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Determinants of anti-PD1 response and resistance in clear cell renal cell carcinoma 

Summary 

Antigen recognition and T-cell mediated cytotoxicity in clear-cell renal cell carcinoma (ccRCC) remains 

incompletely understood. To address this knowledge gap, we analysed 115 multiregion tumour samples 

collected from 15 treatment-naïve patients pre- and post-nivolumab therapy, and at autopsy in three patients. 

We performed whole-exome sequencing, RNAseq, TCRseq, multiplex immunofluorescence and flow cytometry 

analyses and correlated with clinical response. We observed pre-treatment intratumoural TCR clonal 

expansions suggesting pre-existing immunity. Nivolumab maintained pre-treatment expanded, clustered TCR 

clones in responders, suggesting ongoing antigen-driven stimulation of T-cells. T-cells in responders were 

enriched for expanded TCF7
+
CD8

+
 T-cells and upregulated GZMK/B upon nivolumab-binding. By contrast, 

nivolumab promoted accumulation of new TCR clones in non-responders, replacing pre-treatment expanded 

clonotypes. In this dataset, mutational features did not correlate with response to nivolumab and human 

endogenous retrovirus expression correlated indirectly. Our data suggests that nivolumab potentiates clinical 

responses in ccRCC by binding pre-existing expanded CD8
+
 T-cells to enhance cytotoxicity.  

 

Keywords: clear cell renal cell carcinoma, nivolumab, immunotherapy, cytotoxicity, TCR clonal maintenance, 

TCR clonal replacement, human endogenous retrovirus, longitudinal sampling, multiregion sampling, autopsy 
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Determinants of anti-PD1 response and resistance in clear cell renal cell carcinoma 

Introduction 

Clear-cell renal cell carcinoma (ccRCC) is the most common histological subtype of kidney cancer
1
 with a rising 

global incidence
2
. Instances of spontaneous regression

3-5
, efficacy of interleukin-2

6, 7
 and immune checkpoint 

inhibitors (CPI)
8-11

 confirm ccRCC as an immunogenic tumour type, but the nature of the antigenic stimulus is 

unknown. ccRCC carries a modest tumour mutational burden (TMB) (median of 1.42 mutations per megabase 

(mut/mb))
12

, ten-fold lower than melanoma and comparable to immune ‘cold’ tumours
13

. In contrast to 

melanoma
14

, non-small cell lung cancer
15, 16

, bladder
17

, and colorectal cancers
18

, TMB does not associate with 

CPI response in ccRCC
19-21

. Kidney tumours are enriched for frameshift insertion and deletions (fsINDELs)
22

, 

which can generate novel open-reading frames triggering a large number of highly distinct neoantigens. 

However, fsINDEL burden has so far not been shown to predict benefit from CPI in patients with ccRCC
20, 21

, 

again in contrast to other tumour types
22, 23

. Mutations in PBRM1 are reported to be enriched in responders to 

CPI in ccRCC
19, 24, 25

, though this has not been observed consistently
20, 21, 26, 27

. 

Large-scale, pan-cancer transcriptional analyses have shown ccRCCs is amongst the most highly 

immune-infiltrated solid tumour types
1,

 
28

. However, in contrast to other cancers, immune infiltration 

correlates with poorer prognosis in ccRCC
29

. The baseline composition of the infiltrate has been linked to CPI 

benefit, with high T-cell/low myeloid infiltration and high B-cell abundance enriched in responders to 

atezolizumab (anti-PDL1)
20

 and nivolumab (anti-PD1)
30

, respectively. 

Intratumour heterogeneity (ITH) can impact therapy response in cancer through clonal selection of 

resistance mechanisms, loss of HLA heterozygosity, and loss of clonal neoantigens
31-33

. ITH is a frequent 

feature of ccRCC that associates with outcomes following surgery, but its impact on therapy response is 

unknown
34-36

. Furthermore, ITH complicates evaluation of prognostic and predictive biomarkers in all settings. 

ADAPTeR (NCT02446860) is a phase II, single-arm, open-label study of nivolumab in treatment-naive 

metastatic ccRCC. Patients underwent multiregional fresh tumour sampling of primary and/or metastatic sites 

at baseline, week-9, at surgery (if performed), and disease progression. Key aim of the study was to evaluate 

genomic and tumour immune microenvironment features, throughout therapy. Patients were co-recruited to 

TRACERx Renal (TRAcking Cancer Evolution through therapy[Rx]; NCT03226886), and the PEACE (Posthumous 

Evaluation of Advanced Cancer Environment; NCT03004755) studies to expand the spatial and temporal 

breadth of profiling. We present an integrated analysis of clinical features and whole-exome and RNA 

sequencing, TCR profiling and multiplex immunohistochemistry/immunofluorescence (mIHC/IF); and high 

dimensional flow cytometry across longitudinal, multiregion fresh tumour samples in this cohort (Figure 1A). 
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Results 

Patient characteristics and response to nivolumab 

15 patients were enrolled from October 2015 to June 2018. Demographic and clinical characteristics are 

shown in Table S1A. 13 (87%) patients had intermediate- or poor-prognostic risk disease (by International 

Metastatic RCC Database Consortium risk categorisation; IMDC) (STAR Methods)
37

.  At clinical datalock 

(December 2018), median follow up was 12.5 months. Six deaths occurred, all due to progressive disease. The 

median progression-free (PFS) and overall survival (OS) were 4.1 and 12.5 months, respectively. For 

translational analyses, we defined ‘responders’ as patients who had a partial response (PR) or stable disease 

(SD) as measured by Response Evaluation Criteria In Solid Tumours criteria (STAR Methods) for ≥6 months 

(five patients). ‘Non-responders’ were classified as patients with progressive disease (PD) within 6 months of 

enrolment regardless of best-response (ten patients). By these criteria, five patients (33%) had a PR, where 

one patient (ADR005) had short-lived PR (<6 months, non-responder). Six patients (40%) had SD, where one 

patient (ADR011) had durable response (>6 months SD, responder) (Figure S1A and Table S1A). Two patients 

underwent a cytoreductive nephrectomy during the course of the study. We observed no associations 

between age, sex, IMDC risk category, and presence of sarcomatoid/rhabdoid features (n=2) and response to 

nivolumab (Table S1A). Overall, these clinical outcomes data are consistent with a larger phase II (n=110) 

cohort study of first-line pembrolizumab in patients with mRCC
38

. 

 

Molecular features do not correlate with nivolumab response 

All patients underwent image-guided percutaneous tumour biopsies with additional archived and fresh 

samples collected via TRACERx Renal and PEACE studies. 15 patients had baseline samples, and 13 post-

treatment samples. In total, 115 tumour samples (fresh and archived) were available for translational analyses 

(Figure S1A for consort diagram; Supplemental Data Table 1 for sample characteristics). 81 fresh tumour 

samples and matched germline DNA underwent whole-exome sequencing (WES). Subsequently, 21 samples 

were excluded due to low tumour purity as expected with image-guided biopsies. 59 tumour samples from 13 

patients were of sufficient quality for downstream analyses (STAR Methods). 

Median sequencing depth was 199x (range 130-359x) (Supplemental Data Table 1). Neither pre-

treatment TMB (median 0.9 mut/mb; range 0.4-11.1), nor fsINDEL load (median 9; range 0-169) associated 

with response to nivolumab (Figure S1B). Reduction of nsSNVs and fsINDELs post-treatment compared to 

baseline has been referred to as “genomic contraction”
39

, and may reflect immune recognition of neoantigens 

and subsequent elimination of tumour cells under CPI. To explore the contribution of neoantigens to anti-PD1 

response, we asked whether mutations which have undergone genomic contraction post-treatment were 

enriched for mutations which encoded neoantigens (STAR Methods). We found no significant difference in 

contraction of neoantigen-encoding mutations compared to the remaining non-synonymous mutations (Figure 

S1C). 

Molecular features of this cohort were typical of ccRCC
1, 35

, including mutations in VHL (77%, and VHL 

methylation in additional 15%), PBRM1 (62%), SETD2 (38%), BAP1 (15%), and KDM5C (38%) (Figure 1B). 

Increased sensitivity of multiregion sampling revealed the presence of subclonal driver events in most 
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patients. Instances of composite mutations (two or more nonsynonymous somatic mutations in the same gene 

and tumour sample
40

) involving SETD2, KDM5C, and TSC2 were detected. There was no association between 

any mutations, regardless of their clonality, and response to nivolumab, including PBRM1 (P>0.05, Fisher’s 

exact test). Copy number landscape was also typical of ccRCC with clonal loss of 3p25.3 detected in all tumours 

and 9p21.3 and/or 14q31.1 loss observed in 12/13 patients, consistent with our previous findings in metastatic 

ccRCC
36

 (Figure 1B). In agreement with other studies, weighted genome instability index (wGII) as a global 

measure of chromosomal complexity was not predictive of nivolumab response (median 0.29, range 0.04-0.71; 

P=0.076) (Figure S1B; STAR Methods)
19, 20

. No driver SCNAs associated with response while loss of 10q23.31, 

previously reported to associate with benefit from nivolumab
19

, showed only a trend towards enrichment in 

responders (P=0.07, Fisher’s exact test). However, the small cohort size was likely statistically underpowered 

to robustly detect response associations of these mutational events. 

Intermetastatic heterogeneity can underpin differential therapy response
41-44

, which we evaluated 

through post-mortem sampling. ADR015 had stage IV disease at enrolment into ADAPTeR, including surgical 

bed recurrence, mixed lytic/sclerotic bone, and nodal disease. A tonsillar metastasis was resected pre-

treatment. PFS was 8.4 months under nivolumab (best response: PR), patient progressed with multiple brain 

metastases and died at 27.3 months after trial enrolment (Figure S2A). All metastatic deposits were sampled 

after death and whole exome sequenced. We found evidence of genetic divergence between disease sites 

which progressed (brain) and responded (nodal metastases) under nivolumab. Mutational profile of a thyroid 

metastasis incidentally found at autopsy reflected lesions which responded under treatment (Figures 1B and 

S2B). Significantly higher median TMB (10.8 mut/Mb) and fsINDEL load (166) was evident in the progressive 

brain and resected tonsillar metastases, consistent with a hypermutant genotypic background in these sites, 

compared with treatment-responsive disease sites (median TMB 1.3mut/Mb; fsINDEL load 8). Accordingly, we 

observed higher neoantigen load in brain and tonsillar metastases (Figure S2B). Excess mutations carried the 

signature of C>T at GpCpN trinucleotides (Signature 15) associated with defective DNA mismatch repair
13

. We 

observed a pathogenic mutation in MLH1
45

 with loss of heterozygosity (LOH; biallelic inactivation through 

canonical 3p loss), in the sites with excess TMB (STAR Methods), as well as a beta-2-microglobulin (B2M) 

mutation with LOH (biallelic inactivation through 15q loss) (Figure S2B; STAR Methods). Functional MLH1 

mutations result in mismatch repair-deficiency (MMRd) and high immunogenicity driven by accumulation of 

neoantigens across MMRd tumours
46

. B2M encodes a protein subunit integral for major histocompatibility 

complex class I (MHC-I) endogenous peptide presentation
47

. Taken together, our findings suggest that in this 

case somatic loss of MLH1 led to accumulation of an uncharacteristically high number of neoantigens in the 

context of ccRCC, and subsequent loss of antigen presentation via B2M and immune escape, as observed 

during nivolumab treatment. MMRd in ccRCC has been reported but is rare
48

, and B2M loss as a mechanism of 

immunotherapy resistance
49

 has not to date been described in ccRCC. 

 

Majority of HERVs detected in ccRCC tumour samples are expressed by immune cells 

In light of reports associating intratumoural cytotoxic T-cells
28

 or response to nivolumab
50-52

 with expression of 

human endogenous retroviruses (HERVs) in ccRCC, we examined previously published HERV signatures in the 
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ADAPTeR cohort. We performed RNAseq on 60 tumour samples, 33 pre-treatment and 27 post-treatment 

(week-9), representing 14 patients (Figures S1A; STAR Methods). 

