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Abstract1

Surprisingly, the discrete-time version of the general 1927 Kermack-McKendrick2

epidemic model has, to our knowledge, not been formulated in the literature,3

and we rectify this omission here. The discrete time version is as general and4

flexible as its continuous-time counterpart, and contains numerous compart-5

mental models as special cases. In contrast to the continuous time version, the6

discrete time version of the model is very easy to implement computationally,7

and thus promises to become a powerful tool for exploring control scenarios for8

specific infectious diseases. To demonstrate the potential, we investigate nu-9

merically how the incidence-peak size depends on model ingredients. We find10

that, with the same reproduction number and initial speed of epidemic spread,11

compartmental models systematically predict lower peak sizes than models that12

use a fixed duration for the latent and infectious periods.13

1 Introduction14

The day-night cycle has a strong impact on the behaviour of humans, animals15

and plants. As a rule, the resulting time heterogeneity is ignored in epidemio-16

logical and ecological models. One simply pretends that the representation of17

time by a continuous quantity t, ”flowing” at a constant rate, is suitable for18

bookkeeping of the time course of the relevant events.19

Census data, on the other hand, are often collected at regular intervals, so on20

a discrete time basis. Indeed, as evidenced by the Covid-19 pandemic, incidence21

is usually reported in the form of the number of new cases on a particular day22

or in a specified week.23
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So even when the processes that we want to capture take place in continuous24

time, one may want to consider discrete time bookkeeping schemes, in order to25

relate directly to the data, as advocated in the pioneering paper [2]. Moreover,26

a significant bonus of discrete time models is that numerical implementation27

is straightforward and that, accordingly, simulations are easy to perform. In28

sharp contrast, the numerical solution of continuous time renewal equations, as29

discussed in [3], presents a substantial challenge to the uninitiated.30

Counter to the practical advantages runs a modelling difficulty: the formu-31

lation of discrete time models is subtle and hence error-prone. In infinitesimal32

time intervals the effects of different mechanisms are independent. Consequently33

one can add terms that describe contributions to the rate of change of a quan-34

tity. When trying to capture (in one go, rather than by solving a differential35

equation) change in a finite time interval, we do have to think about the order of36

events and how one event may trigger or prevent another event. In the epidemic37

context a key point is that, when a susceptible host is infected by an infectious38

host, it cannot any longer be infected by another infectious host.39

The first aim of this short note is to formulate the discrete time version40

of the general Kermack-McKendrick epidemic model from 1927. As far as we41

know, this has not been done before. And yet the model is, most likely, an ideal42

tool for data driven analysis of infectious disease outbreaks since, as we shall43

demonstrate, it is not only general and flexible, but also extremely user friendly.44

A second (and admittedly somewhat pedantic) aim of this note is to point out45

explicitly a frequent mistake in the formulation of discrete time epidemiological46

and ecological models. We hope that by clearly exposing the underlying fallacy,47

the mistake will have had its day.48

To put some flesh on the bones, we show that the qualitative behaviour of49

the discrete time model is the spitting image of the qualitative behaviour of the50

continuous time model. In order not to ignore the popularity of compartmental51

variants (which is unwarranted, in our opinion, as there is neither evidence that52

the length of, for instance, the infectious period is exponentially/geometrically53

distributed nor that infectiousness is constant during this period), we put them54

in the spotlight. To conclude, we illustrate the relevance (in particular for public55

health policy) of the lesser known members of the Kermack-McKendrick family,56

by investigating numerically how the peak of the incidence curve varies among57

members that are identical with respect to both the initial growth rate ρ and58

the basic reproduction number R0, but differ in assumptions about the duration59

of the exposed and the infectious period.60

To avoid misunderstanding, we now clarify what is, and what is not, stochas-61

tic in the models formulated and analyzed below. All models are deterministic62

at the population level. (One can think of them, in Kurtz spirit, see [16], as63

the large initial population size limit of a stochastic model for finitely many64

individuals.)65

When one assumes that the infectious period of all individuals, once infected,66

has exactly the same length and their infectiousness during this period is one67

and the same constant, there is no randomness at the individual level either.68

But most models incorporate heterogeneity/stochasticity at the individual69

level. For instance, in the familiar continuous time SIR compartmental model,70

the length of the infectious period of a newly infected individual is exponen-71

tially distributed, say with parameter γ. If during the infectious period all72

infected individuals have the same constant infectiousness β, then the expected73
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infectiousness A(τ) at time τ after becoming infected equals βe−γτ . This re-74

flects that after time τ has elapsed, the probability to be still infectious equals75

