 2 2333279.587

h 1089364.253 0.305390 α = -76.063888 2 2178748.403

d 728915.912 0.338684 α = -4.284229, d0 = 0.000077 3 1457861.669

sd 708852.803 0.373150 α1 = -20.014690, s0 = 0.534814, α2 = -5.932632, d0 = 0.093795 5 1417755.348

hd 728997.776 0.338188 α1 = -0.046645, α2 = -4.278007, d0 = 0.001025 4 1458035.347

hsd 706595.238 0.353127 α1 = -12.889948, α2 = -18.820708, s0 = 0.537953, α3 = -4.296793, d0 = 0.063486 6 1413250.167

λ=1000

Model -log(L) c R0 model parameters k BIC

base 1530948.860 0.183754 φ = 337.589711 2 3061917.617

h 1534727.097 0.160003 α = -75.613082 2 3069474.091

d 1011341.089 0.242170 α = -4.268851, d0 = 0.000744 3 2022712.024

sd 1000324.223 0.240695 α1 = -17.920377, s0 = 0.549864, α2 = -5.063578, d0 = 0.060337 5 2000698.187

hd 1011439.152 0.242286 α1 = -0.057132, α2 = -4.265932, d0 = 0.000179 4 2022918.098

hsd 1000520.782 0.239310 α1 = -3.356418, α2 = -18.635970, s0 = 0.551916, α3 = -4.715343, d0 = 0.053300 6 2001101.255
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Supplementary Table S2. Maximum likelihood, select best-fit parameters* and BIC of R0 models fitted to U.S. state-level
COVID-19 death data under a death rate (δ) of 1%.

Model -log(L) R0, min R0, range R0 model parameters k BIC

base 590485.8 0.800 1.2 φ = 348.5186 50 1181180.732

h 213127.0 1.004 1.2 α = -300 50 426463.1321

d 117021.1 0.802 1.202 α = -5.041, d0 = 0 51 234255.5148

sd 103736.5 0.837 0.600 α1 = -35.185, s0
†, α2 = -19.656, d0 = 0.351 61 207728.1412

hd 117066.4 0.800 1.2 α1 = -0.007060576, α2 = -5.014881, d0 = 8.727869e-05 52 234350.2974

hsd 103990.2 0.870 0.601 α1 = -0.00101663, α2 = -14.80779, s0
†, α3 = -42.8548, d0 = 0.4111704 62 208239.7239

* see Supplementary Table S3 for Iinit/N values of the sd model
†see Supplementary Table S4 for s0 values of the sd model
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Supplementary Table S3. COVID-19 death sd model fit of the initial proportion of infected
population (Iinit/N)

State

Death rate (δ)
State

Death rate (δ)