Two of the previous reports of HERV associations
28, 50

  used 66 HERV loci annotated by Mayer et al.
53

, 

and another study
51

  selected 3,173 HERV loci annotated by Vargiu et al.
54

. We mapped these loci to a custom 

repeat region annotation which we described previously
55

 (STAR Methods). First, we observed discrepancies 

between our HERV loci annotations with those in Mayer et al. and/or Vargiu et al., including HERV loci that 

were considered as a single integration in our annotation that appeared fragmented in the Mayer et al. and/or 

Vargiu et al. annotations, and vice versa (Supplemental Data Table 2). Further, we found HERV annotations in 

both Mayer et al. and Vargiu et al. that were either incomplete or extended beyond the boundaries of 

integrations to include exons of adjacent genes belonging to separate transcription units (Figure S3A). We 

note that these discrepancies affected HERV integrations previously associated with cytotoxic T-cell presence 

or ccRCC response to immunotherapy, such as ERV3-2 and ERVK-10
28,51

 (Figure S3A). The previously annotated 

66 and 3,173 HERVs finally corresponded to 7,989 repeat annotations by our method
55

. 

We evaluated previously reported HERV signatures
28, 50, 51, 56

 in our cohort and did not observe a 

difference between responders and non-responders, nor significant change in their expression levels following 

nivolumab (Figure 2A). Further, we found that the HERVs with the highest expression and, therefore, strongest 

contribution to previously described signatures
28, 50, 51, 56

, such as ERV3-2 and ERVK-10, were not specific to 

ccRCC, but were highly expressed in purified immune cell subsets (Figure S3B; STAR Methods). Therefore, it 

seems likely that their reported association with response to CPI is underpinned by immune infiltration (which 

in itself is linked to response
20, 21

) and high HERV expression in immune cells. 

Next, to examine a possible correlation with HERVs that were ccRCC-specific, we measured 

expression of 570 transcripts previously identified through de novo transcriptome assembly to overlap with 

LTR elements and with high specificity to ccRCC
57

 (STAR Methods). Most ccRCC-specific LTR elements were 

expressed (≥0.5 TPM) in the majority of samples in this study and 12 ccRCC-specific LTR elements, from nine 

distinct loci, were differentially expressed (≥2-fold change, q≤0.05) between response groups or their 

expression levels were significantly altered following nivolumab (Figure 2B). These transcripts included 

members of the HERV-E group (ERVE-4
53

 and HERV4700
51

) that were previously associated with 

immunotherapy response in ccRCC
51-53

. However, we found that these transcripts were expressed 

predominantly in pre-treatment non-responders (Figure 2B). Tumour purity in pre-treatment samples was 

significantly higher in non-responders compared to responders (reflecting lower levels of immune infiltration) 

(Figure 2C). Consequently, the level of HERV expression correlated with tumour purity (Figure 2D), explaining 

higher expression in non-responders. Post-treatment, we observed that the expression of ccRCC-specific LTR 

transcripts in non-responders normalised relative to responders (Figure 2D). A possible explanation is that 

nivolumab-induced immune infiltration lowering tumour purity, which in turns lowered the abundance of 

tumour-specific LTR transcripts in the biopsies. 

In summary, although we did observe correlations between expression of certain HERVs and response 

to nivolumab in our cohort, as described in earlier studies
28, 50, 51, 56

, we further found that these correlations 

were indirect. Firstly, certain HERVs, such as ERV3-2 and ERVK-10, were associated with immunotherapy 
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response in ccRCC owing to their high expression in immune cells, rather than tumour cells. Secondly, 

abundance of ccRCC-specific HERV transcripts, such as ERVE-4 and HERV4700, reflected tumour purity and 

correlated with response to immunotherapy indirectly as the least infiltrated tumours responded the least to 

therapy. 

 

Nivolumab induces T-cell activation and upregulation of TCR signalling in responders 

Next, we evaluated the composition of the immune infiltrate in the bulk transcriptome of tumour samples pre- 

and post-nivolumab. We performed differential gene expression, gene set enrichment analysis (GSEA), and 

immune subset deconvolution
58 

(STAR Methods). Immune infiltration and cytotoxicity signatures were 

observed in all tumours and all time points, but their expression was significantly higher in responders 

compared to non-responders (P=0.031 and P=0.017, respectively), and higher post-treatment compared to 

pre-treatment in both groups (Figures 3A-3D). Treatment-induced enrichment of “immune-activation” and the 

“TCR signalling” pathways was evident in responders but not in non-responders (Figures 3E and 3F). 

Specifically, using the Danaher signature
58

, the T-cell score expression was significantly higher in responders at 

pre- and post-treatment timepoints (P=0.019 and P=0.038 respectively) (Figure S4). We also observe a trend 

towards higher B-cell expression scores in responders pre-treatment, but not post-treatment (Figure S4). 

Finally, we evaluated the association between previously published associations between gene 

expression signatures and CPI response in metastatic ccRCC (STAR Methods). IMmotion150 study Teff
high

 

signature
20

, but not Teff
high

/Myeloid
low

 signature was enriched in responders compared to non-responders 

(P=0.042 and P=0.038 at pre- and post-treatment timepoints, respectively) (Figure S4). The 26-gene Javelin101 

signature
21

 was also enriched in responders compared to non-responders (P=0.028 and P=0.038 at pre- and 

post-treatment timepoints, respectively). Individual marker genes for T-cell infiltration (CD3E, CD8A), 

activation (GZMB), and TCF7 expression (reported as predictive of CPI response
52

), were consistently higher in 

responders compared to non-responders, particularly post-treatment (Figure S4). Overall, previously published 

signatures of response validate in our cohort in spite of inherent differences in treatment regimens, and tissue 

type used for transcriptome profiling. 

 

CD8
+

 T-cells upregulate GZMB following nivolumab in responders 

Following antigen stimulation CD8
+
 T-cells undergo cytotoxic differentiation in order to mediate tumour cell 

killing. To investigate the phenotype of the T-cells in the tumours under study, we performed multiplex 

immunohistochemistry (mIHC) and immunofluorescence (mIF) on 61 formalin-fixed paraffin-embedded 

tumour samples (41 pre-treatment; 20 post-treatment) from 14 patients (Figure S1A). We applied bespoke 

antibody panels (3 markers for mIHC, 6 markers for mIF) to quantify and characterise infiltrating immune cells 

(STAR Methods). 

We observed no difference in T-cell number (CD8
+
, CD4

+
, CD8

+
CD4

+
, or Tregs), or CD8

+
/Treg and 

CD4
+
effector/Treg between response groups, either pre- or post-treatment (Figures 4A and S5A-C). Total PD1 

expression did not differ in the two groups (Figures 4B). Overall quantified GZMB expression (P=0.024) and 

GZMB
 
expression on CD8

+
 T-cells (P=0.047) were significantly higher in responders compared to non-
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responders post-treatment, but not pre-treatment (Figure 4B). Where paired pre- and post-treatment tumour 

samples were available, we observed a trend for upregulation of GZMB expression on CD8
+
 T-cells in 

responders but not in non-responders, following nivolumab (Figure S5D). CD163
+
 myeloid cell level alone or as 

a ratio to T-cells (CD3
+
/CD163

+
 and CD8

+
/CD163

+
) did not associate with response (Figures 4A and S5C). 

Compared to non-responders we observed significantly more B-cells in responders pre- but not post-

treatment (P=0.02 and 0.96, respectively) (Figures 4A). There were no differences in the number of plasma 

cells between response groups (P=0.23 and 0.54 pre- and post-treatment, respectively) (Figures 4A and S5A). 

We note a certain number of discrepancies in our observations made from bulk RNAseq and mIHC/IF 

data. For example, increased B-cells and higher GZMB expression in responders evident by mIHC/mIF were 

non-significant trends by RNAseq (Figure S4), and the opposite trend was observed for CD4
+
/8

+
 T-cell numbers 

and PD-1 expression. These findings likely reflect the known weak correlation between protein and mRNA 

levels for many genes, as well as sensitivity limitations of immune deconvolution and classification by bulk 

RNAseq
60  

as compared to the single-cell resolution afforded by histology-based methods. 

 

Maintenance of TCR clonal expansion and clustering support ongoing antigen-driven stimulation of T-cells in 

responders 

Next, we sequenced the β-chain TCR repertoires from 64 tumour and 29 peripheral blood mononuclear cell 

(PBMCs) samples from 14 patients pre- and post-treatment (Figure S1A; STAR Methods). To mitigate against 

effects of intratumour TCR heterogeneity
61-63

 (Figures S6A and S6B), we pooled TCR sequences from multiple 

tumour regions for each patient at different timepoints. 

Cohort-wide median number of unique β-chain transcripts in tumour and blood samples was 3,644 

and 21,370, respectively. For each pooled sample, we quantified TCR diversity through a TCR repertoire 

clonality score (low scores correlate with more diverse repertoire and high scores with dominant clones) (STAR 

Methods). TCR clonality was overall higher in tumour samples compared to PBMCs (Figure 5A), potentially 

reflecting intratumoural expansion of specific TCR clones. T-cell clonal contraction and expansion was not 

significantly different between tumour and PBMCs, irrespective of response (Figures 5B and S6C,E). 

Contraction and expansion of CDR3s present in pre- and post-treatment samples was not associated with 

response. This was true for tumour and PBMC samples (Figures 5C and S6D). To examine the maintenance of 

expanded clonotypes, we computed a cosine score which reflects degree of TCR repertoire similarity 

comparing pre- and post-treatment timepoints (STAR Methods). Compared to non-responders, intratumoural, 

but not PBMC TCR repertoire similarity was significantly greater in responders (P=0.024, Figures 5D and S6F). 

In responders, intratumoural clones expanded pre-treatment were more likely to be maintained compared to 

non-responders, where they were frequently replaced by new clones (P=0.024, Figures 5E and S7A).   

Antigen specific T-cell responses are often associated with the presence of clusters of TCRs with 

similar CDR3 peptide binding sequences
64, 65

. To investigate if maintained expansion of TCR clonotypes is 

driven by a shared and persistent antigen, we performed clonotype clustering analysis (STAR Methods). In 

responders, expanded TCR clones exhibited a trend towards increased clustering of similar CDR3 sequences (or 

‘cluster structure’) compared to non-responders both pre- and post-treatment (P=0.06 and 0.07, respectively) 
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(Figure 5F and S7F). Expanded-maintained TCRs displayed significantly more cluster structure than expanded-

replaced TCRs (P=0.008, Figure S7C-E). Together, these data suggest that in responders TCR clonotypes 

expanded due to a shared antigen and were maintained presumably due to persistent antigen stimulation. 

Finally, we performed TCRseq in a patient who underwent post-mortem sampling (ADR005), allowing 

greater resolution of spatial and temporal dynamics of TCR clonotypes and insight into surveillance of 

metastatic lesions at the time of death. While primary tumour and lung metastases in this case maintained a 

partial response to nivolumab until death, new brain, bone, and thoraco-nodal metastases emerged on 

nivolumab, presenting sites of immune-escape (Figure S2C). Five TCR clones that were expanded pre-

nivolumab were maintained post-treatment at week-9. Three of these five clones remained expanded in non-

progressive disease sites (lung metastasis and primary tumour), but none were detected in the sites of 

progression (brain, bone and thoraco-nodal metastases) (Figures S2D and S2F). 

 

Responder CD8
+

 T-cells express TCF7 

TCR stimulation drives T-cell differentiation states which impact effector function
66-68 

and response to CPI
69

. 

We derived single-cell suspensions of tumour-infiltrating lymphocytes from six spatially distinct regions of the 

nephrectomy specimen and analysed CD8
+
 T-cell differentiation states via high dimensional flow cytometry 

(STAR Methods). Due to large amounts of fresh tissue required, this was only feasible in the patients who 

underwent cytoreductive nephrectomies (ADR013, responder; ADR001, non-responder). 

