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Genome-wide association study of over 40,000 bipolar disorder cases provides new insights into the 
underlying biology 
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Abstract 
Bipolar disorder (BD) is a heritable mental illness with complex etiology. We performed a genome-wide 
association study (GWAS) of 41,917 BD cases and 371,549 controls of European ancestry, which identified 
64 associated genomic loci. BD risk alleles were enriched in genes in synaptic signaling pathways and 
brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal 
cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of 
antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating eQTL data implicated 
15 genes robustly linked to BD via gene expression, encoding druggable targets such as HTR6, MCHR1, 
DCLK3 and FURIN. Analyses of BD subtypes indicated high but imperfect genetic correlation between BD 
type I and II and identified additional associated loci. Together, these results advance our understanding 
of the biological etiology of BD, identify novel therapeutic leads and prioritize genes for functional follow-
up studies. 
 
 
Introduction 
Bipolar disorder (BD) is a complex mental disorder characterized by recurrent episodes of (hypo)mania 
and depression. It is a common condition affecting an estimated 40 to 50 million people worldwide1. This, 
combined with the typical onset in young adulthood, an often chronic course, and increased risk of 
suicide2, make BD a major public health concern and a major cause of global disability1. Clinically, BD is 
classified into two main subtypes: bipolar I disorder, in which manic episodes typically alternate with 
depressive episodes, and bipolar II disorder, characterized by the occurrence of at least one hypomanic 
and one depressive episode3. These subtypes have a lifetime prevalence of ~1% each in the population4,5.  

Family and molecular genetic studies provide convincing evidence that BD is a multifactorial disorder, with 
genetic and environmental factors contributing to its development6. On the basis of twin and family 
studies, the heritability of BD is estimated at 60-85%7,8. Genome-wide association studies (GWAS)9–23 have 
led to valuable insights into the genetic etiology of BD. The largest such study has been conducted by the 
Psychiatric Genomics Consortium (PGC), in which genome-wide SNP data from 29,764 BD patients and 
169,118 controls were analyzed and 30 genome-wide significant loci were identified (PGC2)24. SNP-based 
heritability (ℎ"#$% ) estimation using the same data, suggested that common genetic variants genome-wide 
explain ~20% of BD‘s phenotypic variance24. Polygenic risk scores generated from the results of this study 
explained ~4% of phenotypic variance in independent samples. Across the genome, genetic associations 
with BD converged on specific biological pathways including regulation of insulin secretion25,26, retrograde 
endocannabinoid signaling24, glutamate receptor signaling27 and calcium channel activity9.  

Despite this considerable progress, only a fraction of the genetic etiology of BD has been identified and 
the specific biological mechanisms underlying the development of the disorder are still unknown. In the 
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present study, we report the results of the third GWAS meta-analysis of the PGC Bipolar Disorder Working 
Group, comprising 41,917 patients with BD and 371,549 controls. These results confirm and expand on 
many previously reported findings, identify novel therapeutic leads and prioritize genes for functional 
follow-up studies28,29. Thus, our results further illuminate the biological etiology of BD. 

 
Results 
GWAS results 
A GWAS meta-analysis was conducted of 57 BD cohorts collected in Europe, North America and Australia 
(Table S1), totaling 41,917 BD cases and 371,549 controls of European descent (Effective N = 101,962, see 
online methods). For 52 cohorts, individual-level genotype and phenotype data were shared with the PGC 
and cases met international consensus criteria (DSM-IV, ICD-9 or ICD-10) for lifetime BD, established using 
structured diagnostic interviews, clinician-administered checklists or medical record review. BD GWAS 
summary statistics were received for five external cohorts (iPSYCH30, deCODE genetics31, Estonian 
Biobank32, Trøndelag Health Study (HUNT)33 and UK Biobank34), in which most cases were ascertained 
using ICD codes. The GWAS meta-analysis identified 64 independent loci associated with BD at genome-
wide significance (P < 5E-08) (Figure 1, Table 1, Table S2). Using LD Score regression (LDSC)35 the ℎ"#$% of 
BD was estimated to be 18.6% (SE=0.008, P=5.1E-132) on the liability scale, assuming a BD population 
prevalence of 2%, and 15.6% (SE=0.006, P=5.0E-132) assuming a population prevalence of 1% (Table S3). 
The genomic inflation factor (λGC) was 1.38 and the LD Score regression (LDSC) intercept was 1.04 
(SE=0.01, P=2.5E-04)(Supplementary Figure 1). While the intercept has frequently been used as an 
indicator of confounding from population stratification, it can rise above 1 with increased sample size and 
heritability. The attenuation ratio - (LDSC intercept - 1)/(mean of association chi-square statistics - 1) - 
which is not subject to these limitations, was 0.06 (SE=0.02), indicating that the majority of inflation of 
the GWAS test statistics was due to polygenicity35,36. Of the 64 genome-wide significant loci, 33 are novel 
discoveries (ie. loci not overlapping with any locus previously reported as genome-wide significant for BD). 
Novel loci include the major histocompatibility complex (MHC) and loci previously reaching genome-wide 
significance for other psychiatric disorders, including 10 for schizophrenia, 4 for major depression and 3 
for childhood-onset psychiatric disorders or problematic alcohol use (Table 1).  
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Figure 1: Manhattan plot of genome-wide association meta-analysis of 41,917 bipolar disorder cases 
and 371,549 controls 
The x-axis shows genomic position (chromosomes 1-22 and X) and the y-axis shows statistical significance 
as –log10(P value). P values are two-sided and based on an inverse variance weighted fixed effects meta-
analysis. The red line shows the genome-wide significance threshold (P<5E-08). SNPs in genome-wide 
significant loci are colored green for loci previously associated with bipolar disorder (BD) and yellow for 
novel associations from this study. The genes labeled are those prioritized by integrative eQTL analyses 
or notable genes in novel loci (MHC, CACNB2, KCNB1). 
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Enrichment analyses 
Genome-wide analyses using MAGMA37 indicated significant enrichment of BD associations in 161 genes 
(Table S4) and 4 gene sets, related to synaptic signaling (Table S5). The BD association signal was enriched 
amongst genes expressed in different brain tissues (Table S6), especially genes with high specificity of 
gene expression in neurons (both excitatory and inhibitory) versus other cell types, within cortical and 
subcortical brain regions in mice (Supplementary Figure 2)38. In human brain samples, signal enrichment 
was also observed in hippocampal pyramidal neurons and interneurons of the prefrontal cortex and 
hippocampus, compared with other cell types (Supplementary Figure 2). 
 