1% 0.7% 0.5% 1% 0.7% 0.5%

AL 9.51E-04 2.38E-03 2.84E-03 NC 1.07E-03 2.07E-03 3.15E-03

AR 1.33E-03 1.71E-03 1.80E-03 ND 2.65E-03 2.40E-03 2.30E-03

AZ 2.11E-03 3.07E-03 3.31E-03 NE 1.11E-03 1.34E-03 1.53E-03

CA 1.03E-03 1.63E-03 2.02E-03 NH 6.53E-04 7.39E-03 9.54E-03

CO 1.33E-03 3.31E-03 4.42E-03 NJ 1.10E-02 1.22E-02 1.33E-02

CT 7.94E-03 9.76E-03 1.06E-02 NM 1.13E-03 1.87E-03 2.28E-03

DC 6.43E-03 8.90E-03 9.67E-03 NV 1.79E-03 3.33E-03 3.89E-03

DE 3.58E-03 5.68E-03 6.83E-03 NY 1.04E-02 1.29E-02 1.37E-02

FL 2.33E-03 3.28E-03 3.45E-03 OH 1.43E-03 2.25E-03 3.80E-03

GA 2.63E-03 4.10E-03 4.57E-03 OK 8.80E-04 1.10E-03 1.22E-03

IA 1.91E-03 2.14E-03 2.36E-03 OR 9.77E-04 1.25E-03 1.16E-03

ID 1.63E-03 1.80E-03 1.51E-03 PA 3.37E-03 5.44E-03 5.66E-03

IL 3.76E-03 4.64E-03 5.35E-03 RI 5.41E-03 6.88E-03 7.46E-03

IN 2.45E-03 3.43E-03 3.63E-03 SC 2.25E-03 3.39E-03 3.70E-03

KS 1.01E-03 1.13E-03 1.25E-03 SD 2.00E-03 2.09E-03 1.59E-03

KY 9.99E-04 1.51E-03 1.38E-03 TN 1.17E-03 1.64E-03 1.64E-03

LA 4.99E-03 6.44E-03 6.48E-03 TX 1.63E-03 2.40E-03 2.62E-03

MA 8.31E-03 9.20E-03 9.83E-03 UT 6.51E-04 7.25E-04 5.58E-04

MD 3.46E-03 5.75E-03 5.57E-03 VA 9.17E-04 2.70E-03 4.91E-03

ME 2.47E-04 6.28E-03 9.23E-03 WA 1.71E-03 2.15E-03 2.32E-03

MI 3.45E-03 4.09E-03 4.41E-03 WI 1.25E-03 1.40E-03 2.96E-03

MN 2.05E-03 2.35E-03 2.61E-03 WV 1.12E-03 1.16E-03 1.07E-03

MO 9.41E-04 2.57E-03 3.46E-03

MS 2.92E-03 3.78E-03 3.87E-03

MT 1.83E-03 2.14E-03 1.35E-03
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Supplementary Table S4. COVID-19 death sd model fit of the peak of sunrise effect (s0)

Census division

Death rate (δ)

1% 0.7% 0.5%

Pacific 0.4357 0.4376 0.4468

East South Central 0.4659 0.4700 0.4792

West South Central 0.4698 0.4815 0.4891

Mountain 0.4660 0.4779 0.4998

New England 0.6142 0.5959 0.5667

South Atlantic 0.4542 0.4676 0.4837

West North Central 0.4940 0.4926 0.5110

East North Central 0.4894 0.4946 0.5194

Middle Atlantic 0.6543 0.6222 0.6016
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Supplementary Table S5. Maximum likelihood, select best-fit parameters* and BIC of R0 models fitted to U.S. state-level
COVID-19 hospitalization data

η=0.026

Model -log(L) R0, min R0, range R0 model parameters k BIC

base 7434203253 0.9475 0.4381 φ = 324.4393 53 1.4868E+10

h 15607111315 0.7931 0.4472 α = -15.20934 53 3.1214E+10

d 6866896580 0.9755 0.4397 α = -99.63272, d0 = 0.4344352 54 1.3734E+10

sd 5798075108 0.9998 0.6812 α1 = -35.16802, s0
†, α2 = -147.2332, d0 = 0.4378637 64 1.1596E+10

hd 6848815355 0.9900 0.4236 α1 = -0.07583849, α2 = -105.771, d0 = 0.4332639 55 1.3698E+10

hsd 5854646819 1.0401 0.7870 α1 = -0.06285446, α2 = -49.1765, s0
†, α3 = -283.1534, d0 = 0.4364146 65 1.1709E+10

η=0.05

Model -log(L) R0, min R0, range R0 model parameters k BIC

base 6793366617 0.9265 0.3346 φ = 315.5494 53 1.3587E+10

h 12266896845 0.9141 0.3277 α = -39.19565 53 2.4534E+10

d 6646509850 0.9535 0.3321 α = -106.2214, d0 = 0.4413445 54 1.3293E+10

sd 6083071230 0.9877 0.5050 α1 = -18.58159, s0
†, α2 = -332.4335, d0 = 0.4488209 64 1.2166E+10

hd 6533551013 0.9837 0.3367 α1 = -0.1135141, α2 = -190.3919, d0 = 0.4428364 55 1.3067E+10

hsd 6082344989 0.9917 0.5267 α1 = -0.01785445, α2 = -9.442807, s0
†, α3 = -370.0165, d0 = 0.4491905 65 1.2165E+10

* see Supplementary Table S6 for Iinit/N values
†see Supplementary Table S7 for s0 values of sd and hsd models
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Supplementary Table S6. COVID-19 hospitalization model fit of the initial proportion of
infected population (Iinit/N)