TCF7 is associated with progenitor-like phenotype and preserved effector function of dysfunctional T-

cells during prolonged antigen stimulation
67, 70, 71

. A higher frequency of CD8
+
 T-cells expressed TCF7 in the 

responder ADR013 (27.5%) compared to non-responder ADR001 (4.64%). TOX expression is linked with 

dysfunction, but also appears critical for epigenetic programming of progenitor-like CD8
+
 T-cell towards 

effector function
72-75

. More TCF7
+
TOX

+
CD8

+
 T-cells were detected in ADR013 compared to ADR001 (4.56% vs. 

0.96%, respectively) (Figures 6A-C). CD39 associates with antigen stimulation and tumour reactivity
76, 77

. CD39 

expression was higher in ADR013 (35.7%) compared to ADR001 (2.29%) (Figures 6A-C). Expressed markers of 

dysfunction
78, 79 

in ADR013 and ADR001 were: PD-1 (29.2% and 2.25%), TIM3 (13.1% and 1.35%), and CD38 

(33.9% and 19.7%), respectively (Figures 6B-C). The markers differentiating ADR013 from ADR001 were 

reflected in the bulk RNAseq cohort-level data, which showed a trend towards higher expression of TCF7, 

CD39, and TOX in responders compared to non-responders (P=0.11, 0.35, and 0.07, respectively) (Figure S4). 

 

Expanded CD8
+

 T-cells are drug-binding and cytotoxic during nivolumab induced responses 

Next, we asked if characterising intratumoural, nivolumab-bound cells and comparing responder and non-

responder populations would provide further resolution on CD8
+
 T-cells which exhibit features of antigen 

engagement. IgG4 has previously been shown as a robust surrogate marker for PD-1 receptor occupancy by 

anti-PD1 antibodies
80, 81

. We established the technical feasibility of this method in a competition assay where 

IgG4 identified T-cells bound to pembrolizumab (anti-PD1 antibody), consistent with prior reports 

(Supplemental Data Figure 1; STAR Methods). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2021. ; https://doi.org/10.1101/2021.03.19.21253661doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.19.21253661
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

We performed flow cytometry analysis on IgG4
+
CD8

+
 T-cells from ADR0013 (responder) and ADR001 

(non-responder). Expression of the following markers were all higher in ADR013 compared to ADR001: GZMB 

(38.9% vs 8.75%), TCF7 (19.5% and 2.17%), CD39 (54.6% vs 3.25%), TOX (14.5% vs 4.10%), and TIM3 (35.4% vs 

3.52%), respectively (Figure 6C). This suggested drug-bound CD8
+
 T-cells in the responder were cytotoxic and 

progenitor-like, despite upregulating markers of dysfunction. We detected unbound PD-1 on IgG
+
CD8

+
 T-cells 

despite expected receptor occupancy by nivolumab, higher in ADR013 (20.9%) than ADR001 (0.78%) (Figure 

6C). Detection of unbound PD-1 on IgG4
+
CD8

+
 T-cells possibly indicates further PD-1 upregulation after drug-

binding and TCR stimulation, as a marker of activation
82, 83

, rather than incomplete receptor-drug occupancy in 

this case. 

Next, we performed paired single-cell RNA and TCRseq (scRNA/TCRseq), on IgG4
+
 and IgG4

-
 CD3

+
 T-

cells (STAR Methods). The scRNA datasets were annotated with their corresponding VDJ information, merged, 

and followed by UMAP projection. Cells were classed as CD8 (CD8
+
CD4

-
FOXP3

-
), CD4 (CD8

-
CD4

+
FOXP3

-
) and 

Treg (CD8
-
FOXP3

+
) (Figure S9A; STAR Methods). We observed similar levels of CD8

+
 T-cells, but lower 

proportions of Tregs in ADR013 (responder) compared with ADR001 (Figure S8B). Differential gene enrichment 

and gene set enrichment analyses of IgG4
+
CD8

+
 T-cells showed upregulated pro-inflammatory cyto/chemokine 

genes and T-cell activation pathways in both patients, indicating drug-binding CD8
+ 

cells had similar 

transcriptional characteristics irrespective of clinical response (Figures 7A and S9C). TCRseq revealed 

hyperexpanded CD8
+
 T-cells (defined as 200-1000 clones with the same CDR3 sequence) in ADR013 but not 

ADR001, where expansions were restricted to <200 clones (Figures 7B and 7C).  We observed that the more 

pronounced the clonal expansion, the higher the proportion of IgG4
+
 compared to IgG4

- 
CD8+ T-cells, 

suggesting drug-binding led to clonal expansion (Figure 7D). Expanded IgG4
+
CD8

+
 clones were characterised by 

cytotoxic activation in ADR013, including higher expression of GZMK than ADR001 (Figures 7E and S9D). 

Analysis with a portfolio of publicly available gene signatures for T-cell states demonstrated expression of 

signatures associated with T-cell activation / dysfunction in drug-bound cells from both patients, higher in 

ADR013 than AD001, consistent with increased TCR stimulation in the responder and in drug-bound cells 

(Figure S9E; STAR Methods). scRNAseq data also confirmed flow cytometry findings, with higher expression of 

GZMB, TCF7, TIM3, and CD39 expression on IgG4
+
CD8

+
 T-cells in ADR013 compared to ADR001 (Supplemental 

Data Figure 2). 

Next, combining bulk-TCRseq and scTCRseq datasets, we asked if post-treatment expanded clones in 

each patient 1) displayed cluster structure (shared antigen recognition); 2) if clustered clones were drug-

bound; and 3) if clustered, drug-bound clones were ‘novel’ or from a ‘pre-existing’ population. First, we 

constructed cluster networks for ADR013 and ADR001 according to CDR3 amino acid triplet sharing (STAR 

Methods). Then, we defined each TCR clone within the networks by drug-binding status (IgG4
+
 or IgG4

-
). 

Finally, we used pre/post-treatment bulk-TCRseq data for ADR013 and ADR001 to derive ‘novel’ or ‘pre-

existing’ labels for each clone which was captured by scTCRseq. The results were scTCR cluster networks, with 

expanded clones annotated for drug-binding and ‘novel’ versus ‘pre-existing’ status, for each patient (Figure 

7F). In ADR013 (responder), expanded clones were clustered and mostly (89%) drug-bound. These clustered 

TCR clusters contained both novel and pre-existing TCRs (Figure 7F). By contrast, the salient finding in ADR001 
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(non-responder) was an overall paucity of expanded or clustered TCRs, either novel or pre-existing, consistent 

with the post-treatment bulk-level data (Figure 7F). This limited any inference on the relationship between 

clustering and drug-binding at single-cell level in this non-responder patient. 

Overall, while the scRNA/TCRseq data were derived from only two patients, not only were the 

findings in agreement with the bulk, cohort-level data, showing maintenance and reinvigoration of pre-

existing, progenitor-activated CD8
+
 T-cells underpinned nivolumab response; but these data provided direct 

evidence that intratumoural T-cells in a responding patient were expanded, PD1 expressing and nivolumab-

binding, and had a more activated phenotype. These features were not observed in T-cells from a non-

responder (Figure 8). 
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Discussion 

We present a multi-omic analysis of advanced stage ccRCC through treatment which sheds light on the 

mediators of anti-PD1 response and resistance, and in particular the nature of the CD8
+
 T-cells that contribute 

to anti-tumour immunity. 

Our WES data showed that no single mutation, SCNA, nor TMB and INDEL load associated with 

response in accordance with prior studies
19-21, 27

, although the question about the contribution of mutations or 

SCNA events to anti-tumour immunity in ccRCC remains incompletely understood. A notable exception was a 

case with excessively high TMB mediated by MMRd where immune editing was evident with subsequent 

immune escape via loss of B2M. Decreased MHC-I expression associates with reduced PFS with avelumab plus 

axitinib in ccRCC
21

, but the frequency and impact of loss of antigen presentation remains unclear. With respect 

to HERV expression signatures, we show that HERVs, such as ERV3-2 and ERVK-10, most frequently associated 

with T-cell infiltration in bulk tumour biopsies
28, 50, 51, 56

 are highly expressed in immune cells, which offers a 

more parsimonious explanation for previously described associations. However, we confirmed ERVE-4 and 

HERV4700 are ccRCC-specific consistent with studies demonstrating direct T-cell reactivity to these specific 

HERVs
56

. While they did not associate with nivolumab response in this cohort, we note that T-cell responses 

targeting these HERVs are HLA-A*02 restricted
51, 84

 and, consequently, a positive correlation with the outcome 

of immunotherapy would only be expected in patients with this HLA allele. 

While the source of antigen(s) stimulus in ccRCC remains elusive, their existence is supported by our 

findings of a population of pre-existing, expanded CD8
+
 T-cells in responders. Moreover, our data show the 

quality of T-cells were comparable between patients at baseline, but the ability of expanded CD8
+
 T-cells to be 

maintained underscores response to nivolumab in ccRCC. We show that on-treatment change in GZMB 

expression is a dynamic biomarker of nivolumab in ccRCC, which has also demonstrated predictive utility for 

neoadjuvant avelumab in bladder cancer
85

. Increase in TCF7
+
CD8

+
 T-cells and B-cells also correlated with 

response in our cohort. We note a prior report has shown TCF7
+
CD8

+
 T-cell can be activated in vitro, and could 

maintain a progenitor-like state when located within antigen presentation niches in ccRCC
85

. Higher CD8
+
 T-cell 

density at tumour invasive margin has been reported to associate with longer PFS with avelumab plus axitinib 

in ccRCC
21

. As such, further work to characterise the interaction between co-located B- and T-cells, especially 

at tumour margins will be critical. 

There are limitations to our study. First, the small number of patients may limit data generalisability. 

However, our scope for discovery was afforded by a broadened sampling frame (multiregion and multi-

metastatic site biopsies) and longitudinally tracking of molecular and tumour immune microenvironment 

(TIME) changes under therapy. Only two patient samples underwent multiparameter flow cytometry and 

scRNA/TCRseq analyses in our study. While this facilitated high-resolution cellular characterisation, spatial 

relationship with other immune cells was not evaluable. Looking forward, spatial transcriptomic profiling 

techniques with single-cell sensitivity
87, 88

 will be valuable in studying TIME evolution in ccRCC. 

In conclusion, in this prospective study we reveal features of anti-PD1 response and resistance in 

ccRCC. We identified antigen-specific T-cells with cytotoxic features in ccRCC, which hold promise for 

development of adoptive cellular therapy for this cancer
89

. While the treatment landscape has evolved to 
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include combination therapies
11

, this dissection of immune changes under nivolumab provides the foundation 

for understanding response to combination therapies. Finally, our multi-omic analysis framework provides a 

template and highlights challenges for future immuno-oncology biomarker studies in ccRCC. 
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Main Figure Legends 

Figure 1. Experimental workflow, patients and samples overview, and genomic characteristics of the 

ADAPTeR cohort 

(A) Overview of experimental workflow. Number (n) of patients contributing to sample collection at different 

timepoints are shown. (B) Heatmap of WES analysis demonstrating TMB, INDEL burden, and somatic driver 

alterations annotated by pre/post-treatment, tumour site, IMDC risk category, and nivolumab response. 

Composite mutations are annotated with dual colours. Complex mutations in ADR002: PBRM1 frameshift 

insertion chr3:52584573:->T and non-frameshift deletion chr3:52584576:TAT>-; TP53 missense mutation 

chr17:7572969:A>T and frameshift insertion chr3:7572962:->CT. * (Asterix) denotes two distinct fsINDEL 

mutations in one tumour sample in ADR013. 

 

Figure 2. Expression of human endogenous viruses (HERVs) and LTR-overlapping transcripts in ccRCC 

according to tumour purity 

(A) Hierarchical clustering patient samples according to the relative expression of HERVs previously associated 

with cytotoxic T-cell presence, response to immunotherapy or the provision of antigenic epitopes. (B) 

Hierarchical clustering patient samples according to the 12 LTR-overlapping transcripts that were differentially 

expressed (≥2-fold change, q≤0.05) between responders and non-responders or affected by nivolumab. (C) 

Comparisons of tumour purity between non-responders and responders. Per-sample values are represented. 