In a gene-set analysis of the targets of individual drugs (from the Drug-Gene Interaction Database DGIdb 
v.239 and the Psychoactive Drug Screening Database Ki DB40), the targets of the calcium channel blockers 
mibefradil and nisoldipine were significantly enriched (Table S7). Grouping drugs according to their 
Anatomical Therapeutic Chemical (ATC) classes41, there was significant enrichment in the targets of four 
broad drug classes (Table S8): psycholeptics (drugs with a calming effect on behavior) (especially hypnotics 
and sedatives, antipsychotics and anxiolytics), calcium channel blockers, antiepileptics and (general) 
anesthetics. (Table S8).  
 
eQTL integrative analyses 
A transcriptome-wide association study (TWAS) was conducted using FUSION42 and eQTL data from the 
PsychENCODE Consortium (1,321 brain samples)43. BD-associated alleles significantly influenced 
expression of 77 genes in the brain (Table S9, Supplementary Figure 3). These genes encompassed 40 
distinct regions. TWAS fine-mapping was performed using FOCUS44 to model the correlation among the 
TWAS signals and prioritize the most likely causal gene(s) in each region. Within the 90%-credible set, 
FOCUS prioritised 22 genes with a posterior inclusion probability (PIP) > 0.9 (encompassing 20 distinct 
regions) and 32 genes with a PIP > 0.7 (29 distinct regions) (Table S10).  
  
Summary data-based Mendelian randomization (SMR)45,46 was used to identify putative causal 
relationships between SNPs and BD via gene expression by integrating the BD GWAS results with brain 
eQTL summary statistics from the PsychENCODE43 Consortium and blood eQTL summary statistics from 
the eQTLGen Consortium (31,684 whole blood samples)47. The eQTLGen results represent the largest 
existing eQTL study and provide independent eQTL data. Of the 32 genes fine-mapped with PIP > 0.7, 15 
were significantly associated with BD in the SMR analyses and passed the HEIDI (heterogeneity in 
dependent instruments) test45,46, suggesting that their effect on BD is mediated via gene expression in the 
brain and/or blood (Table S11). The genes located in genome-wide significant loci are labeled in Figure 1. 
Other significant genes included HTR6, DCLK3, HAPLN4 and PACSIN2.  
  
MHC locus 
Variants within and distal to the major histocompatibility complex (MHC) locus were associated with BD 
at genome-wide significance. The most highly associated SNP was rs13195402, 3.2 megabases distal to 
any HLA gene or the complement component 4 (C4) genes (Supplementary Figure 4). Imputation of C4 
alleles using SNP data uncovered no association between the five most common structural forms of the 
C4A/C4B locus (BS, AL, AL-BS, AL-BL, and AL-AL) and BD, either before or after conditioning on rs13195402 
(Supplementary Figure 5). While genetically predicted C4A expression initially showed a weak association 
with BD, this association was non-significant after controlling for rs13195402 (Supplementary Figure 6).  
 
Polygenic risk scoring 
The performance of polygenic risk scores (PRS) based on these GWAS results was assessed by excluding 
cohorts in turn from the meta-analysis to create independent test samples. PRS explained ~4.57% of 
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phenotypic variance in BD on the liability scale (at GWAS P value threshold (pT) < 0.1, BD population 
prevalence 2%), based on the weighted mean R2 across cohorts (Figure 2, Table S12). This corresponds to 
a weighted mean area under the curve (AUC) of 65%. Results per cohort and per wave of recruitment to 
the PGC are in Tables S12-S13 and Supplementary Figure 7. At pT < 0.1, individuals in the top 10% of BD 
PRS had an odds ratio of 3.5 (95% CI 1.7-7.3) of being affected with the disorder compared with individuals 
in the middle decile (based on the weighted mean OR across PGC cohorts), and an odds ratio of 9.3 (95% 
CI 1.7-49.3) compared with individuals in the lowest decile. The generalizability of PRS from this meta-
analysis was examined in several non-European cohorts. PRS explained up to 2.3% and 1.9% of variance 
in BD in two East Asian samples, and 1.2% and 0.4% in two admixed African American samples (Figure 2, 
Table S14). The variance explained by the PRS increased in every cohort with increasing sample size of the 
PGC BD European discovery sample (Supplementary Figure 8, Table S14).   
 
 
 

 
Figure 2: Phenotypic variance in bipolar disorder explained by polygenic risk scores  
Variance explained is presented on the liability scale, assuming a 2% population prevalence of bipolar 
disorder. For European ancestries, the results shown are the weighted mean R2 values across all 57 
cohorts in the PGC3 meta-analysis, weighted by the effective N per cohort. The numbers of cases and 
controls are shown from left to right under the barplot for each study. GWAS pT - the color of the bars 
represents the P value threshold used to select SNPs from the discovery GWAS. GAIN-AA - Genetic 
Association Information Network African American cohort, AA-GPC - African American Genomic 
Psychiatry Cohort.  
 
 
Genetic architecture of BD and other traits 
The genome-wide genetic correlation (rg) of BD with a range of diseases and traits was assessed on LD 
Hub48. After correction for multiple testing, BD showed significant rg with 16 traits among 255 tested from 
published GWAS (Table S15). Genetic correlation was positive with all psychiatric disorders assessed, 
particularly schizophrenia (rg = 0.68) and major depression (rg=0.44), and to a lesser degree anorexia, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2021. ; https://doi.org/10.1101/2020.09.17.20187054doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.17.20187054
http://creativecommons.org/licenses/by/4.0/


 

12 

attention deficit/hyperactivity disorder and autism spectrum disorder (rg≈0.2). We found evidence of 
positive rg between BD and smoking initiation, cigarettes per day, problematic alcohol use and drinks per 
week (Figure 3). BD was also positively genetically correlated with measures of sleep quality (daytime 
sleepiness, insomnia, sleep duration) (Figure 3). Among 514 traits measured in the general population of 
the UK Biobank, there was significant rg between BD and many psychiatric-relevant traits or symptoms, 
dissatisfaction with interpersonal relationships, poorer overall health rating and feelings of loneliness or 
isolation (Table S16).  
  
Bivariate gaussian mixture models were applied to the GWAS summary statistics for BD and other complex 
traits using the MiXeR tool49,50 to estimate the number of variants influencing each trait that explain 90% 
of ℎ"#$% and their overlap between traits. MiXeR estimated that approximately 8.6 k (SE=0.2 k) variants 
influence BD, which is similar to the estimate for schizophrenia (9.7 k, SE=0.2 k) and somewhat lower than 
that for major depression (12.3 k, SE=0.6 k) (Table S17, Supplementary Figure 9). When considering the 
number of shared loci as a proportion of the total polygenicity of each trait, the vast majority of loci 
influencing BD were also estimated to influence major depression (97%) and schizophrenia (96%) (Table 
S17, Supplementary Figure 9). Interestingly, within these shared components, the variants that influenced 
both BD and schizophrenia had high concordance in direction of effect (80%, SE=2%), while the portion of 
concordant variants between BD and MDD was only 69% (SE=1%) (Table S17).  
 