e−γτ . At the population level, we translate this into: a fraction e−γτ of those76

infected at time t is still infectious at time t + τ . In the discrete time setting,77

we should replace the exponential distribution by the geometric distribution.78

As a final elucidation we mention that the parameter β and the function A(τ)79

implicitly incorporate information about the contact (between individuals) pro-80

cess that underlies transmission. A key feature is that contacts are assumed81

to be uniformly at random (so neither spatial nor age nor social structure are82

incorporated).83

2 The cumulative force of infection84

First of all we want to motivate and promote the equation85

S(t+ 1) = e−Λ̂(t)S(t) (2.1)

as a buiding block for discrete time models of the spread of an infectious disease86

in a host population when87

• the disease generates permanent immunity,88

• the host population is demographically closed (meaning that demographic89

turnover happens at a much slower time scale than transmission of the90

disease and is therefore ignored).91

As usual, S(t) denotes the size of the subpopulation of susceptibles at census92

time t. Underlying (2.1) is a choice of the unit of time: it equals the length of the93

interval between one census and the next. So the magnitude of Λ̂(t) is propor-94

tional to this length and when this magnitude figures in our discussion below,95

one may interpret the statements in terms of the length of the discretization96

step. We call Λ̂(t) the cumulative force of infection in the time window (t, t+1]97

for reasons that we now explain. The continuous time version of (2.1) reads98

dS

dt
(t) = −Λ(t)S(t) (2.2)

where Λ(t) is the force of infection at time t, i.e., the probability per unit of99

time for a susceptible to become infected at time t. By integration we deduce100

from (2.2) the relation101

S(t+ 1) = e−
∫ t+1
t

Λ(τ)dτS(t) (2.3)

The first factor at the right hand side of (2.1) and (2.3) is, in both cases, the102

probability for a susceptible to escape from infection in the time window (t, t+1].103

The integral104 ∫ t+1

t

Λ(τ)dτ

in (2.3) is replaced by Λ̂(t) in (2.1) and this, we hope, clarifies why we call Λ̂(t)105

the cumulative force of infection.106
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We insist that one should adjust the multiplicative factor (as was indeed107

done in [2]) and not replace the differential equation (2.2) by the “additive”108

difference equation109

S(t+ 1)− S(t) = −Λ̂(t)S(t)

i.e., by110

S(t+ 1) = (1− Λ̂(t))S(t) (2.4)

Of course (2.4) provides a good approximation of the “true” equation (2.1) for111

small values of Λ̂(t). But (2.4) is not exact and it may fail dramatically for112

not so small values of Λ̂(t), in particular since it may lead to negative values of113

S. The reason is that (2.4) does not take into account that a host can become114

infected only once. To stress this point, we now present a somewhat mechanistic115

derivation of the multiplicative factor in (2.1), showing that (2.1) does take this116

into account.117

Assume that when a single infectious individual is present in a certain host118

population (during a time interval of, say, length one) every susceptible host be-119

comes infected with probability p. Then any susceptible escapes from becoming120

infected with the complementary probability 1− p. Next assume that there are121

N infectious individuals and that these make contacts with susceptibles inde-122

pendently of each other. Then any susceptible escapes from becoming infected123

with probability124

(1− p)N = eN ln(1−p)

So a susceptible is infected with probability 1 − (1 − p)N rather than with125

“probability” pN .126

From a numerical point of view, the exponential has the disadvantage of127

being expensive in terms of calculation costs. It may therefore be tempting128

to reduce the step size in order to work safely with the linear approximation.129

We actually wonder whether solving the relevant ODEs with for instance a130

Runge Kutta solver is not a more attractive alternative, especially in terms of131

accuracy. Moreover, we maintain that choosing a time interval that matches132

the data points has definite advantages.133

3 The general discrete time Kermack-McKendrick134

model135

As already expressed in (2.2), the incidence at time t equals Λ(t)S(t) with Λ the136

force of infection. Common sense tells us that the current force of infection is137

generated by individuals who were themselves infected some time ago. Following138

earlier work by Ross and Hudson (see [10, 11] and references in there), Kermack139

and McKendrick translate this observation into the constitutive equation140

Λ(t) =

∫ ∞

0

A(τ)Λ(t− τ)S(t− τ)dτ (3.1)

with A(τ) the expected contribution to the force of infection at time τ after141

infection. So in this top-down approach the infinite dimensional parameter A142

is introduced as a key model ingredient. For any specific disease one may, in143

principle, use a within-host model of the struggle between pathogen and immune144

system to provide bottom-up a quantitative specification. Alternatively, one145
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may use population level data to infer (certain characteristics of) A, cf. [19].146