Median values are shown. ****P<0.0001, ***P=0.001; Mann-Whitney U test. (D) Distribution plot of 

significant Spearman's rank-order correlation between tumour purity and transcript per million (TPM) 

expression of the 12 HERVs differentially expressed between responders and non-responders. NR - non-

responders; R - responders 

 

Figure 3. GSEA and immune deconvolution by RNAseq shows higher levels of immune infiltration and 

activation in responders compared to non-responders under nivolumab  

(A) Transcripts differentially regulated Pre-treatment between responders and non-responders (n=33 samples, 

14 patients, negative binomial Wald test, Benjamini–Hochberg corrected P values). 3,382 transcripts were 

differentially regulated (FDR<0.05), the ones that overlap with the Danaher immune score gene list are 

labelled. (B) Heatmap showing the relative expression (z scores) of genes from 8 Danaher immune modules in 

Pre-treatment samples. (C) Transcripts differentially regulated post-treatment between responders and non-

responders (n=27 samples, 10 patients, negative binomial Wald test, Benjamini–Hochberg corrected P values). 

7,975 transcripts were differentially regulated (FDR<0.05), the ones that overlap with the Danaher immune 

score gene list are labelled. (D) Heatmap showing the relative expression (z scores) of genes from 8 Danaher 

immune modules in post-treatment samples. (E) GOBP pathway analysis of genes preferentially upregulated 

and downregulated pre-treatment in responders, Overlap (n), number of significant genes from a pathway 

(hypergeometric test). (F) GOBP pathway analysis of genes preferentially upregulated and downregulated 

post-treatment in responders, Overlap (n), number of significant genes from a pathway (hypergeometric test). 
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Figure 4. Quantification and immunophenotyping of pre- and post-treatment infiltrating immune cells by 

IHC and mIF  

(A) Comparison of T-cell subset (out of total T-cells), CD163
+
 myeloid cells, B-cell and plasma cell infiltration in 

treatment naïve samples in responders (n=5) and non-responders (n=9) is shown on the left. On the right is the 

ratio between CD3 (total T-cells) and CD163 myeloids cells and CD8 and CD163 cells at baseline. B-cell and 

plasma cell scoring was done by using immunohistochemistry. Other markers were scored by using IF. IHC 

images of representative responder and non-responder patients pre-treatment showing B-cell (blue), PD-1
+
 

cells (yellow) and plasma cells (magenta) infiltration. (B) Level of overall GZMB, GZMB
+
CD8

+
, and overall PD-1 

expression in responders and non-responders in treatment naïve and on treatment samples is shown. PD-1 

staining was performed with immunohistochemistry. All other markers were stained with IF. (C) mIF images 

showing GZMB
+
CD8

+
 cells in a representative responder and non-responder patient at baseline and on 

Nivolumab treatment. Median values were used for each patient and a two-sided Mann-Whitney U statistical 

test was used for the analysis. 

 

Figure 5. TCR sequencing demonstrates maintained clonal expansion through persistent antigenic 

stimulation associate with nivolumab response  

(A) The intratumoural and peripheral TCR repertoire clonality score is shown for each patient at each 

timepoint. (B) Correlated clone sizes in tumour samples. Scatter plots of tumour clone size after treatment and 

before treatment are shown for all patients. Clones are colored by expansion/contraction status (STAR 

Methods). (C) The intratumoural TCR repertoire clonality score pre-treatment and on-treatment is shown for 

each patient. Patients are split between responders and non-responders. Mixed-effect model p-value shown. 

(D) The intratumoural cosine score between pre-treatment and on-treatment is shown for each patient (n=12). 

Patients are split between responders and non-responders. Responding patients exhibit greater cosine score, 

with the two-sided Mann–Whitney test P value shown. (E) The frequency distribution of the intratumoural 

expanded TCRs pre-treatment (red circles; n = 469 individual TCRs combined from 12 patients) and post-

treatment (blue circles). Only TCRs that were detected post-treatment were included. (F) The clustering 

algorithm was run on all patients, and the pre-treatment normalised number of clusters for the networks 

containing expanded sequences is shown. Two-sided Mann–Whitney test P value shown; n=14 patients. 

 

Figure 6. Flow cytometry-based analysis of ADR013 (responder) and ADR001 (non-responder) evaluating 

post-treatment total and nivolumab-bound CD8
+

 T-cells  

(A) Expression of T cell differentiation focused markers on CD8
+
 tumour infiltrating lymphocytes in a 

representative patient who had ≤6 months response to Nivolumab treatment (ADR001_T tumour tissue) and a 

representative patient who had had ≥6 months response to Nivolumab treatment (ADR013_T tumour tissue 

and ADR013_N tumour adjacent normal kidney tissue) is shown in the heatmap. Relative expression level of 

each heatmap cluster for each sample is shown in the percentage bar graph and UMAP. 920 CD8
+
 cells were 

used per sample for the analysis. (B) Expression of T cell checkpoint focused markers on CD8
+
 tumour 

infiltrating lymphocytes in a representative responder and a non-responder patient is shown in the heatmap. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2021. ; https://doi.org/10.1101/2021.03.19.21253661doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.19.21253661
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 

Relative expression level of each heatmap cluster in each sample is shown in the percentage bar graph and 

UMAP. 990 CD8
+
 cells were used per sample. (C) FACS plots show the co-expression of markers on CD8

+
 and 

IgG4
+
CD8 cells in ADR001_T tumour, ADR013_T tumour tissue and ADR013_N tumour-adjacent normal kidney 

tissue.  

 

Figure 7. Nivolumab binding correlates with upregulation of T-cell activation genes and clones expanded 

through persistent antigenic stimulation 

(A) GOBP pathway analysis of genes preferentially upregulated in drug bound CD8 cells in ADR001 (non-

responder) and ADR013 (responder), circle size indicative of number of genes overlapping with GOBP term. (B) 

UMAP of scRNA Seq data from non-responder and responder coloured by frequency of clone. (C) Clonal 

proportion plot of CD8, CD4 effector and Treg compartments in non-responder and responder. (D) Proportion 

of cells in each expansion class which are Nivolumab bound or unbound. (E) Heatmaps showing top genes 

which positively correlated (Pearson’s correlation, CD8
+
 cells only) with TCR expansion in the responder. (F) 

Representative network diagrams of post-treatment intratumoural CDR3 β-chain sequences for ADR001 and 

ADR013. Clustering was performed within the bulk TCR-seq data around expanded intratumoural TCRs, 

subdivided between clones that were expanded in the post-treatment repertoire exclusively (blue circles) and 

clones that were also expanded Pre-treatment (orange circles). The network shows clusters for which at least 

one CDR3 was also detected in the scTCR repertoire. IgG4 negative clones that were detected in the scTCR 

repertoire but not expanded in the bulk TCR repertoire and are represented (yellow circle). The network was 

then split between clones that were mapping to a majority of IgG4 negative cells (top panel) or a majority of 

IgG4 positive cells (bottom panel) in the single-cell data. Clustering network derived from bulk post-treatment 

tissue (grey circles) as also shown in Figure S7G. 

 

Figure 8. Longitudinal profiling by bulk and single-cell RNA/TCRseq reveal dynamic immune correlates of 

response and resistance to nivolumab 

(1) Clonally expanded CD8
+
 T-cells pre-treatment in ADR013 (responder). TCR clonotypes are highly similar.  (2) 

Maintenance of pre-existing clonally expanded and expansion of novel CD8
+
 T-cells under nivolumab. Drug-

binding activates tumour-specific CD8
+
 T-cells during therapy response. (3) Limited clonal expansion of CD8

+
 T-

cells pre-treatment in ADR001 (non-responder). TCR repertoire clonality is limited. (4) Clonal replacement of 

expanded CD8
+
 T-cells under nivolumab. Drug-binding occurs on non-tumour specific CD8

+
 T-cells and tumour 

progression ensues. 
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STAR METHODS 

Key resources table in separate files 

 

RESOURCE AVAILABILITY 

Lead Contact 

Further information and requests for resources and reagents should be directed to and will be fulfilled by the 

Lead Contact, Samra Turajlic (samra.turajlic@crick.ac.uk). 

 

Materials Availability 

This`study did not generate new unique reagents. 

 

Data and code availability 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Clinical studies 

ADAPTeR (NCT02446860) is a single-arm, open-label, phase 2 study of nivolumab therapy as pre-operative 

therapy in metastatic ccRCC. Planned interim analysis took place after six months after the last patient 

enrolled had their first Response Evaluation Criteria in Solid Tumours (RECIST version 1.1) defined objective 

response assessment. ADAPTeR was initially approved by NRES Committee London Fulham on 01/12/2014. 

ADAPTeR is performed in accordance with the ethical principles in the Declaration of Helsinki, Good Clinical 

Practice and applicable regulatory requirements.  

  

Nivolumab was administered at a dose of 3mg per kilogram of body weight as a 60-minute intravenous 

infusion every 2-weeks. Eligible patients were 18 years of age or older, had histologic confirmation of 

advanced or metastatic renal-cell carcinoma (RCC) with predominantly clear cell component with at least one 

site of disease outside the kidney measurable according to the RECIST version 1.1, with no prior systemic 

therapy for ccRCC. All patients had an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 

1. Key exclusion criteria were need for immediate nephrectomy, any active, known or suspected autoimmune 

disease or another condition requiring systemic treatment with either corticosteroids (>10mg daily 

prednisolone equivalent) or other immunosuppressive medications within 14-days of study drug 

administration (excluding vitiligo, Type 1 diabetes mellitus, residual hypothyroidism due to autoimmune 

condition only requiring hormone replacement, psoriasis not requiring systemic treatment or conditions not 

expected to recur in the absence of an external trigger). During the course of the study, inclusion expanded to 

those who have had a prior nephrectomy but are suitable for on treatment biopsies. The prognostic factors 

assessed for the risk categorisation are as per the published IMDC criteria
37

: time to systemic therapy (<1 

year), performance status, anaemia, hypercalcaemia, neutrophilia and thrombocytosis. Presence of zero 

(favourable-risk), one (intermediate-risk), and two or three (poor-risk) factors provides the categorisation. 
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The primary endpoint was the safety profile of nivolumab given pre- and post-operatively to patients with 

metastatic ccRCC undergoing nephrectomy. Secondary endpoints were overall response rate (ORR), 

progression free survival (PFS), and overall survival (OS). Exploratory endpoints pertain to biomarker analyses. 

Patients deemed clinically suitable for nephrectomy at baseline were scheduled for surgery after the fourth 

cycle of treatment. Patients not deemed clinically suitable for nephrectomy at baseline would undergo surgery 

if an excellent clinical response is observed and if surgery was clinically appropriate. Nivolumab treatment was 

recommenced post-operatively upon sufficient recovery, and until disease progression. Patients who remained 

clinically unsuitable for nephrectomy continued nivolumab treatment until disease progression.  

  

For translational study sample collection, baseline tumour biopsy via appropriate guidance (ultrasound or 

computer tomography [CT]) at least 3 days and up to 14 days prior to starting nivolumab was obtained. 

Tumour multiple regions of nephrectomy specimen were sampled, as well as image guided biopsy of 

regressing lesions or at disease progression either at site of progression or, if not possible, percutaneous 

primary renal tumour biopsy, prior to commencement of any subsequent treatment. Blood samples were 

collected at each tumour sampling timepoint.  

 

Autopsy samples from ADR001, ADR005, and ADR015 were obtained through the PEACE Study (NIHR 18422; 

NCT03004755), where samples are harvested within ∼48 hours from death. All patients were co-recruited to 

the TRACERx Renal study (NCT03226886; see secondary author list for the full list of TRACERx Renal 

consortium investigators). Patient and sample metadata (i.e. age a diagnosis, sex, clinical response, biopsy site) 

are provided as Table S1 and Supplemental Data Table 1. All the patients provided written informed consent. 

The protocols, amendments and informed consent forms were approved by the institutional review board or 

independent ethics committee at each trial site for each trial.  