Genetic and causal relationships between BD and modifiable risk factors 
Ten traits associated with BD from clinical and epidemiological studies were investigated in detail for 
genetic and potentially causal relationships with BD via LDSC35, generalized summary statistics-based 
Mendelian randomization (GSMR)51 and bivariate gaussian mixture modeling49. BD has been strongly 
linked with sleep disturbances52, alcohol use53 and smoking54, higher educational attainment55,56 and 
mood instability57. Most of these traits had modest but significant genetic correlations with BD (rg -0.05-
0.35) (Figure 3). Examining the effects of these traits on BD via GSMR, smoking initiation was associated 
with BD, corresponding to an OR of 1.49 (95% CI 1.38-1.61) for developing the disorder (P=1.74E-22) 
(Figure 3). Testing the effect of BD on the traits, BD was significantly associated with reduced likelihood 
of being a morning person and increased number of drinks per week (P<1.47E-03) (Figure 3). Positive bi-
directional relationships were identified between BD and longer sleep duration, problematic alcohol use, 
educational attainment (EA) and mood instability (Figure 3). Notably, the instrumental variables for mood 
instability were selected from a GWAS conducted in the general population, excluding individuals with 
psychiatric disorders58. For all of the aforementioned BD-trait relationships, the effect size estimates from 
GSMR were consistent with those calculated using the inverse variance weighted regression method, and 
there was no evidence of bias from horizontal pleiotropy. Full MR results are in Tables S18-19. Bivariate 
gaussian mixture modeling using MiXeR, indicated large proportions of variants influencing both BD and 
all other traits tested, particularly educational attainment, where approximately 98% of variants 
influencing BD were estimated to also influence EA. While cigarettes per day was a trait of interest, MiXeR 
could not model these data due to low polygenicity and heritability, and the effect of cigarettes per day 
on BD was inconsistent between MR methods, suggesting a violation of MR assumptions (Tables S18-20). 
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Figure 3: Relationships between bipolar disorder and modifiable risk factors based on genetic 
correlations, generalized summary statistics-based Mendelian randomization and bivariate gaussian 
mixture modeling 
Venn diagrams depict MiXeR results of the estimated number of influencing variants shared between 
bipolar disorder (BD) and each trait of interest (grey), unique to BD (blue) and unique to the trait of 
interest (orange). The number of influencing variants and standard error are shown in thousands. The size 
of the circles reflects the polygenicity of each trait, with larger circles corresponding to greater 
polygenicity. The estimated genetic correlation (rg) between BD and each trait of interest and standard 
error from LD Score regression is shown below the corresponding Venn diagram, with an accompanying 
scale (-1 to +1). The arrows above and below the Venn diagrams indicate the results of generalized 
summary statistics-based Mendelian randomization (GSMR) of BD on the trait of interest, and the trait of 
interest on BD, respectively. The GSMR effect size and standard error is shown inside the corresponding 
arrow. Solid arrows indicate a significant relationship between the exposure and the outcome, after 
correction for multiple comparisons (P<1.47E-03) and dashed arrows indicate a non-significant 
relationship. 
 
 
BD subtypes 
We conducted GWAS meta-analyses of bipolar I disorder (BD I) (25,060 cases, 449,978 controls) and 
bipolar II disorder (BD II) (6,781 cases, 364,075 controls). The BD I analysis identified 44 genome-wide 
significant loci, 31 of which overlapped with genome-wide significant loci from the main BD GWAS (Table 
1, Table S21). The remaining 13 genome-wide significant loci for BD I all had P < 4.0E-05 in the main BD 
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GWAS. One genome-wide significant locus was identified in the GWAS meta-analysis of BD II and had a P 
< 1.1E-04 in the main GWAS of BD (Table S21). The ℎ"#$% estimates on the liability scale for BD I and BD II 
were 20.9% (SE=0.009, P=1.0E-111) and 11.6% (SE=0.01, P = 3.9E-15), respectively, assuming a 1% 
population prevalence of each subtype. These heritability values are significantly different from each 
other (P=2.4E-25, block jackknife). The genetic correlation between BD I and BD II was 0.85 (SE=0.05, P = 
2.88E-54), which is significantly different from 1 (P=1.6E-03). The genetic correlation of BD I with 
schizophrenia (rg=0.66, SE=0.02) was higher than that of BD II (rg=0.54 SE=0.05), whereas major depression 
was more strongly genetically correlated with BD II (rg=0.66, SE=0.05) than with BD I (rg=0.34, SE=0.03) 
(Table S22).  
 
 
Discussion 
In a GWAS of 41,917 BD cases, we identify 64 associated genomic loci, 33 of which are novel discoveries. 
With a 1.5-fold increase in effective sample size compared with the PGC2 BD GWAS, this study more than 
doubled the number of associated loci, representing an inflection point in the rate of risk variant 
discovery. We observed consistent replication of known BD loci, including 28/30 loci from the PGC2 
GWAS24 and several implicated by other BD GWAS15,16,17, including a study of East Asian cases59.  
 
The 33 novel loci discovered here encompass genes of expected biological relevance to BD, such as the 
ion channels CACNB2 and KCNB1. Amongst the 64 BD loci, 17 have previously been implicated in GWAS 
of schizophrenia60, and seven in GWAS of major depression61, representing the first overlap of genome-
wide significant loci between the mood disorders. For these genome-wide significant loci shared across 
disorders, 17/17 and 5/7 of the BD index SNPs had the same direction of effect on schizophrenia and 
major depression respectively (Table S23). More generally, 50/64 and 62/64 BD loci had a consistent 
direction of effect on major depression and schizophrenia respectively, considerably greater than chance 
(P<1E-05, binomial test).  Bivariate gaussian mixture modeling estimated that across the entire genome, 
almost all variants influencing BD also influence schizophrenia and major depression, albeit with variable 
effects62. SNPs in and around the MHC locus reached genome-wide significance for BD for the first time. 
However, unlike in schizophrenia, we found no influence of C4 structural alleles or gene expression63. 
Rather the association was driven by variation outside the classical MHC locus, with the index SNP 
(rs13195402) being a missense variant in BTN2A1, a brain-expressed gene64 encoding a plasma membrane 
protein.  
 