η=0.026 η=0.05

base h d sd hd hsd base h d sd hd hsd

AL 6.29E-03 7.86E-04 3.23E-03 4.76E-03 3.47E-03 6.08E-03 4.04E-03 1.07E-03 2.32E-03 3.91E-03 2.77E-03 3.45E-03

AZ 5.14E-03 2.94E-04 2.72E-03 3.58E-03 2.64E-03 4.23E-03 4.38E-03 3.09E-04 2.60E-03 3.61E-03 3.16E-03 3.71E-03

AR 7.20E-03 5.96E-04 3.45E-03 4.37E-03 3.45E-03 5.03E-03 2.65E-03 6.40E-04 1.49E-03 1.93E-03 1.74E-03 2.01E-03

CA 6.32E-03 2.39E-04 3.57E-03 3.45E-03 3.45E-03 4.57E-03 3.17E-03 2.51E-04 1.98E-03 2.46E-03 2.50E-03 2.54E-03

CO 2.19E-04 8.38E-05 5.21E-03 5.31E-03 5.26E-03 5.90E-03 8.74E-04 5.07E-05 9.26E-04 1.09E-03 2.14E-03 1.31E-03

CT 1.27E-02 1.76E-04 6.18E-03 9.09E-03 6.42E-03 9.40E-03 8.34E-03 1.69E-04 3.86E-03 4.28E-03 4.13E-03 4.13E-03

DE 2.52E-03 2.68E-04 3.99E-03 4.65E-03 3.98E-03 5.00E-03 5.80E-03 2.99E-04 2.69E-03 2.79E-03 2.88E-03 2.71E-03

DC 7.16E-02 1.44E-02 7.90E-03 8.47E-03 7.93E-03 9.03E-03 1.15E-02 1.51E-03 6.49E-03 8.01E-03 7.60E-03 8.59E-03

FL 1.14E-02 1.87E-03 5.76E-03 7.29E-03 5.81E-03 8.97E-03 1.15E-02 2.11E-03 6.81E-03 9.71E-03 7.54E-03 9.68E-03

GA 6.93E-03 7.39E-04 3.61E-03 3.07E-03 3.51E-03 3.44E-03 4.85E-03 9.36E-04 2.57E-03 3.27E-03 3.14E-03 3.38E-03

HI 6.27E-02 1.15E-05 1.85E-02 1.91E-02 1.83E-02 1.76E-02 6.92E-02 1.00E-01 5.76E-02 2.95E-02 5.02E-02 2.92E-02

ID 9.51E-03 7.18E-05 3.34E-03 1.91E-03 3.53E-03 2.14E-03 3.85E-04 4.47E-05 1.33E-03 1.67E-03 1.39E-03 1.61E-03

IL 1.08E-02 7.02E-04 5.75E-03 6.52E-03 5.45E-03 8.03E-03 8.47E-03 5.84E-04 4.29E-03 5.19E-03 4.35E-03 5.10E-03

IN 7.20E-03 5.45E-04 3.69E-03 3.71E-03 3.39E-03 4.07E-03 5.77E-03 5.65E-04 2.78E-03 3.45E-03 3.48E-03 3.31E-03

IA 9.33E-03 5.02E-04 4.56E-03 3.18E-03 4.55E-03 3.46E-03 1.10E-03 1.26E-04 1.71E-03 1.52E-03 1.83E-03 2.00E-03

KS 1.27E-02 3.15E-04 6.08E-03 3.75E-03 5.96E-03 4.18E-03 1.20E-02 3.94E-02 5.36E-03 8.11E-03 5.84E-03 6.90E-03