 

METHOD DETAILS 

Sample collection. Tumour and normal tissue were collected via image-guided percutaneous biopsies, ex vivo 

sampling at nephrectomy, and at autopsy. Multiregion samples were obtained with all modalities. For samples 

obtained at nephrectomy, resected specimens were reviewed macroscopically by a pathologist to guide 

multiregion sampling for this study and to avoid compromising diagnostic requirements. Spatially separated 

regions sampled from the ‘‘tumour slice’’ using a 6mm punch biopsy needle. The punch was changed between 

samples to avoid contamination. The total number of samples obtained reflects the tumour size with a 

minimum of 3 biopsies that are non-overlapping and equally spaced. Areas which are obviously fibrotic or 

haemorrhagic are avoided during sampling and every attempt is made to reflect macroscopically 

heterogeneous tumour areas. Primary tumour regions are labelled as R1, R2, R3.Rn and locations are 

recorded. Normal kidney tissue was sampled from areas distant to the primary tumour and labelled N1. For all 

samples collected, each were split into two for snap freezing and formalin fixing respectively, such that the 

fresh frozen sample has its mirror image in the formalin-fixed sample which is subsequently paraffin 

embedded. Fresh samples were placed in a 1.8 ml cryotube and immediately snap frozen in liquid nitrogen for 
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>30 seconds and transferred to -80 C for storage. Peripheral blood was collected at the time of surgery and 

processed to separate buffy coat and peripheral blood mononuclear cells (PBMCs). 

 

Nucleic acid extraction, DNA and RNA library preparation and sequencing. DNA and RNA were co-extracted 

from fresh-frozen tumour tissue using AllPrep DNA/RNA mini kit (Qiagen). RNA from peripheral blood 

mononuclear cells (PBMC) were extracted from blood stored in Tempus tubes using the Tempus™ Spin RNA 

Isolation Kit (Invitrogen). Germline DNA was isolated from whole blood using the DNeasy Blood and Tissue kit 

(Qiagen). DNA yield and quality were assessed on TapeStation4200 (Agilent) and Qubit Fluorometric 

quantification (ThermoFisher Scientific). Samples were normalised to either 3 ug or 200ng and sheared to 150-

200bp using a Covaris-E220 or LE220-plus. Agilent SureSelectXT enriched libraries were constructed following 

the manufacturer’s manual or automated (using the Agilent Bravo liquid handling platform) SureSelectXT 

Target Enrichment System for Illumina Paired-end Multiplexed Sequencing Library protocol. Hybridisation and 

capture were performed using the Agilent SureSelectXT Human All Exon v5 capture library. Final libraries were 

sequenced to a target coverage of 250x with 101bp paired-end reads multiplexed on the Illumina HiSeq4000 

sequencing platform. The extracted RNA was normalised to 100ng for library construction using RNA-Ribozero 

(ribodeplete) Library Preparation Kits. The prepared libraries were multiplexed and QC’ed before paired-end 

sequencing with target coverage of 50 million reads per sample on HiSeq4000 sequencing platforms (Illumina). 

RNA was extracted from blood for TCR sequencing from the following cases and timepoints: all cases (n=15) 

pre- and post-treatment. 

 

SNV, and INDEL calling from multiregion WE sequencing. Paired-end reads (2x100bp) in FastQ format 

sequenced by Hiseq were aligned to the reference human genome (build hg19), using the Burrows-Wheeler 

Aligner (BWA) v0.7.15. with seed recurrences (-c flag) set to 10000 90
. Intermediate processing of Sam/Bam 

files was performed using Samtools v1.3.1 and deduplication was performed using Picard 1.81 

(http://broadinstitute.github.io/picard/). Single Nucleotide Variant (SNV) calling was performed using Mutect 

v1.1.7 and small scale insertion-and-deletions (INDELs) were called running VarScan v2.4.1 in somatic mode 

with a minimum variant frequency (--min-var-freq) of 0.005, a tumour purity estimate (--tumour-purity) of 

0.75 and then validated using Scalpel v0.5.3 (scalpel-discovery in --somatic mode) (intersection between two 

callers taken) 91-93
. SNVs called by Mutect were further filtered using the following criteria: i) ≤5 alternative 

reads supporting the variant and variant allele frequency (VAF) of ≤1% in the corresponding germline sample, 

ii) variants falling into mitochondrial chromosome, haplotype chromosome, HLA genes or any intergenic region 

were not considered, iii) presence of both forward and reverse strand reads supporting the variant, iv) >5 

reads supporting the variant in at least one sample, v) variants were required to have a VAF of 0.01 in at least 

one sample, vi) sequencing depth need to be ≥20 and ≤3000 across all samples. Dinucleotide substitutions 

(DNV) were identified when two adjacent SNVs were called and their VAFs were consistently balanced (based 

on proportion test, P≥0.05). In such cases the start and stop positions were corrected to represent a DNV and 

frequency related values were recalculated to represent the mean of the SNVs. Variants were annotated using 

Annovar
94

. Individual tumour biopsy regions were judged to have failed quality control and excluded from 
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analysis based on the following criteria: i) sequencing coverage depth below 100X, ii) low tumour purity such 

that copy number calling failed. Driver variants are manually reviewed and predicted for variant effect, and 

variant annotations on the heatmap are only for confident driver events. 

 

Methylation specific PCR. Methylation of the VHL promoter was detected after bisulphite treatment of 500ng 

of patient DNA using the EZ DNA Methylation-Direct kit (Zymo Research). Bisulphite treated DNA was 

amplified in the PCR using methylation specific oligonucleotides followed by Big Dye terminator Sanger 

sequencing. Methylation was confirmed by comparing and contrasting patient tumour and normal renal tissue 

for methylation protected CpG sequences. 

 

Neoantigen calling. Neoantigen predictions were derived by first determining the 4-digit HLA type for each 

patient, along with mutations in class I HLA genes, using POLYSOLVER
95

. Next, all possible 9, 10 and 11-mer 

mutant peptides were computed, based on the detected somatic non-synonymous SNV and INDEL mutations 

in each sample. Binding affinities of mutant and corresponding wildtype peptides, relevant to the 

corresponding POLYSOLVER-inferred HLA alleles, were predicted using NetMHCpan (v3.0)
96

 and NetMHC 

(v4.0)
97

. Neoantigen binders were defined as strong binders if their %rank was below <0.5 for the mutant and 

>0.5 for the wildtype protein. 

 

TMB, fsINDEL burden, neonatigen burden, wGII. To calculate sample-level TMB, fsINDEL burden and 

neoantigen burden, variants were filtered with the same criteria as described above for multi-region WE 

sequencing but on a per sample-basis. Variants were restricted to positions falling inside the targeted capture 

range (±50bp padding). Tumour mutational burden (TMB) was calculated as the number of exonic non-

synonymous SNVs per mega base. The frameshift INDEL (fsINDEL) burden was calculated as the total number 

of exonic frameshift INDELs per sample. The neoantigen burden was calculated as the total number of 

predicted strong binders per sample. The average proportion of the genome with aberrant copy number, 

weighted on each of the 22 autosomal chromosomes, was estimated as the weighted genome instability index 

(wGII). 

 

SNP calling. Single nucleotide polymorphisms (SNPs) were called in the germline sample using Platypus v0.8.1 

with default parameters apart from --genIndels=0 and --minMapQual=40. Tumour regions were genotyped 

based on the variants identified in the germline (parameters set to --minPosterior=0 --

getVariantsFromBAMs=0). SNPs with a minimum coverage of 50x in the germline and the tumour sample were 

used for allele-specific copy number segmentation. 

 

Copy number analysis. CNVkit v0.7.3 was used with default parameters on paired tumour-normal sequencing 

data
98

. Outliers of the derived log2-ratio (logR) calls from CNVkit were detected and modified using Median 

Absolute Deviation Winsorization before case-specific joint segmentation of fresh-frozen samples to identify 

genomic segments of constant logR
99

. Formalin-fixed and paraffin-embedded (FFPE) samples were segmented 
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separately while leveraging the segment information from the fresh-frozen samples. Copy number alterations 

were called as losses or gains relative to overall sample wide estimated ploidy. Driver copy number was 

identified by overlapping the called somatic copy number segments with putative driver copy number regions 

identified by Beroukhim et al.
100

. Allele-specific segmentation was performed using the paired PSCBS method 

after removal of single-locus outliers (R package PSCBS v0.61.0 101
). 

 

Purity and ploidy estimate. Tumour sample purity, average ploidy and absolute allelic copy number per 

segment were estimated using ABSOLUTE v1.2 in allelic mode
102

. In line with recommended best practice all 

ABSOLUTE solutions were reviewed by 3 researchers, with solutions selected based on majority vote. Purity 

assigned 0.1 for samples below ABSOLUTE estimate thresholds for comparison analysis of samples between 

responders and non-responders. 

 

Subclonal deconstruction. To estimate the CCF of a mutation, we used the following formula: 

 

��� � ����� � ��� � �
��� � 	1 � ��  ��� � � 

 

Where VAF is the variant allele frequency of the mutation, p the estimated tumour purity, CNmut the number of 

copies carrying the mutation and CNt the local copy number in the tumour cells. CNn is the local copy number 

in the non-tumour proportion of the sample which was assumed to be 2. The CNmut and CCF were estimated 

through iteration of all possible combinations of CCF (range 0.01 to 1, by 0.01) and CNmut (range 1 to CNt, by 1) 

using the formula above to identify the best fit CCF.  

 

Genomic contraction, persistence and expansion analysis. For each patient with matched pre- and post-

treatment WES data (N=8 patients), the pre-treatment CCF was compared to the CCF in the post-treatment 

samples. In patients with multiple pre-treatment samples, the median pre-treatment CCF was used. In each 

post-treatment sample, all nonsynonymous SNVs and fsINDELs were assigned to one of the following 

categories: “Genomic contraction”, “Genomic persistence”, “Genomic expansion”
39

. A mutation was defined 

to have undergone genomic contraction if the CCF decreased by ≥10% from pre- to post-treatment or if the 

mutation was present in the pre-treatment but not the post-treatment sample; genomic expansion if the CCF 

increased by ≥10% from pre- to post-treatment or if the mutation was present in the post-treatment but not 

the pre-treatment sample; genomic persistence if the CCF in the post-treatment sample was within the range 

of ±10% of the pre-treatment CCF. The proportion of mutations falling into each category was calculated for 

nonsynonymous SNVs and fsINDELs and repeated with only neoantigen encoding mutations. An enrichment 

test (Fisher’s exact test) was performed to determine whether mutations which encode neoantigens were 

more likely to undergo genomic contraction than the remaining nonsynonymous SNVs and fsINDELs. 

 

Mutational signature analysis. Mutational signatures were estimated using the deconstructSigs package in 

R
103

. Sample specific mutational signature analysis was restricted to samples with at least 50 mutations. 
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Analysis for mismatch repair deficiency. Analysis for mutations in the following nominated genes was 

performed: POLD3, MLH3, MSH6, RPA4, LIG1, MLH1, MSH2, MSH3, PCNA, PMS2, POLD1, POLD2, POLD4, RFC1, 

RFC2, RFC3, RFC4, RFC5, RPA1, RPA2, RPA3, SSBP1, EXO1. 

 

Analysis for mutations associated with defective antigen presentation. Analysis for mutations in the 

following nominated genes was performed: B2M, CIITA, IRF1, PSME1, PSME2, PSME3, ERAP1, ERAP2, HSPA, 

PSMA7, HSPC, HSPBP1, TAP1, TAP2, TAPBP, CALR, CNX, CANX, PDIA3.  

 

Detection of B2M mutations by Sanger sequencing 

Validation of the B2M mutation was performed using PCR followed by Big Dye Terminator Sanger sequencing 

on the ABI 3700. 20ng of patient DNA was amplified for exon 1 of B2M, to enable detection of 

B2M:c.42_45delTCTT:p.S14fs. PCR conditions involved 35 cycles of denaturation at 950C, followed by 

oligonucleotide primer annealing at 55oC and sequence extension at 720C using Qiagen Taq polymerase and 

reagents. Oligonucleotide sequences used are: Forward: aacgggaaagtccctctctc; Reverse: agatccagccctggactagc. 

 

Bulk RNAseq data processing. RNAseq data were mapped to the hg19 reference human genome using the 

STAR
104

 algorithm, and transcript and gene abundance were estimated by RSEM
105

 with default parameters. 