The genetic correlation of BD with other psychiatric disorders was consistent with previous reports65,66. 
Our results also corroborate previous genetic and clinical evidence of associations between BD and sleep 
disturbances67, problematic alcohol use68 and smoking69.  While the genome-wide genetic correlations 
with these traits were modest (rg -0.05-0.35), MiXeR estimated that for all traits, more than 55% of trait-
influencing variants also influence BD (Figure 3). Taken together, these results point to shared biology as 
one possible explanation for the high prevalence of substance use in BD. However, excluding genetic 
variants associated with both traits, MR analyses suggested that smoking is also a putatively “causal” risk 
factor for BD, while BD has no effect on smoking, consistent with a previous report70. [We use the word 
“causal” with caution here as we consider MR an exploratory analysis to identify potentially modifiable 
risk factors which warrant more detailed investigations to understand their complex relationship with BD.] 
In contrast, MR indicated that BD had bi-directional “causal” relationships with problematic alcohol use, 
longer sleep duration and mood instability. Insights into the relationship of such behavioral correlates 
with BD may have future impact on clinical decision making in the prophylaxis or management of the 
disorder. Higher educational attainment has previously been associated with BD in epidemiological 
studies55,56, while lower educational attainment has been associated with schizophrenia and major 
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depression71,72. Here, educational attainment had a significant positive effect on risk of BD and vice versa. 
Interestingly, MiXeR estimated that almost all variants that influence BD also influence educational 
attainment. The substantial genetic overlap observed between BD and the other phenotypes suggests 
that many variants likely influence multiple phenotypes which may be differentiated by phenotype-
specific effect size distributions among the shared influencing variants. 
 
The integration of eQTL data with our GWAS results yielded 15 high-confidence genes for which there was 
converging evidence that their association with BD is mediated via gene expression. Amongst these were 
HTR6, encoding a serotonin receptor targeted by antipsychotics and antidepressants73 and MCHR1 
(melanin-concentrating hormone receptor 1), encoding a target of the antipsychotic haloperidol73.  We 
note that for both of these genes, their top eQTLs have opposite directions of effect on gene expression 
in the brain and blood, possibly playing a role in the tissue-specific gene regulation influencing BD74. BD 
was associated with decreased expression of FURIN, a gene with a neurodevelopmental role which has 
already been the subject of functional genomics experiments in neuronal cells, following its association 
with schizophrenia in GWAS75. The top association in our GWAS was in the TRANK1 locus on chromosome 
3, which has previously been implicated in BD12,18,59. Although BD-associated SNPs in this locus are known 
to regulate TRANK1 expression76, our eQTL analyses support a stronger but correlated regulation of 
DCLK3, located 87 kb upstream of TRANK143,77. Both FURIN and DCLK3 also encode druggable proteins 
(although they are not targets for any current psychiatric medications)73,78. These eQTL results provide 
promising BD candidate genes for functional follow-up experiments29. While several of these are in 
genome-wide significant loci, many are not the closest gene to the index SNP, highlighting the value of 
probing underlying molecular mechanisms to prioritize the most likely causal genes in the loci.  
 
GWAS signals were enriched in the gene targets of existing BD pharmacological agents, such as 
antipsychotics, mood stabilizers, and antiepileptics. However, enrichment was also found in the targets 
of calcium channel blockers used to treat hypertension and GABA-receptor targeting anesthetics (Table 
S8). Calcium channel antagonists have long been investigated for the treatment of BD, without becoming 
an established therapeutic approach, and there is evidence that some antiepileptics have calcium 
channel-inhibiting effects79,80. These results underscore the opportunity for repurposing some classes of 
drugs, particularly calcium channel antagonists, as potential BD treatments81.  
 
BD associations were enriched in gene sets involving neuronal parts and synaptic signaling. Neuronal and 
synaptic pathways have been described in cross-disorder GWAS of multiple psychiatric disorders including 
BD82–84. Dysregulation of such pathways has also been suggested by previous functional and animal 
studies85. Analysis of single-cell gene expression data revealed enrichment in genes with high specificity 
of gene expression in neurons (both excitatory and inhibitory), of many brain regions, in particular the 
cortex and hippocampus. These findings are similar to those reported in GWAS data of schizophrenia86 
and major depressive disorder38. 
  
PRS for BD explained on average 4.57% of phenotypic variance (liability scale) across European cohorts, 
although this varied in different waves of the BD GWAS, ranging from 6.6% in the PGC1 cohorts to 2.9% 
in the External biobank studies (Supplementary Figure 7, Table S12). These results are in line with the 
ℎ"#$%  of BD per wave, which ranged from 24.6% (SE=0.01) in PGC1 to 11.9% (SE=0.01) in External studies 
(Table S3). Some variability in ℎ"#$% estimates may arise from the inclusion of cases from population 
biobanks, who may have more heterogeneous clinical presentations or less severe illness than BD patients 
ascertained via inpatient or outpatient psychiatric clinics. Across the waves of clinically ascertained 
samples within the PGC, ℎ"#$%  and the R2 of PRS also varied, likely reflecting clinical and genetic 
heterogeneity in the type of BD cases ascertained; the PGC1 cohorts consisted mostly of BD I cases9, 
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known to be the most heritable of the BD subtypes11,24, while later waves included more individuals with 
BD II24. Overall, the ℎ"#$%  of BD calculated from the meta-analysis summary statistics was 18% on the 
liability scale, a decrease of ~2% compared with the PGC2 GWAS24, which may be due to the addition of 
cohorts with lower ℎ"#$%  estimates and heterogeneity between cohorts (Table S3). However, despite 
differences in ℎ"#$%  and R2 of PRS per wave, the genetic correlation of BD between all waves was high 
(weighted mean rg=0.94, SE=0.03), supporting our rationale for combining cases with different BD 
subtypes or ascertainment to increase power for discovery of risk variants. In Europeans, individuals in 
the top 10% of PRS had an OR of 3.5 for BD, compared with individuals with average PRS (middle decile), 
which translates into a modest absolute lifetime risk of the disorder (7% based on PRS alone). While PRS 
are invaluable tools in research settings, the current BD PRS lack sufficient power to separate individuals 
into clinically meaningful risk categories, and therefore have no clinical utility at present87,88. PRS from this 
European BD meta-analysis yield higher R2 values in diverse ancestry samples than PRS based on any 
currently available BD GWAS within the same ancestry59. However, performance still greatly lags behind 
that in Europeans, with ~2% variance explained in East Asian samples and substantially less in admixed 
African American samples, likely due to differences in allele frequencies and LD structures, consistent with 
previous studies89,90. There is a pressing need for more and larger studies in other ancestry groups to 
ensure that any future clinical utility is broadly applicable. Exploiting the differences in LD structure 
between diverse ancestry samples will also assist in the fine-mapping of risk loci for BD.   
 