KY 7.82E-03 4.81E-04 3.74E-03 2.18E-03 3.77E-03 2.40E-03 4.07E-03 4.35E-04 1.94E-03 2.53E-03 2.27E-03 2.52E-03

LA 1.07E-02 2.03E-03 5.55E-03 7.17E-03 5.60E-03 9.32E-03 8.67E-03 1.89E-03 4.30E-03 6.52E-03 5.20E-03 6.26E-03

ME 1.96E-04 2.98E-05 5.29E-03 8.79E-03 5.03E-03 8.95E-03 4.54E-04 3.28E-05 3.76E-04 4.41E-04 3.86E-04 3.84E-04

MD 1.10E-02 1.98E-04 5.58E-03 6.06E-03 5.55E-03 5.55E-03 9.28E-03 1.92E-04 2.92E-03 3.45E-03 3.59E-03 3.22E-03

MA 1.58E-02 1.43E-04 8.36E-03 1.03E-02 8.27E-03 1.17E-02 1.19E-02 1.33E-04 5.75E-03 6.57E-03 6.19E-03 6.69E-03

MI 1.12E-02 2.89E-04 4.91E-03 3.09E-03 4.65E-03 3.06E-03 7.10E-03 1.45E-04 2.80E-03 2.68E-03 2.82E-03 2.74E-03

MN 9.94E-03 7.62E-05 4.05E-03 2.14E-03 4.13E-03 2.13E-03 6.84E-04 6.09E-05 1.39E-03 1.19E-03 1.30E-03 1.37E-03

MS 7.48E-03 1.67E-03 4.46E-03 5.70E-03 4.41E-03 7.15E-03 7.01E-03 1.84E-03 3.86E-03 5.88E-03 4.57E-03 5.84E-03

MO 6.64E-03 6.18E-04 3.42E-03 3.27E-03 3.50E-03 3.90E-03 5.04E-03 7.02E-04 2.43E-03 3.00E-03 2.77E-03 3.00E-03

MT 1.02E-02 4.79E-04 2.78E-03 2.17E-03 2.75E-03 2.17E-03 6.72E-03 7.69E-05 1.89E-03 2.05E-03 1.90E-03 2.24E-03

NE 1.00E-02 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01 7.11E-03 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01

NV 4.97E-03 3.22E-04 2.60E-03 4.09E-03 2.77E-03 5.58E-03 6.15E-03 2.34E-04 2.81E-03 3.28E-03 3.29E-03 3.38E-03

NH 7.71E-05 4.56E-05 5.38E-03 8.27E-03 5.32E-03 9.03E-03 7.87E-04 4.58E-05 5.52E-04 6.64E-04 5.75E-04 5.88E-04

NJ 1.65E-02 1.53E-02 8.81E-03 1.02E-02 9.77E-03 1.29E-02 1.22E-02 3.43E-04 6.79E-03 7.91E-03 7.45E-03 8.14E-03
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NM 7.49E-03 1.62E-04 3.92E-03 4.85E-03 3.45E-03 6.04E-03 1.67E-03 9.15E-05 8.83E-04 3.32E-03 1.21E-03 6.21E-04