Samples were excluded if they had less than 15,000 genes detected. 

  

Human endogenous retrovirus (HERV) analysis. Expression of previously annotated HERVs
28, 50, 51

 was 

analysed. HERV loci used in these three studies
28, 50, 51

 were taken from Mayer et al. 53
 and Vargiu et al.

54
 with 

66 and 3173 loci respectively. BLASTn was used to match example sequences from HERVs in Mayer et al. to 

GRCh38, chromosome coordinates with the greatest homology over the greatest length were taken as the best 

match. The Lift Genome Annotations tool from UCSC (https://genome.ucsc.edu/cgi-bin/hgLiftOver) was used 

to convert annotated GRCh37 HERV loci coordinates from Vargui et al. to GRCh38 coordinates. Comparing the 

new coordinates, 47 of the 66 HERVs from Mayer et al. were present in the list of 3173. Coordinates of all the 

unique elements were then compared to a custom repeat region annotation previously built using the Dfam 

2.0 library (v150923) for GRCh38
57

. For this custom annotation, different regions of the same provirus (e.g. the 

LTR and internal genes) were annotated separately, these regions were merged to allow accurate quantitation 

of reads from the same provirus
57

. LTR-containing repeat regions from the custom annotation had to begin, 

end, or be fully contained within previously annotated loci to be considered a match, a buffer of 5 bases either 

end of the locus was included. Previously annotated HERV loci from Mayer et al. and Vargiu et al. were found 

to overlap multiple repeat regions per locus in our custom annotations, or were found to overlap no repeat 

regions at all. Some loci also overlapped other endogenous retroelement types such as LINEs and SINEs, as 

well as overlapping canonical gene exons. For this analysis, only expression of matching LTR-containing 

elements was considered rather than expression of all repeats and genes overlapping previously annotated 

loci. Expression was measured using read counts calculated by the featureCounts function from the Subread 
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package
106

 (with parameters -p -C -B -f -T 2), multi-mapping reads were not counted. Analysis for purified 

immune cell subset expression were performed on publicly available datasets from Linsley et al. 107
 (accession 

no. GSE60424 (GEO)) and Kazachenka et al.
108

 (E-MTAB-8208 (EMBL-EBI)). LTR-overlapping transcripts 

expressed highly specifically in ccRCC were previously described
57

. These transcripts were identified through 

de novo transcriptome assembly and their expression quantified in by transcript per million calculations, as 

previously described
57

. 

Differential gene expression analysis, pathway analysis and gene set enrichment. DESeq2
109

 was used for 

differential expression analysis, using the binomial Wald test after estimation of size factors and estimation of 

dispersion. To identify genes differentially expressed between responders and non-responders, we considered 

only transcripts with normalized count number >5 in at least 5 patients. Pathway analysis was performed using 

the R package XGR
108

 using the gene ontology biological process (GOBP) databases. Induced and suppressed 

transcripts were analysed separately against the background of all tested transcripts. The “lea” ontology 

algorithm was used. 

T-cell subset gene signature. Gene signature or single gene enrichment was evaluated using RSEM abundance, 

z score scaled across all samples for which RNA-Seq was available. Signature analysis was performed using 22 

immune-related signatures listed below: i) the Danaher immune score is a 60-marker gene signature derived 

from pan-cancer RNAseq analysis for 14 immune cell populations, where marker genes have been 

benchmarked against histological tumour-infiltrating lymphocyte (TIL) estimates and flow cytometry data
58, 111

; 

ii) IMmotion150 20
; iii) Javelin101

21
. 

 

(1) Danaher Tcells : CD3D, CD3E, CD3G, CD6, SH2D1A, TRAT1 

(2) Danaher CD8 : CD8A, CD8B 

(3) Danaher Cytotoxic : CTSW, GNLY, GZMA, GZMB, GZMH, KLRB1, KLRD1, KLRK1, PRF1, NKG7 

(4) Danaher Bcells : BLK, CD19, MS4A1, TNFRSF17, FCRL2, KIAA0125, PNOC, SPIB, TCL1A 

(5) Danaher NKcells : NCR1, XCL2, XCL1 

(6) Danaher CD45 : PTPRC 

(7) Danaher DC : CCL13, CD209, HSD11B1 

(8) Danaher CD8Ex : CD244, EOMES, LAG3, PTGER4 

(9) Danaher Mac : CD163 ,CD68 , CD84, MS4A4A 

(10) Danaher Mast : MS4A2,TPSAB1,CPA3,HDC,TPSB2 

(11) Danaher Neut : CSF3R, S100A12, CEACAM3, FCAR, FCGR3B, FPR1, SIGLEC5 

(12) Danaher NKCD56 : IL21R, KIR2DL3, KIR3DL1, KIR3DL2 

(13) Danaher Th1 : TBX21 

(14) Danaher Treg : FOXP3 

 

(15) IMmotion150 Angio : VEGFA, KDR, ESM1, PECAM1, ANGPTL4, CD34 

(16) IMmotion150 Teff : CD8A, IFNG, PRF1, EOMES, CD274 
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(17) IMmotion150 Myeloid : CXCL1, CXCL2, CXCL3, CXCL8, IL6, PTGS2 

  

(18) Javelin101 TCR : CD3G, CD3E, CD8B, THEMIS, TRAT1, GRAP2, CD247 

(19) Javelin101 TCell : CD2, CD96, PRF1, CD6, IL7R, ITK, GPR18, EOMES, SIT1, NLRC3 

(20) Javelin101 NK : CD2, CD96, PRF1, CD244, KLRD1, SH2D1A 

(21) Javelin101 chemo : CCL5, XCL2 

(22) Javelin101 other : CST7, GFI1, KCNA3, PSTPIP1 

  

The signature score was calculated as the arithmetic mean of z score scaled expression of all genes in that 

signature for each sample. 

  

TCR sequencing. TCR β-chain sequencing was performed by utilizing whole RNA extracted from tissue samples 

or from cryopreserved PBMC samples, by using a quantitative experimental and computational TCR 

sequencing pipeline described previously
112-115

. An important feature of this protocol is the incorporation of a 

UMI attached to each cDNA TCR molecule that enables correction for PCR and sequencing errors, which allows 

higher quantitative precision compared to alternate protocols in the TCR sequences retrieved
113, 116

. The suite 

of tools used for TCR identification, error correction and CDR3 extraction is freely available at 

https://github.com/innate2adaptive/Decombinator. 

 

For each TCR, we computed the abundance as the count of UMIs mapping to this TCR divided by the total 

number of UMIs in the sample. If several samples were available at a given patient-timepoint pair, the 

resulting abundance was calculated as the sum of counts for this TCR across the available samples divided by 

the sum of total counts across these samples. 

  

Repertoire similarity measure. The similarity between two TCR repertoires was assessed with the normalised 

dot product (also known as the cosine similarity) between the vectors of TCR abundance. This measure is a 

well-established metric widely used in machine learning to compare numerical vectors and gives a value 

between 0 (no similarity, that is, orthogonal vectors) and 1 (complete similarity, from vectors with an identical 

magnitude and direction in the feature space). Each pair of repertoires is represented as two vectors of equal 

length, indexed by the union of TCRs found in both repertoires and containing the number of times each TCR is 

detected in each of the two repertoires (each position contains an integer ≥0). The similarity between the two 

vectors is given as 

 

���������� � ���1 · ���2
� ���1 ��� ���2 � 

 

where and are the abundance vectors, represents the vector product and paired vertical bars represent the 

Euclidean norm of the vector. 
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For longitudinal similarity (Figures 4, S14, and S15), the similarity measure was performed on the TCR 

abundance vectors derived from (patient, timepoint) pairs. 

  

For spatial similarity (Figure S13), the similarity measure was performed on the TCR abundance vectors derived 

from each sample within a (patient, timepoint) pair. For this analysis, samples from different timepoints were 

not compared. 

  

Repertoire clonality index. The clonality index was estimated for each sample by using the command entropy 

from the entropy R package, on the basis of the observed frequency of the TCRs in that sample  

 

��������� � 1 � 	� �� � ��  �� �/ �� �  
 

where ��is the frequency of the ith TCR in the repertoire and is the number of TCRs in that repertoire. 

  

Classification of expanded, contracted and persistent TCRs. The difference in abundance between Pre-

treatment and On-treatment was calculated with the poisson.test function in R, as the data were counts. TCRs 

with P values above 0.01 were labelled as persistent. 

 

Classification of expanded TCRs. We counted the number of TCRs detected with frequencies above a range of 

frequency thresholds in the tumour repertoires. To measure how such defined expanded TCRs were 

representative of the shape of the TCR distribution captured by the clonality score, we computed the 

prevalence of the expanded population amongst the entire repertoire, for each threshold. To do so, we took 

the sum of counts for expanded TCRs and divided it by the sum of all counts in the sample. The proportion 

obtained was then correlated to the matched clonality score with the Spearman’s rank correlation. 

To focus on the most expanded TCRs (Figures 4E-4F and S15-S16), we examined those present above a 

threshold frequency of 2/1,000 (corresponding to the top 1% of the empirical TCR frequency distribution).  At 

this threshold, which we already described in previously published work 61
, the correlation between clonality 

and proportion of repertoire occupied by expanded TCRs is very strong and the number of TCRs labelled as 

expanded is greater than for higher thresholds for which this correlation is also significant, which enables to 

keep the greatest amount of data whilst still applying a stringent filtering step. 

CDR3 amino acid clustering. The pairwise similarity between pairs of TCRs was measured on the basis of 

amino acid triplet sharing. Sharing was quantified using the normalized string kernel function stringdot (with 

parameters stringdot (type = ‘spectrum’, length = 3, normalized = TRUE) from the Kernlab package. The kernel 

is calculated as the number of amino acid triplets (sets of three consecutive amino acids) shared by two CDR3s, 

normalized by the number of triplets in each CDR3 being compared. The TCR similarity matrix was converted 

into a network diagram by using the iGraph package in R. Two TCRs were considered connected if the 

similarity index was >0.82 (threshold previously optimised in a separate study). 
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Per (patient, timepoint) pair, we counted the number of clusters containing an expanded CDR3. To normalize 

the counts of clusters obtained (��"��) for the input size, for each sample, we randomly selected, outside of 

the real clustering structure, a number of CDR3s equal to the number of expanded CDR3s in that sample and 

looked for clusters around those. This control step was repeated 10 times for each (patient, timepoint) pair 

and we computed the average number of clusters obtained for those control (�#��) and used ��"��/�#�� as 

the normalised cluster count value (Figure 4F, Figure S15F). 

For Figure S15D, as depicted in Figure S15E, we used the clustering structure built as described above for Pre-

treatment samples and retrospectively labelled expanded clones at that time-point as maintained if they were 

also expanded post-treatment or as replaced if they were not. By doing so, we could derive the number of Pre-

treatment clusters containing maintained (resp. replaced) expanded clones which was then divided by the 

initial count of maintained (resp. replaced) expanded clones present in that sample to obtain the proportion 

displayed in FigureS15D. 

Frequency ratio. We wanted to capture the rate of clonal replacement that occurs in the tumour repertoires. 

To do so, for each expanded TCR at baseline that could also be detected after treatment, we computed the 

ratio of the observed frequency at baseline divided by the observed frequency after-treatment. To derive a 

metric for each patient, we computed the average of ratio scores obtained for all expanded TCRs at baseline 

(those that could not be detected after treatment were excluded). 

Multiplex Immunofluorescence Staining and Image Analysis. FFPE blocks were cut in 2 micron thick slides. 

The slides were baked for 60 minutes and stained using the antibodies listed below and opal fluorophores. 

Leica Bond III machine was used for the immunofluorescence staining. Images of the stained slides were 

acquired by using the Vectra 3 automated quantitative pathology imaging system (Akoya Biosciences). 

Matching H&E image of each slide was reviewed by a pathologist and areas to annotate on the 

immunofluorescent images for analysis were identified. Necrotic and stromal areas as well as non-tumour 

areas were excluded and tumour areas were scored. Slides for patient ADR009 were not evaluable due to 

necrosis. Total of 61 samples (41 pre-treatment and 20 on treatment samples) for the first mIF panel and 60 

samples (40 pre-treatment and 20 on treatment samples) were for the second IF panel were used for analysis. 