Our analyses confirmed that BD is a highly polygenic disorder, with an estimated 8.6 k variants explaining 
90% of its ℎ"#$% . Hence, many more SNPs than those identified here are expected to account for the 
common variant architecture underlying BD. This GWAS marks an inflection point in risk variant discovery 
and we expect that from this point forward, the addition of more samples will lead to a dramatic increase 
in genetic findings. Nevertheless, fewer genome-wide significant loci have been identified in BD than in a 
schizophrenia GWAS of comparable sample size60. This may be due to the clinical and genetic 
heterogeneity that exists in BD.  
 
Our GWAS of subtypes BD I and BD II identified additional associated loci. Consistent with previous 
findings24, our analysis showed that the two subtypes were highly but imperfectly genetically correlated 
(rg=0.85), and that BD I is more genetically correlated with schizophrenia, while BD II has stronger genetic 
correlation with major depression. The subtypes are sufficiently similar to justify joint analysis as BD, but 
are not identical in their genetic composition, and as such contribute to the genetic heterogeneity of BD91. 
We identified thirteen loci passing genome-wide significance for BD I, and one for BD II, which did not 
reach significance in the main BD GWAS, further illustrating the partially differing genetic composition of 
the two subtypes. Understanding the shared and distinct genetic components of BD subtypes and 
symptoms requires detailed phenotyping efforts in large cohorts and is an important area for future 
psychiatric genetics research.  
 
In summary, these new data advance our understanding of the biological etiology of BD and prioritize a 
set of candidate genes for functional follow-up experiments. Several lines of evidence converge on the 
involvement of calcium channel signaling, providing a promising avenue for future therapeutic 
development.  
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Methods 
Sample description 
The meta-analysis sample comprises 57 cohorts collected in Europe, North America and Australia, totaling 
41,917 BD cases and 371,549 controls of European descent (Table S1). The total effective N, equivalent to 
an equal number of cases and controls in each cohort (4*Ncases*Ncontrols/(Ncases+Ncontrols)), is 
101,962. For 52 cohorts, individual-level genotype and phenotype data were shared with the PGC. Cohorts 
have been added to the PGC in five waves (PGC19, PGC224, PGC PsychChip, PGC3 and External Studies); all 
cohorts from previous PGC BD GWAS were included. The source and inclusion/exclusion criteria for cases 
and controls for each cohort, are described in the Supplementary Note. Cases were required to meet 
international consensus criteria (DSM-IV, ICD-9 or ICD-10) for a lifetime diagnosis of BD, established using 
structured diagnostic instruments from assessments by trained interviewers, clinician-administered 
checklists or medical record review. In most cohorts, controls were screened for the absence of lifetime 
psychiatric disorders and randomly selected from the population. For five cohorts (iPSYCH30, deCODE 
genetics31, Estonian Biobank32, Trøndelag Health Study (HUNT)33 and UK Biobank34), GWAS summary 
statistics for BD were shared with the PGC.  In these cohorts, BD cases were ascertained using ICD codes 
or self-report during a nurse interview, and the majority of controls were screened for the absence of 
psychiatric disorders via ICD codes. Follow-up analyses included four non-European BD case-control 
cohorts, two from East Asia (Japan59 and Korea92), and two admixed African American cohorts22,93, 
providing a total of 5,847 cases and 65,588 controls. These BD cases were ascertained using international 
consensus criteria (DSM-IV)22,93 through psychiatric interviews (Supplementary Note).  
 
Genotyping, quality control and imputation    
For 52 cohorts internal to the PGC, genotyping was performed following local protocols and genotypes 
were called using standard genotype calling softwares from commercial sources (Affymetrix and Illumina). 
Subsequently, standardized quality control, imputation and statistical analyses were performed centrally 
using RICOPILI (Rapid Imputation for COnsortias PIpeLIne) (version 2018_Nov_23.001)94, separately for 
each cohort. Briefly, the quality control parameters for retaining SNPs and subjects were: SNP missingness 
< 0.05 (before sample removal), subject missingness < 0.02, autosomal heterozygosity deviation (Fhet < 
0.2), SNP missingness < 0.02 (after sample removal), difference in SNP missingness between cases and 
controls < 0.02, SNP Hardy-Weinberg equilibrium (P > 10E-10 in psychiatric cases and P > 10E-06 in 
controls). Relatedness was calculated across cohorts using identity by descent and one of each pair of 
related individuals (pi_hat > 0.2) was excluded. Principal components (PCs) were generated using 
genotyped SNPs in each cohort separately using EIGENSTRAT v6.1.495. Based on visual inspection of plots 
of PCs for each dataset (which were all of European descent according to self-report/clinical data), we 
excluded samples to obtain more clearly homogeneous datasets. Genotype imputation was performed 
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using the pre-phasing/ imputation stepwise approach implemented in Eagle v2.3.596 and Minimac397 to 
the Haplotype Reference Consortium (HRC) reference panel v1.098.  Data on the X chromosome were 
available for 50 cohorts internal to the PGC and one external cohort (HUNT), and the X chromosome was 
imputed to the HRC reference panel in males and females separately within each cohort. The five external 
cohorts were processed by the collaborating research teams using comparable procedures and imputed 
to the HRC or a custom reference panel as appropriate. Full details of the genotyping, quality control and 
imputation for each of these cohorts are available in the Supplementary Note. Identical individuals 
between PGC cohorts and the Estonian Biobank and UK Biobank cohorts were detected using genotype-
based checksums 
(https://personal.broadinstitute.org/sripke/share_links/zpXkV8INxUg9bayDpLToG4g58TMtjN_PGC_SCZ
_w3.0718d.76) and removed from PGC cohorts.  
 
Genome-wide association study 
For PGC cohorts, GWAS were conducted within each cohort using an additive logistic regression model in 
PLINK v1.9099, covarying for PCs 1-5 and any others as required. Association analyses of the X chromosome 
were conducted in males and females separately using the same procedures, with males coded as 0 or 2 
for 0 or 1 copies of the reference allele. Results from males and females were then meta-analyzed within 
each cohort. For external cohorts, GWAS were conducted by the collaborating research teams using 
comparable procedures (Supplementary Note). To control test statistic inflation at SNPs with low minor 
allele frequency (MAF) in small cohorts, SNPs were retained only if cohort MAF was > 1% and minor allele 
count was > 10 in either cases or controls (whichever had smaller N).  There was no evidence of 
stratification artifacts or uncontrolled inflation of test statistics in the results from any cohort (λGC 0.97-
1.05)(Table S1). Meta-analysis of GWAS summary statistics was conducted using an inverse variance-
weighted fixed effects model in METAL (version 2011-03-25)100 across 57 cohorts for the autosomes 
(41,917 BD cases and 371,549 controls) and 51 cohorts for the X chromosome (35,691 BD cases and 96,731 
controls). A genome-wide significant locus was defined as the region around a SNP with P < 5E-08, with 
linkage disequilibrium (LD) r2 > 0.1, within a 3000 kilobase (kb) window. Regional association plots and 
forest plots of the index SNP for all genome-wide significant loci are presented in Supplementary Data 1 
and 2 respectively.  
 