NY 1.86E-02 1.64E-02 1.04E-02 1.08E-02 1.08E-02 1.35E-02 1.24E-02 1.85E-04 6.51E-03 7.90E-03 7.34E-03 8.15E-03

NC 3.86E-04 2.98E-04 4.07E-03 4.61E-03 4.30E-03 4.89E-03 1.52E-03 3.36E-04 7.88E-04 1.10E-03 8.04E-04 1.05E-03

ND 4.26E-03 6.19E-04 3.18E-03 2.58E-03 3.32E-03 2.73E-03 1.61E-03 9.50E-05 2.02E-03 2.17E-03 2.15E-03 2.10E-03

OH 8.01E-03 2.94E-04 3.54E-03 2.56E-03 3.61E-03 2.36E-03 2.52E-03 2.28E-04 1.85E-03 1.82E-03 2.14E-03 1.70E-03

OK 6.10E-03 5.65E-04 3.29E-03 2.65E-03 3.13E-03 2.61E-03 2.95E-03 6.87E-04 1.83E-03 2.54E-03 2.11E-03 2.26E-03

OR 1.06E-04 3.09E-05 4.99E-03 1.06E-03 5.37E-03 8.35E-04 3.82E-04 3.27E-05 5.12E-04 9.94E-04 5.42E-04 9.25E-04

PA 7.94E-03 2.29E-04 3.63E-03 7.38E-03 3.56E-03 8.93E-03 3.57E-03 2.07E-04 2.07E-03 1.20E-03 2.14E-03 1.31E-03

RI 8.77E-03 2.84E-04 4.11E-03 7.01E-03 4.28E-03 7.46E-03 3.03E-03 2.21E-04 2.74E-03 2.79E-03 3.07E-03 2.87E-03

SC 9.65E-03 8.24E-04 4.64E-03 4.62E-03 4.46E-03 5.05E-03 8.19E-03 8.88E-04 1.00E-01 4.57E-03 4.27E-03 4.58E-03

SD 5.60E-03 1.00E-01 3.34E-03 2.57E-03 3.04E-03 2.76E-03 1.02E-02 6.64E-04 2.67E-03 2.84E-03 2.77E-03 3.22E-03

TN 6.50E-03 6.05E-04 3.39E-03 3.45E-03 3.43E-03 3.45E-03 3.95E-03 7.20E-04 2.13E-03 2.95E-03 2.57E-03 2.78E-03

TX 6.18E-03 8.75E-04 3.48E-03 3.84E-03 3.42E-03 4.35E-03 4.02E-03 1.13E-03 2.45E-03 3.13E-03 3.06E-03 3.22E-03

UT 1.41E-02 5.45E-05 5.54E-03 2.65E-03 5.73E-03 2.34E-03 7.46E-04 3.92E-05 6.52E-04 1.40E-03 7.00E-04 1.25E-03

VT 1.76E-05 1.01E-05 6.14E-03 9.17E-03 5.71E-03 8.11E-03 2.62E-04 1.42E-05 1.81E-04 1.87E-04 1.76E-04 1.90E-04

VA 1.00E-02 3.48E-04 4.93E-03 5.34E-03 4.91E-03 5.77E-03 5.72E-03 3.10E-04 2.78E-03 3.17E-03 2.82E-03 3.07E-03

WA 1.34E-04 4.44E-05 3.99E-03 1.91E-03 4.33E-03 1.55E-03 5.39E-04 4.61E-05 1.03E-03 1.49E-03 1.01E-03 1.36E-03

WV 6.87E-03 2.53E-04 3.45E-03 1.58E-03 3.49E-03 1.55E-03 1.87E-03 2.17E-04 1.14E-03 1.67E-03 1.25E-03 1.59E-03

WI 1.95E-04 3.29E-04 4.29E-03 5.35E-03 4.28E-03 6.14E-03 8.87E-04 1.06E-04 1.33E-03 9.62E-04 1.59E-03 1.06E-03

WY 9.25E-02 1.07E-04 4.01E-03 2.61E-03 4.04E-03 2.22E-03 5.18E-03 5.35E-05 9.70E-04 1.45E-03 1.09E-03 1.37E-03
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Supplementary Table S7. COVID-19 hospitalization sd and hsd model fit of the peak of
sunrise effect (s0)