The following antibodies were used for mIF staining: CD3 (Mouse monoclonal, LN10, 1:100 dilution on Opal 

520 in 1:50 dilution), CD4 (Mouse monoclonal, 4B12, 1:50 dilution on Opal 540 in 1:100 dilution), CD8 (Mouse 

monoclonal, 4B11, 1:100 dilution on Opal 540 in 1:150 dilution and on Opal 620 in 1:150 dilution),  FoxP3 

(Mouse Monoclonal, 236A/E7, 1:80 dilution on Opal 570 in 1:150 dilution), CD163 (Mouse monoclonal, 10D6, 

1:100 dilution on Opal 690 in 1:50 dilution), Granzyme B (Mouse monoclonal, 11F1, 1:80 dilution, on Opal 620 

in 1:150 dilution) 

Up to 25 multispectral images (MSI) were acquired per slide depending on the size of the tumour to include all 

representative areas of the tumour. Representative MSIs from different slides were used while training the 

algorithms for each marker. Scoring of each slide was performed using the inForm software on Vectra. The 
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quality and accuracy of the scoring was checked by two clinicians one of whom was a histopathologist. MSIs 

with poor tissue quality were excluded from the analysis. Merged data obtained by using the inForm software 

was analysed using the phenoptrReports tool (Akoya Biosciences) on R. T-cells subsets (CD8
+
, CD4

+
 effectors, 

Tregs and CD8
+
CD4

+
 double positive cells) were scored both out of total cells counted on each slide and out of 

the total T cells counted. CD163 cells were scored out of total cells counted per slide. Overall granzyme 

expression was scored in relation to the total T-cell and CD163
+
 cell count. Granzyme B expression on CD8

+
 

cells was scored out of the total CD8
+
 cells. Median scoring value was used for each patient per time point and 

two-sided Mann-Whitney U test was used for statistical analysis of the data.  

 

The mIF and mIHC antibody panels were designed to evaluate T-cell subsets, B-cells, myeloid cells, and GZMB 

expression. This was conducted given 1) double positive (CD8
+
CD4

+
) T-cells with high degrees of TCR clonality 

have previously been described in ccRCC
117

; 2) myeloid inflammation has been associated with blunting of 

anti-tumour T-cell activity in metastatic ccRCC
20

; and 3) high tumour infiltration with B-cells and plasma cells 

have previously been shown to correlate with favourable clinical outcomes across cancer types 118-120
. 

 

Immunohistochemistry. Formalin-fixed paraffin-embedded tissue sections of clear-cell renal cell carcinoma 

and normal tonsil tissues were subjected to haematoxylin and eosin and multiplex immunostaining. The 

primary antibodies used for multiplex immunolabeling are as follows: CD19 (Rabbit monoclonal, SP291, 

1:10000 dilution), CD138 (Mouse monoclonal, MI15, 1:100 dilution), PD-1 (Mouse Monoclonal, NAT105/E3, 

1:2 dilution). 

 

To establish optimal staining conditions each antibody was tested and optimized on 2-4 um cut tissue sections 

of human reactive tonsil and normal kidney by applying conventional single immunohistochemistry.  In brief 

sections were de-waxed and re-hydrated prior to the multiplex immunolabeling whose procedure was adapted 

and performed according to the established protocol described elsewhere
121

.  Total of 59 samples (40 pre-

treatment and 19 on treatment samples) for the mIHC panel. 

 

Staining assessment and data handling. Specificity of the staining was assessed by a haematopathologist with 

expertise in multiplex-immunostaining. Scanned slide images were obtained with the use of NanoZoomer 

Digital Pathology System (Hamamatsu, Japan).  Total of 60 samples (41 pre-treatment and 19 on treatment 

samples) were used for analysis. 

 

Flow cytometry. Renal tumour resections and normal tissue were cut into small pieces (2-3mm) by using 

sterile disposable scalpel plus forceps in RPMI (Sigma-Aldrich) with Collagenase I (Sigma-Aldrich) (for ADR013 

tumour and normal tissue), Liberase (for ADR001 tumour tissue) and DNAse I (Roche) and was digested for 1 

hour at room temperature using the gentleMACS dissociator (Miltenyi Biotec). The digest was passed through 

a 70-µm cell strainer by using 5-10 ml of RPMI containing 2% fetal bovine serum (FBS) to obtain a single cell 

suspension. Lymphocytes were obtained from the single cell suspension by using Ficoll Paque Plus (GE 
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Healthcare) density gradient centrifugation (750g for 10 min). Isolated lymphocytes were washed with RPMI 

and 2%FBS and cryopreserved in 90% FBS with 10% dimethyl sulfoxide (Sigma–Aldrich).  PBMCs were isolated 

from blood samples collected in Vacutainer EDTA blood collection tubes (BD) using Ficoll Paque Plus (GE 

Healthcare) density gradient centrifugation and cryopreserved in in 90% FBS with 10% dimethyl sulfoxide 

(Sigma–Aldrich). 

 

Thawed lymphocytes were washed with 1x phosphate-buffered saline (PBS) and were stained with the 

antibodies listed below. Antibody mastermixes were prepared in Brilliant Staining Buffer (BD). eBioscience™ 

Foxp3 / Transcription Factor Staining Buffer Set was used for the intracellular staining.  Samples  were stained 

using the following antibodies: CD8 (RPA-T8, BUV496), CD45RA (HI100, BUV563), CD4 (SK3, BUV615), CD38 

(HIT2, BUV737), CD3 (SK7, BUV705), FoxP3 (206D, BV421), CCR4 (L291H4, BV510), Viability dye (Yellow 

Fluorescent reactive dye, BV570), CD57 (QA17A04, BV605), Ki67(B56, BV650), CD39 (TU66, BV711), CCR7 

(G043H7, BV750), CD69(FN50, BV785), CD103 (Ber-ACT8, BB515), CXR5 (RF8B2, PerCp-Cy5-5), TCF-7 (7F11A10, 

PE), Granzyme B (GB11, PE-CF594), CD25 (M-A251, PE-Cy5), PD-1 (EH12.2H7, PE-Cy7), TOX (REA473, APC), 

HLA-DR (LN3, AF700), IgG4(Biotin), 4-1BB (4B4-1, BUV661), TIM3 (7D3, BV650), KLRG1 (13F12F2, 

Superbright702), CD27 (O323, BV750), ICOS (C398.4A, BV785), EOMES (WD1928, Percp-eFlour710), CTLA-4 

(L3D10, APC), GITR (108-17, APC/Fire-750), Streptavidin (BUV395). The samples were acquired on the BD 

Symphony flow cytometer. Data was analysed using the FlowJo (version 10).  

 

PD-1 competition binding assay to evaluate anti-PD1 monoclonal antibody binding 

PBMC isolated from healthy individuals were activated in vitro using plate coated anti-CD3 and soluble anti-

CD28 with 100IU IL-2 per well. 50ul (5ug/ mL solution) anti-CD3 was used to coat wells of a 96 well plate which 

was kept at 4°C overnight. Two washes using 200ul of PBS were performed to remove unbound antibodies the 

next day. Subsequently, 2 x 10
5 

PBMC were added into each well with subsequent addition of soluble anti-

CD28 (2ug/ mL). The plate was placed into a humidified 37°C incubator for 72 hours. Following this period, the 

wells containing activated PBMC were either incubated with 50ul (2.5mg) pembrolizumab or PBS control for 

30 minutes. PBS washes were used to remove unbound therapeutic antibodies. Flow cytometric staining of 

CD3, PD-1 and anti-IgG4 was performed thereafter. 

 

Single-cell RNA/TCR Sequencing 

Tumour infiltrating lymphocytes from ADR001 and AD013 were stained with CD3 (PE, SK7 clone), IgG4 

(Biotinylated) and Streptavidin (BV650) antibodies for flow cytometry. Stained cells were FACS sorted as 

CD3
+
IgG4

-
 (40,000 cells) and CD3

+
IgG4

+
 (20,000 cells) for ADR001 and CD3

+
IgG4

-
 (50,000 cells) and CD3

+
IgG4

+
 

(90,000 cells) for ADR013. FACS sorted cells were single cell sorted using the 10X Genomic machine. The sorted 

cells were processed using the 10X Genomic Chromium Next GEM Single Cell 5’ Reagents Kit V2 (dual index) 

for 5’gene expression library construction and V(D)J library construction. The samples were sequenced on the 

NextSeq using the High Output Kit v2.5 (150 Cycles). 
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FASTQ files containing gene expression (GEX) and VDJ were demultiplexed using cellranger mkfastq (10x 

Genomics). GEX reads were aligned to GRCh38 and counted using cellranger count, VDJ reads were aligned to 

cellranger’s GRCh38 VDJ reference dataset using cellranger vdj. Expression matrices were analysed using the 

Seurat package
122

. To remove technical variation in the data, TCR, ribosomal and heat-shock protein genes 

were removed from the analysis, also cells with mitochondrial reads making up >10% total read content were 

removed. 8382 CD3
+
IgG4

- 
and 10083 CD3

+
IgG4

+ 
cells in ADR013; and 4648 CD3

+
IgG4

-
 and 3343 CD3

+
IgG4

+ 
cells 

in ADR001 were retained after quality control filtering. Datasets were integrated using SCTransform 

integration
123

 using the recommended parameters and regressing the % mitochondrial read content. PCA and 

UMAP dimensional reduction (dims = 1:30) and clustering (res = 0.3) was then performed using RunPCA, 

RunUMAP, FindNeighbours, and FindClusters. Publicly available gene signatures for T cell states were obtained 

from the following publications: Schietinger et al.
124

, Thommen et al.
125

, Guo et al.
126

, Li et al. 127
, Yost et al.

128
, 

Miller et al.
69

, Zhou et al.
129

, and Litchfield et al.
130

 (Supplemental Data Table 3). The proportion of reads 

mapping to the genes in each signature for each cell was then calculated using PercentageFeatureSet. All 

differential gene expression analysis were carried out on log normalised gene expression values (using 

NormalizeData, default parameters) using the MAST algorithm
131

 within FindMarkers. GOBP analysis was 

carried out using the XGR package
110

 using the “lea” algorithm. scTCR data was analysed using scRepertoire
132

. 

Cells were considered of the same clone if they contained a matching TRB sequence and CDR3 gene. 

 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Statistical analysis was performed in R and GraphPad Prism 8. Correlation was carried out with the Spearman 

nonparametric rank correlation test. We used mixed effect modelling when appropriate. We used the Mann–

Whitney two-tailed paired or non- paired nonparametric tests (as appropriate) to determine whether two 

independent samples were selected from the same populations. P values were considered significant if less 

than 0.05, and significance values were corrected for multiple testing by Bonferroni correction when 

appropriate. High dimensional flow cytometry analysis was performed using FlowJo 10. Analyses and 

visualization of HERV expression were additionally performed in Qlucore Omics Explorer (Qlucore, Lund, 

Sweden). Data visualization was performed in BioRender, R and GraphPad Prism 8. 

 

ADDITIONAL RESOURCES 

Clinical trial registry numbers: 

ADAPTeR: https://clinicaltrials.gov/ct2/show/NCT02446860 

TRACERx Renal: https://clinicaltrials.gov/ct2/show/NCT03226886 

PEACE: https://clinicaltrials.gov/ct2/show/NCT03004755 
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Supplementary Figure Legends 

Figure S1.  Samples overview, and correlations between nivolumab response and mutational features  

(A) Consort diagrams for samples that underwent whole-exome sequencing, RNAseq, TCRseq, and multiplex 

immunofluorescence or immunohistochemistry analyses. (B) Boxplots showing no significant correlations 

between TMB, fsINDEL load, and wGII to nivolumab response. Median pre-treatment values are shown. (C) 

Genomic contraction analysis results including neoantigens. Two-sided Mann–Whitney test was performed. P 

value >0.05 considered not significant.  