Overlap of loci with other psychiatric disorders 
Genome-wide significant loci for BD were assessed for overlap with genome-wide significant loci for other 
psychiatric disorders, using the largest available GWAS results for major depression61, schizophrenia60, 
attention deficit/hyperactivity disorder101, post-traumatic stress disorder102, lifetime anxiety disorder103, 
Tourette’s Syndrome104, anorexia nervosa105, alcohol use disorder or problematic alcohol use68, autism 
spectrum disorder106, mood disorders91 and the cross-disorder GWAS of the Psychiatric Genomics 
Consortium66. The boundaries of the genome-wide significant loci were calculated in the original 
publications. Overlap of loci was calculated using bedtools v2.29.2107.  
 
Enrichment analyses 
P values quantifying the degree of association of genes and gene sets with BD were calculated using 
MAGMA v1.0837, implemented in FUMA v1.3.6a64,108. Gene-based tests were performed for 19,576 genes 
(Bonferroni-corrected P value threshold = 2.55E-06). A total of 11,858 curated gene sets including at least 
10 genes from MSigDB V7.0 were tested for association with BD (Bonferroni-corrected P value threshold 
= 4.22E-06). Competitive gene-set tests were conducted correcting for gene size, variant density and LD 
within and between genes. Tissue-set enrichment analyses were also performed using MAGMA 
implemented in FUMA, to test for enrichment of association signal in genes expressed in 54 tissue types 
from GTEx V8 (Bonferroni-corrected P value threshold = 9.26E-04)64,108.  
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For single-cell enrichment analyses, publicly available single-cell RNA-seq data were compiled from five 
studies of the adult human and mouse brain86,109–112. The mean expression for each gene in each cell type 
was computed from the single-cell expression data (if not provided). For the Zeisel dataset109, we used 
the mean expression at level 4 (39 cell types from 19 regions for the mouse nervous system). For the 
Saunders dataset110, we computed the mean expression of the different classes in each of the 9 different 
brain regions sampled (88 cell types in total). We filtered out any genes with non-unique names, genes 
not expressed in any cell types, non-protein coding genes, and, for mouse datasets, genes that had no 
expert curated 1:1 orthologs between mouse and human (Mouse Genome Informatics, The Jackson 
laboratory, version 11/22/2016, 
http://www.informatics.jax.org/downloads/reports/index.html#homology), resulting in 16,472 genes. 
Gene expression was then scaled to a total of 1 million UMIs (unique molecular identifiers) (or transcript 
per million (TPM)) for each cell type/tissue. Using a previously described method38, a metric of gene 
expression specificity was calculated by dividing the expression of each gene in each cell type by the total 
expression of that gene in all cell types, leading to values ranging from 0 to 1 for each gene (0 meaning 
that the gene is not expressed in that cell type and 1 meaning that all of the expression of the gene is in 
that cell type). We then selected the top 10% most specific genes for each cell type/tissue for enrichment 
analysis. MAGMA v1.0837 was used to test gene-set enrichment using GWAS summary statistics, covarying 
for  gene size, gene density, mean sample size for tested SNPs per gene, the inverse of the minor allele 
counts per gene and the log of these metrics. We excluded any SNPs with INFO score <0.6, with MAF < 1% 
or with estimated odds ratio > 25 or smaller than 1/25, as well as SNPs located in the MHC region (chr6:25-
34 Mb). We set a window of 35 kb upstream to 10 kb downstream of the gene coordinates to compute 
gene-level association statistics and used the European reference panel from the phase 3 of the 1000 
genomes project as the reference population113. We then used MAGMA to test whether the 10% most 
specific genes (with an expression of at least 1 TPM or 1 UMI per million) for each cell type/tissue were 
associated with BD. The P value threshold for significance was P < 9.1E-03, representing a 5% false 
discovery rate (FDR) across datasets.   
 
Further gene-set analyses were performed restricted to genes targeted by drugs, assessing individual 
drugs and grouping drugs with similar actions. This approach has been described previously41. Gene-level 
and gene-set analyses were performed in MAGMA v1.0837. Gene boundaries were defined using build 37 
reference data from the NCBI, available on the MAGMA website (https://ctg.cncr.nl/software/magma), 
extended 35kb upstream and 10kb downstream to include regulatory regions outside of the transcribed 
region. Gene-level association statistics were defined as the aggregate of the mean and the lowest variant-
level P value within the gene boundary, converted to a Z-value. Gene sets were defined comprising the 
targets of each drug in the Drug-Gene Interaction database DGIdb v.239 and in the Psychoactive Drug 
Screening Database Ki DB40, both downloaded in June 201641. Analyses were performed using competitive 
gene-set analyses in MAGMA. Results from the drug-set analysis were then grouped according to the 
Anatomical Therapeutic Chemical class of the drug41.  Only drug classes with at least 10 valid drug gene 
sets within them were analyzed. Drug-class analysis was performed using enrichment curves. All drug 
gene sets were ranked by their association in the drug set analysis, and then for a given drug class an 
enrichment curve was drawn scoring a "hit" if the drug gene set was within the class, or a "miss" if it was 
outside of the class. The area under the curve was calculated, and a p-value for this calculated as the 
Wilcoxon Mann-Whitney test comparing drug gene sets within the class to drug gene sets outside of the 
class41. Multiple testing was controlled using a Bonferroni-corrected significance threshold of P < 5.60E-
05 for drug-set analysis and P < 7.93E-04 for drug-class analysis, accounting for 893 drug-sets and 63 drug 
classes tested.  
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eQTL integrative analysis   
A transcriptome-wide association study (TWAS) was conducted using the precomputed gene expression 
weights from PsychENCODE data (1,321 brain samples)43, available online with the FUSION software42. For 
genes with significant cis-SNP heritability (13,435 genes), FUSION software (vOct 1, 2019) was used to test 
whether SNPs influencing gene expression are also associated with BD (Bonferroni-corrected P value 
threshold < 3.72E-06). For regions including a TWAS significant gene, TWAS fine-mapping of the region 
was conducted using FOCUS (fine-mapping of causal gene sets, v0.6.10)44. Regions were defined using the 
correlation matrix of predicted effects on gene expression around TWAS significant genes44. A posterior 
inclusion probability (PIP) was assigned to each gene for being causal for the observed TWAS association 
signal. Based on the PIP of each gene and a null model, whereby no gene in the region is causal for the 
TWAS signal, the 90%-credible gene set for each region was computed44.  
 