η=0.026 η=0.05

sd hsd sd hsd

Pacific 0.4550 0.4656 0.4602 0.4030

East South Central 0.4712 0.4694 0.4662 0.4094

West South Central 0.4852 0.4861 0.4647 0.4004

Mountain 0.4780 0.4827 0.4894 0.4387

New England 0.6246 0.5167 0.6680 0.4450

South Atlantic 0.4864 0.4880 0.4837 0.4219

West North Central 0.4750 0.4872 0.6814 0.4790

East North Central 0.5055 0.5113 0.5526 0.5162

Middle Atlantic 0.6053 0.5685 0.5795 0.5507
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Supplementary Figure S1. Evaluating goodness-of-fit of R0 models using flu surveillance
data of U.S. states. Different R0 models define the transformation from state-specific variables
such as humidity (h), day length (d) and/or sunrise time (s) throughout the year to R0 values,
governed by a set of parameters θ shared among all states. A separate instance of the SIRS
model for each state predicts the infection rate and consequently the test positivity rate (see
Supplementary Materials) given the R0 values. Finally, the log likelihood of the model and
parameter set θ is calculated as the sum of log binomial probabilities of the observed weekly
testing data over states. The log likelihood of each R0 model is maximized for model comparison
using Bayesian Information Criterion (BIC).
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Supplementary Figure S2. Three SIR-derived compartmental models for modeling infection
rate of endemic flu (A), daily new deaths of COVID-19 (B), and current hospitalization count of
COVID-19 (C). See Supplementary Materials for definitions of the model parameters. Note
that blue indicates the prediction of the model for which its likelihood is calculated. The dashed
arrow in (B) emphasizes that the daily death count is treated as a sample of the resolving (G)
compartment, and this sampling is independent of the dynamics of the model (i.e. cases
resolved in both recoveries and fatalities enter the R compartment).
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Supplementary Figure S3. R0 model fit for influenza surveillance data of 40 U.S. states
from the 2010-11 season to the 2019-20 season. Model fit is measured as the BIC for the
base model minus the BIC for the base, climate (h), day-length (d), sunrise/day-length (sd),
climate/day-length (hd) and climate/sunrise/day-length (hsd) models. Relative BIC values are
shown for model likelihoods maximized under λ=10 (A) and  λ=1000 (B).
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Supplementary Figure S4. R0 model fit for state-level COVID-19 data in the United States.
Relative BIC values are shown for death models under a death rate of 1% (A), as well as
hospitalization models under hospitalization rates of 2.6% (B) and 5% (C). Figure layout and
description are otherwise similar to Figure S3.
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Supplementary Figure S5. Comparison of the proportion of population recovered from
COVID-19 by Jan 2021 inferred by the sunrise/day-length (sd) models and that estimated
from serological surveillance14,15. The proportion of the recovered population was inferred
with the death model assuming a death rate of 1% (A), as well as hospitalization models
assuming a hospitalization rate of 2.6% (B) or 5% (C). Error bars of model predictions indicate
one standard deviation based on bootstrap replicates, whereas those of serological estimates
represent confidence intervals as specified in ref 15.
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Supplementary Figure S6. Estimated changes in the total number of COVID-19 deaths (A)
and hospitalizations (B & C) in 2020 under alternative time policies. Error bars indicate one
standard deviation of simulation outcomes under bootstrapped model parameters.
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Supplementary Figure S7. State level COVID-19 death data (from 03/13/2020 to 01/31/2021), the sunrise/day-length (sd)
model fit and simulations of the sd model under alternative scenarios of DST observation. The MLE of model parameters
were obtained under a death rate (δ) of 1%. Figure descriptions are otherwise similar to Fig. 3C-F.
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Supplementary Figure S8. State level COVID-19 hospitalization data (from 03/13/2020 to 01/31/2021), the sunrise/day-length
(sd) model fit and simulations of the sd model under alternative scenarios of DST observation. The MLE of model parameters
were obtained under a hospitalization rate (η) of 2.6%. Figure descriptions are otherwise similar to Fig. 3C-F.
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Supplementary Figure S9. State level COVID-19 hospitalization data (from 03/13/2020 to 01/31/2021), the sunrise/day-length
(sd) model fit and simulations of the sd model under alternative scenarios of DST observation. The MLE of model parameters
were obtained under a death rate (η) of 5%. Figure descriptions are otherwise similar to Fig. 3C-F.
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Supplementary Figure S10. COVID-19 death data in 25 urban centers and the sunrise/day length (sd) model fit. Figure
descriptions are otherwise similar to Fig. 4.
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Supplementary Figure S11. Sunrise time in 25 cities at the estimated peak of daily
infections in the first wave of COVID-19. Time points are based on peak observed deaths in
each city between January 1., 2020 and October 1., 2020, with the time lag between peak
deaths and peak infections assumed to be 10 days. Bars indicate the range of possible sunrise
times in each city across the year. The vertical yellow bar shows the period of likely
susceptibility between sunrise times of 6am and 7am. Six cities from our full set were excluded:
Santiago, Delhi, Stockholm and Madrid were excluded because of missing data in early 2020
and Melbourne and San Diego were excluded because these cities did not experience a first
wave during the time period analysed.
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Supplementary Figure S12. COVID-19 mortality rate per 100,000 population in countries
with or without seasonal DST. Asian and African countries without seasonal DST have lower
mortality rates than in countries that do observe clock changes.
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