 

Figure S2. Schematic diagrams of ADR015 and ADR005 showing pre-/post-treatment, post-mortem 

sampling, and evolution of metastatic disease  

(A) Clinical timeline for ADR015, and (B) genomic data are shown. (C) Clinical timeline for ADR005, and (D) 

PEACE samples with available TCRseq data. (E) The proportion of TCRs that were expanded both Pre-treatment 

and Post-treatment during life (n=5) detected in each post-mortem sample, only samples where the detection 

rate is greater than 0 are displayed. 3/5 were detected in the lung metastatic and 1/5, 1/5, 2/5 and 3/5 were 

detected in region 1, region 2, region 3 and region 4 of the primary site, respectively. The median number of 

TCR sequences retrieved per post-mortem sample was 163 (range: 20-1340), and immune infiltration across 

sites were uniformly low in all regions, as scored by expert pathologist review of haematoxylin and eosin stain 

slides (data not shown). 

 

Figure S3. Correspondence of HERV annotation and expression in immune cell types 

(A) Comparison of HERV annotations by Attig et al., Vargiu et al. and Mayer et al. Three examples are shown, 

depicting the position of GENCODE annotated genes, Dfam 2.0 annotated repeats and a representative 

RNAseq read pileup. (B) Expression of HERVs previously associated with ccRCC or with nivolumab response, in 

the indicated purified immune cell types from public RNAseq datasets GSE60424 (top) and E-MTAB-8208 

(bottom). Note the expression of LTR/ERVK|HERVK9-int~MER9a1|6|29876165|29881829 integration within 

the HLA locus in most immune cell subsets and of the LTR/ERV1|LTR7|1|207633751|207634199 integration in 

neutrophils. 

 

Figure S4. Violin plots comparing response groups at both timepoints by Danaher, IMMOTION150, 

Javelin101 signatures and by individual gene expression.  

See STAR Methods for details of signature analysis. The two-sided Mann–Whitney test performed on one 

value per patient (score averaged by median value across biopsies if several available at a given time point), 

significant P value are indicated (*: P<0.05; **: P<0.01). R - responders; N-R - non-responders. 

 

Figure S5. Immune cells subset comparisons of pre- and post-treatment samples 

(A) Immune cell subset expression levels in non-responders and responders on treatment are shown. (B) 

Expression level of T-cell subsets out of total cells counted is shown. (C) Ratio of T-cells subsets in non-

responders and responders at baseline and on treatment; CD3
+
 T-cells to CD163

+
 myeloid cells, and CD8

+
 T-
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cells to CD163
+
 myeloid cell ratios between responders and non-responders on treatment is shown. (D) 

Change in total GZMB expression and on CD8
+
 T cells from pre-treatment (six patients) to post-treatment 

(week-9) is shown (three patients). 

 

Figure S6. Clonotype dynamics in PBMC and intra- and inter-patient TCR repertoire heterogeneity 

(A) The TCR repertoires of multiple biopsies from a patient’s tumour were sequenced and a pairwise 

comparison of the repertoires of different biopsies from the same timepoint was performed by using the 

cosine metric (STAR Methods). The pairwise intratumoural TCR repertoire similarity is shown for each patient. 

Each circle represents a comparison between two samples from the same patient (n = 87 total comparisons 

from 12 patients). Red (resp. blue) circles indicate a pair of biopsies originating from the same site (resp. 

different metastatic sites). (B) Heat maps showing the pairwise similarities of a selection of 5 biopsies in the 

post-treatment nephrectomy for ADR001 (top) and ADR013 (bottom). Biopsies were selected based on 

comparable TCR counts. (C) Correlated clone sizes in blood samples. Scatter plots of blood clone size after 

treatment and before treatment are shown for all patients. Clones are colored by expansion/contraction 

status (STAR Methods). (D) The peripheral TCR repertoire clonality score pre-treatment and on-treatment is 

shown for each patient. Patients are split between responders and non-responders. Mixed-effect model P 

value shown. (E) The number of intratumoural (left panel) and peripheral (right panel) clones labelled as 

expanded or contracted between timepoints, per patient, normalized for the total number of clones tested. 

Two-sided Mann–Whitney tests P value shown. (F) The peripheral cosine score between pre-treatment and 

on-treatment is shown for each patient. Patients are split between responders and non-responders. Two-sided 

Mann–Whitney test P value shown; n=12 patients.  

 

Figure S7. Additional expanded TCRs metrics  

(A) The arithmetic mean of Pre/Post frequency ratios of clones expanded pre-treatment, per patient. Two-

sided Mann–Whitney test P value shown. (B) The Spearman’s rank correlation coefficient and P value (shown 

above each point; n=14 patients) for the relationship between the clonality score and the proportion of the 

intratumoural repertoire pre-treatment occupied by expanded clones defined by different frequency 

thresholds (ranging from all TCRs (threshold of zero) up to those found at a frequency of ≥8/1,000). (C) 

Representative network diagrams of pre-treatment intratumoural CDR3 β-chain sequences for patient 

ADR008. The network shows sequences that are connected to at least one other TCR within the tumour. 

Clustering was performed around expanded intratumoural TCRs (red circles). (D) The proportion of pre-

treatment expanded TCRs that are part of a cluster as depicted in (C). TCRs were split between the ones that 

are also detected as expanded post-treatment and the ones that are not (respectively red circles and grey 

circles). Paired two-sided Mann–Whitney test P value shown. (E) Pre-treatment clustering around maintained 

and replaced expanded clones for ADR008. (F) The post-treatment normalised number of clusters for the 

networks containing expanded sequences is shown. Two-sided Mann–Whitney test P value shown; n=11 

patients. (G) Representative network diagrams of post-treatment intratumoural CDR3 β-chain sequences for 

patient ADR001 (left) and for patient ADR013 (right). Clusters containing expanded sequences are shown. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2021. ; https://doi.org/10.1101/2021.03.19.21253661doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.19.21253661
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

35 

 

Figure S8. scRNA- and TCRseq of ADR013 (responder) and ADR001 (non-responder) 

(A) UMAP of merged ADR001 (non-responder) and ADR013 (responder) scRNA data, coloured by cell type 

definition (CD8 = CD8+/CD4-/FOXP3-, CD4 effector = CD8-/CD4+/FOXP3-, Treg = CD8-/FOXP3+). (B) Proportions 

of each cell type recovered in each patient. (C) Differential gene expression analysis performed between IgG4
+
 

and IgG4
-
 cells in each cell type for each patient, average logFC then plotted for responder vs non-responder. 

Regression line plotted using a linear model, colours indicate whether a logFC change was found significant in 

either or both patients. (D) Heatmaps showing top genes which positively correlated (Pearson’s correlation) 

with TCR expansion in the non-responder (NR) patient. (E) Signature expression levels (calculated as the 

proportion of cell transcript mapping to genes in signature) by non-responder (NR) and responder (R) and IgG4 

binding. Significance levels show the result of Wilcox test between IgG4 bound and unbound cells. 
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Supplementary Table 

Table S1. Baseline demographics and patient characteristics and correlations with nivolumab response, and 

sample annotations.  

 All patients 

n=15 

Responders 

n=5 

Non-Responders 

n=10 

p-value* 

Demographics 

Age, median (range), years 

Male, n (%) 

ECOG, n (%) 

  0 

  1 

Predominant clear-cell histology, 

n (%) 

Sarcomatoid/rhabdoid 

component, n (%) 

Prior nephrectomy, n (%) 

On-treatment nephrectomy, n(%) 

 

IMDC risk categories, n (%) 

Favourable (0) 

Intermediate (1) 

Poor (≥2) 

 

Outcomes 

Dead, n (%) 

Best Response by RECIST v1.1 

  Complete response  

  Partial response  

  Stable disease  

  Progressive disease  

 

PFS, months (median) 

OS, months (median) 

 

56 

13 (87) 

 

8 (53) 

7 (70) 

 

 

2 (13) 

 

6 (40) 

2 (13) 

 

 

2 (13) 

3 (20) 

10 (66) 

 

 

6 (40) 

 

0 (0) 

5 (33) 

6 (40) 

4 (27) 

 

4.1 

12.5 

 

56 

9 (90) 

 

3 (30) 

2 (40) 

 

 

2 (40) 

 

3 (30) 

1 (10) 

 

 

1 (20) 

1 (20) 

3 (60) 

 

 

1 (20) 

 

0 (0) 

4 (80) 

1 (20) 

NA 

 

10.4 

12.4 

 

54 

4 (80) 

 

5 (50) 

5 (50) 

 

 

0 (0) 

 

3 (60) 

1 (20) 

 

 

1 (10) 

2 (20) 

7 (70) 

 

 

5 (50) 

 

0 (0) 

1 (10) 

5 (50) 

1 (10) 

 

3.3 

15.0 

 

0.84 

0.59 

 

0.71 

 

 

 

0.28 

 

0.59 

0.59 

 

 

 

0.61 

 

 

 

0.26 

 

 

NA 

 

 

 

0.0007 

>0.99 

*Significance tests: Chi-squared test of categorical variables and Mann-Whitney U test for comparison of 

median values (responders vs. non-responders).  

Percentages may not total 100 because of rounding.  

NA - not applicable; ECOG - Eastern Cooperative Oncology Group performance scale; IMDC - International 

Metastatic Renal-Cell Carcinoma Database Consortium; RECIST - Response Evaluation Criteria In Solid Tumours; 

PFS - progression free survival; OS - overall survival  
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Supplemental Data Items 

Supplemental Data Figure 1. Competition assay with anti-PD1 antibody (pembrolizumab). In vitro 

assessment of activated PBMC demonstrates that PD-1 on T cells can be detected following pembrolizumab 

incubation using anti-human IgG4. (A) Incubation of activated PBMC with pembrolizumab blocks PD-1 flow 

cytometry staining (EH12.2 clone). (B) Pembrolizumab binding to PD-1 can be detected using an anti-IgG4 flow 

cytometry staining antibody. All dot plots are pre-gated on live single cells.  

 

Supplemental Data Figure 2. Single-cell gene expression analysis of CD8
+

 and IgG4
+

CD8
+

 T-cells. Single-cell 

RNAseq expression of Granzyme B, TCF7, TOX, HAVCR2 (TIM-3), CD38, ENTPD1(CD39) and PDCD1(PD-1) on (A) 

CD8
+

 and (B) IgG4
+

CD8
+

 T-cells in ADR013 (responder) and ADR001 (non-responder) are shown.  

 

Supplemental Data Table 1. Sample characteristics for: whole exome sequencing (including sequencing 

metrics, TMB, INDEL and neoantigen burden, purity and cancer cell fraction); RNA sequencing; TCR 

sequencing; and mIF/IHC. 

 

Supplemental Data Table 2. Previously annotated HERV loci matched to custom repeat region annotations. 

Previously annotated HERV loci from Mayer et al. and Vargui et al. and the matching loci from the custom 

repeat region annotation. The start and end buffer columns show the full region used for matching to the 

custom annotations, with 5 bases added or taken from the end or start of previously annotated loci positions 

respectively.  

 

Supplemental Data Table 3. List of genes in T-cell specific expression signatures.  
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Figure 1. Experimental workflow, patients and samples overview, and genomic characteristics of the ADAPTeR cohort
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Figure 2. Expression of human endogenous viruses (HERVs) and LTR-overlapping transcripts in ccRCC according to 
tumour purity
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Figure 3. GSEA and immune deconvolution by RNAseq shows higher levels of immune infiltration and activation in 
responders compared to non-responders under nivolumab 
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Figure 4. Quantification and immunophenotyping of pre- and post-treatment infiltrating immune cells by IHC and mIF
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Figure 5. TCR sequencing demonstrates maintained clonal expansion through persistent antigenic stimulation 
associate with nivolumab response 
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Figure 6. Flow cytometry-based analysis of ADR013 (responder) and ADR001 (non-responder) evaluating post-
treatment total and nivolumab-bound CD8+ T-cells 
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Figure 7. Nivolumab binding correlates with upregulation of T-cell activation genes and clones expanded 
through persistent antigenic stimulation
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Figure 8. Longitudinal profiling by bulk and single-cell RNA/TCRseq reveal dynamic immune correlates of response and 
resistance to nivolumab
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