Summary data-based Mendelian randomization (SMR) (v1.03)45,46 was applied to further investigate 
putative causal relationships between SNPs and BD via gene expression. SMR was performed using eQTL 
summary statistics from the eQTLGen (31,684 blood samples)47 and PsychENCODE43 consortia. SMR 
analysis is limited to transcripts with at least one significant cis-eQTL (P < 5E-08) in each dataset (15,610 
in eQTLGen; 10,871 in PsychENCODE). The Bonferroni-corrected significance threshold was P < 3.20E-06 
and P < 4.60E-06 for eQTLGen and PsychENCODE respectively. The significance threshold for the HEIDI 
test (heterogeneity in dependent instruments) was PHEIDI ≥ 0.0146. While the results of TWAS and SMR 
indicate an association between BD and gene expression, a non-significant HEIDI test additionally 
indicates either a direct causal role or a pleiotropic effect of the BD-associated SNPs on gene expression. 
 
Complement component 4 (C4) imputation 
To investigate the major histocompatibility complex (MHC; chr6:24-34 Mb on hg19), the alleles of 
complement component 4 genes (C4A and C4B) were imputed in 47 PGC cohorts for which individual-
level genotype data were accessible, totaling 32,749 BD cases and 53,370 controls. The imputation 
reference panel comprised 2,530 reference haplotypes of MHC SNPs and C4 alleles, generated using a 
sample of 1,265 individuals with whole-genome sequence data, from the Genomic Psychiatry cohort114. 
Briefly, imputation of C4 as a multi-allelic variant was performed using Beagle v4.1115,116, using SNPs from 
the MHC region that were also in the haplotype reference panel. Within the Beagle pipeline, the reference 
panel was first converted to bref format. We used the conform-gt tool to perform strand-flipping and 
filtering of specific SNPs for which strand remained ambiguous. Beagle was run using default parameters 
with two key exceptions: we used the GRCh37 PLINK recombination map, and we set the output to include 
genotype probability (i.e., GP field in VCF) for correct downstream probabilistic estimation of C4A and C4B 
joint dosages. The output consisted of dosage estimates for each of the common C4 structural haplotypes 
for each individual. The five most common structural forms of the C4A/C4B locus (BS, AL, AL-BS, AL-BL, 
and AL-AL) could be inferred with reasonably high accuracy (generally 0.70 < r2 < 1.00). The imputed C4 
alleles were tested for association with BD in a joint logistic regression that included (i) terms for dosages 
of the five most common C4 structural haplotypes (AL-BS, AL-BL, AL-AL, BS, and AL), (ii) rs13195402 
genotype (top lead SNP in the MHC) and (iii) PCs as per the GWAS. The genetically regulated expression 
of C4A was predicted from the imputed C4 alleles using a model previously described63. Predicted C4A 
expression was tested for association with BD in a joint logistic regression that included (i) predicted C4A 
expression, (ii) rs13195402 genotype (top lead SNP in the MHC) and (iii) PCs as per the GWAS.  
 
Polygenic risk scoring 
PRS from our GWAS meta-analysis were tested for association with BD in individual cohorts, using a 
discovery GWAS where the target cohort was left out of the meta-analysis. Briefly, the GWAS results from 
each discovery GWAS were pruned for LD using the P value informed clumping method in PLINK v1.9099 
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(r2 0.1 within a 500 kb window) based on the LD structure of the HRC reference panel98. Subsets of SNPs 
were selected from the results below nine increasingly liberal P value thresholds (pT) (5E-08, 1E-04, 1E-03, 
0.01, 0.05, 0.1, 0.2, 0.5, 1). Sets of alleles, weighted by their log odds ratios from the discovery GWAS, 
were summed into PRS for each individual in the target datasets, using PLINK v1.90 implemented via 
RICOPILI94,99. PRS were tested for association with BD in the target dataset using logistic regression, 
covarying for PCs as per the GWAS in each cohort. PRS were tested in the external cohorts by the 
collaborating research teams using comparable procedures. The variance explained by the PRS (R2) was 
converted to the liability scale to account for the proportion of cases in each target dataset, using a BD 
population prevalence of 2% and 1%117. The weighted average R2 values were calculated using the 
effective N for each cohort. The odds ratios for BD for individuals in the top decile of PRS compared with 
those in the lowest decile and middle decile were calculated in the 52 datasets internal to the PGC. To 
assess cross-ancestry performance, PRS generated from the meta-analysis results were tested for 
association with BD using similar methods in a Japanese sample59, a Korean sample92 and two admixed 
African American samples. Full details of the QC, imputation and analysis of these samples are in the 
Supplementary Note.   
 
LD score regression 
LD Score regression (LDSC)35 was used to estimate the ℎ"#$% 	of BD from GWAS summary statistics.  ℎ"#$%  
was converted to the liability scale, using a lifetime BD prevalence of 2% and 1%. LDSC bivariate genetic 
correlations attributable to genome-wide SNPs (rg) were estimated with 255 human diseases and traits 
from published GWAS and 514 GWAS of phenotypes in the UK Biobank from LD Hub48. Adjusting for the 
number of traits tested, the Bonferroni-corrected P value thresholds were P < 1.96E-04 and P < 9.73E-05 
respectively.  
 
MiXeR 
We applied causal mixture models49,118 to the GWAS summary statistics, using MiXeR v1.3. MiXeR provides 
univariate estimates of the proportion of non-null SNPs (“polygenicity”) and the variance of effect sizes of 
non-null SNPs (“discoverability”) in each phenotype. For each SNP, 𝑖, univariate MiXeR models its additive 
genetic effect of allele substitution,	𝛽), as a point-normal mixture, 𝛽) = (1 − 𝜋/)𝑁(0,0) + 𝜋/𝑁(0, 𝜎6

%), 
where 𝜋/ represents the proportion of non-null SNPs (`polygenicity`) and 𝜎𝛽%  represents variance of effect 
sizes of non-null SNPs (`discoverability`). Then, for each SNP, 𝑗, MiXeR incorporates LD information and 
allele frequencies for M=9,997,231 SNPs extracted from 1000 Genomes Phase3 data to estimate the 
expected probability distribution of the signed test statistic, 𝑧9 = 𝛿9 + 𝜖9 = 𝑁 ∑ =𝐻)𝑟)9𝛽) + 𝜖9) , where 
𝑁 is sample size, 𝐻)  indicates heterozygosity of i-th SNP,  𝑟)9 indicates allelic correlation between i-th and 
j-th SNPs, and 𝜖9 ∼ 𝑁(0, 𝜎A%) is the residual variance. Further, the three parameters, 𝜋/, 𝜎6%, 𝜎A%, are fitted 
by direct maximization of the likelihood function. The optimization is based on a set of approximately 
600,000 SNPs, obtained by selecting a random set of 2,000,000 SNPs with minor allele frequency of 5% or 
higher, followed by LD pruning procedure at LD r2=0.8 threshold. The random SNP selection and full 
optimization procedure are repeated 20 times to obtain mean and standard errors of model parameters. 
The log-likelihood figures show individual curves for each of the 20 runs, each shifted vertically so that 
best log-likelihood point is shown at zero ordinate. The total number of trait influencing variants is 
estimated as 𝑀𝜋/, where M=9,997,231 gives the number of SNPs in the reference panel. MiXeR Venn 
diagrams report the effective number of influencing variants, ηMπ_1, where η is a fixed number, η=0.319, 
which gives the faction of influencing variants contributing to 90% of trait’s heritability (with rationale for 
this adjustment being that the remaining 68.1% of influencing variants are small and cumulatively explain 
only 10% of trait’s heritability). Phenotypic variance explained on average by an influencing genetic variant 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2021. ; https://doi.org/10.1101/2020.09.17.20187054doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.17.20187054
http://creativecommons.org/licenses/by/4.0/


 

24 

is calculated as 𝐻𝜎6
%, where 𝐻 = /

C
∑ 𝐻)) = 0.2075 is the average heterozygosity across SNPs in the 

reference panel. Under the assumptions of the MiXeR model, SNP-heritability is then calculated as ℎ"#$% =
𝑀𝜋/ × 𝐻𝜎6

%. 

In the cross-trait analysis, MiXeR models additive genetic effects as a mixture of four components, 
representing null SNPs in both traits (𝜋A); SNPs with a specific effect on the first and on the second trait 
(𝜋/ and 𝜋%, respectively); and SNPs with non-zero effect on both traits (𝜋/%). In the last component, 

MiXeR models variance-covariance matrix as 𝚺𝟏𝟐 = L 𝜎/% 𝜌/%𝜎/𝜎%
𝜌/%𝜎/𝜎% 𝜎%%

N   where 𝜌/% indicates 

correlation of effect sizes within the shared component, and 𝜎/% and 𝜎%% correspond to the discoverability 
parameter estimated in the univariate analysis of the two traits. These components are then plotted in 
Venn diagrams. After fitting parameters of the model, the Dice coefficient of polygenic overlap is then 
calculated as %OPQ

OPR%OPQROQ
, and genetic correlation is calculated as 𝑟S =

TPQOPQ
=(OPROPQ)(OQROPQ)

.Fraction of 

influencing variants with concordant effect direction is calculated as twice the multivariate normal CDF at 
point (0, 0) for the bivariate normal distribution with zero mean and variance-covariance matrix 𝛴/%.  All 
code is available online (https://github.com/precimed/mixer). 
 
Mendelian randomization 
Seventeen traits associated with BD in clinical or epidemiological studies were selected for Mendelian 
randomization (MR) to dissect their relationship with BD (Supplementary Note). Bi-directional generalized 
summary statistics-based MR (GSMR)51 analyses were performed between BD and the traits of interest 
using GWAS summary statistics, implemented in GCTA software (v1.93.1f beta). The instrumental variables 
(IVs) were selected by a clumping procedure internal to the GSMR software with parameters: --gwas-
thresh 5e-8 --clump-r2 0.01. Traits with less than 10 IVs available were excluded from the GSMR analyses 
to avoid conducting underpowered tests51, resulting in 10 traits tested (Bonferroni-corrected P value 
threshold < 2.5E-03). The HEIDI-outlier test (heterogeneity in dependent instruments) was applied to test 
for horizontal pleiotropy (PHEIDI < 0.01)51. For comparison, the MR analyses were also performed using the 
inverse variance weighted regression method, implemented via the TwoSampleMR R package, using the 
IVs selected by GSMR119,120. To further investigate horizontal pleiotropy, the MR Egger intercept test was 
conducted using the TwoSampleMR package119,120 and MR-PRESSO software was used to perform the 
Global Test and Distortion Test121.  
 
BD subtypes 
GWAS meta-analyses were conducted for BD I (25,060 cases, 449,978 controls from 55 cohorts, effective 
N = 64,802) and BD II (6,781 cases, 364,075 controls from 31 cohorts, effective N = 22,560) (Table S1) using 
the same procedures described for the main GWAS. BD subtypes were defined based on international 
consensus criteria (DSM-IV, ICD-9 or ICD-10), established using structured diagnostic instruments from 
assessments by trained interviewers, clinician-administered checklists or medical record review. In the 
external biobank cohorts, BD subtypes were defined using ICD codes (Supplementary Note). LDSC35 was 
used to estimate the ℎ"#$% 	of each subtype, and the genetic correlation between the subtypes. The 
difference between the LDSC ℎ"#$% estimates for BD I and BD II was tested for deviation from 0 using the 
block jackknife122. The LDSC genetic correlation (rg) was tested for difference from 1 by calculating a chi-
square statistic corresponding to the estimated rg as [(rg − 1)/ SE]2.   
 
 
 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2021. ; https://doi.org/10.1101/2020.09.17.20187054doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.17.20187054
http://creativecommons.org/licenses/by/4.0/


 

25 

Data availability 
GWAS summary statistics are publicly available on the PGC website 
(https://www.med.unc.edu/pgc/results-and-downloads). Individual-level data are accessible through 
collaborative analysis proposals to the Bipolar Disorder Working Group of the PGC 
(https://www.med.unc.edu/pgc/shared-methods/how-to/). This study included some publicly available 
datasets accessed through dbGaP (PGC bundle phs001254.v1.p1) and the Haplotype Reference 
Consortium reference panel v1.0 (http://www.haplotype-reference-consortium.org/home). Databases 
used: Drug-Gene Interaction Database DGIdb v.2 https://www.dgidb.org Psychoactive Drug Screening 
Database Ki DB https://pdsp.unc.edu/databases/kidb.php DrugBank 5.0 www.drugbank.ca  LDHub 
http://ldsc.broadinstitute.org FUMA https://fuma.ctglab.nl  
 
 
Code availability 
All software used is publicly available at the URLs or references cited.  
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