Often this is done after first restricting to a parameterized family of functions147

A (but see [9] for an alternative methodology.) Note that, with N denoting the148

population size, we have149

R0 = N

∫ ∞

0

A(τ)dτ

and that, in the initial phase of the epidemic, the distribution of the generation-150

interval (see [17, 18], and the references given in there) has as density the renor-151

malized (to have integral 1) function A.152

The incidence at time t is given by Λ(t)S(t). Under the “permanent immu-153

nity and no demographic turnover” assumption, the incidence equals −S′(t),154

cf. (2.2). Substituting this into (3.1), we deduce by integration (and upon155

changing the order of integration) the identity156 ∫ t+1

t

Λ(σ)dσ =

∫ ∞

0

A(τ)[S(t− τ)− S(t+ 1− τ)]dτ.

The discrete time counterpart reads157

Λ̂(t) =

∞∑
j=1

Aj [S(t− j)− S(t+ 1− j)] (3.2)

where now Aj is the expected contribution to the cumulative force of infection158

in (t, t + 1] of an individual who itself became infected in the time window159

(t − j, t − j + 1], so j time steps earlier, and S(t − j) − S(t + 1 − j) is the160

incidence in (t− j, t− j + 1]. So the key model ingredient is now the collection161

{Aj}∞j=1

of positive/non-negative numbers, which we assume to be such that162

∞∑
j=1

Aj < ∞.

(Incidentally, note that control measures or seasonality may cause the Ak to163

depend on calendar time. See the end of Section 6 for a somewhat concrete164

example. In Section 7 we shall briefly indicate how one can easily implement165

this generalization.)166

Equation (2.1), with Λ̂(t) specified by (3.2), provides an updating scheme,167

but to get started one needs to specify an “initial” condition in the form of the168

history of S up to a certain point in time. The interpretation requires that169

this prescribed history is a monotone non-decreasing (when looking back into170

time) sequence, bounded from above by the total host population size. We shall171

denote this total size by N .172

As we show next, one can reformulate (2.1), (3.2) as the scalar higher order173

recursion relation174

s(t+ 1) = e−
∑∞

k=1(1−s(t−k+1))Ãk (3.3)

where175

s(t) :=
S(t)

N
(3.4)
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and176

Ãk := AkN. (3.5)
Equation (3.3) is the discrete time analogue of the nonlinear renewal equation177

s(t) = e−
∫ ∞
0

(1−s(t−τ))NA(τ)dτ (3.6)

that follows by combining (2.2) with (3.2) and incidence equal to −S′, see [3, 6].178

Both (3.3) and (3.6) involve the additional assumption179

S(−∞) = N, (3.7)

expressing that in the infinite past all host individuals were susceptible.180

To derive (3.3), first note that iteration of (2.1) yields, if (3.7) holds, the181

identity182

S(t+ 1) = e−
∑∞

i=0 Λ̂(t−i)N. (3.8)
From (3.2) we deduce

∞∑
i=0

Λ̂(t− i) =

∞∑
i=0

∞∑
k=1

Ak[S(t− i− k)− S(t− i− k + 1)]

=
∞∑
k=1

Ak

∞∑
i=0

[S(t− i− k)− S(t− i− k + 1)]

=
∞∑
k=1

Ak[N − S(t− k + 1)].

If we use this last identity in (3.8), divide both sides of (3.8) by N and adopt183

the notation (3.4) and (3.5), we obtain (3.3).184

If one copies (3.3), with t+1 replaced by t, and combines the two formulas,185

one can derive the variant186

s(t+ 1) = s(t)e−
∑∞

k=1(s(t−k)−s(t−k+1))Ãk . (3.9)

This variant has the advantage that one can provide an initial condition, say187

at time zero, by prescribing s(0) and the (nonnegative) incidences ..., s(−3) −188

s(−2), s(−2)− s(−1), s(−1)− s(0). We refer to Section 7 for a more pragmatic189

formulation of the initial value problem.190

We conclude that (3.3)/(3.9) is the mathematical form of the discrete time191

Kermack-McKendrick model with, in principle, a countably infinite parameter192

{Ak}∞k=1, but in practice a finite dimensional parameter with an infinite tail of193

zeros.194

4 The initial phase and the final size195

To capture the demographic stochasticity during the very early phase of the196

introduction of an infectious disease in a host population, we need branching197

processes, see e.g. [6]. But once there is a large number of infected individuals,198

we can switch to a deterministic description. The large number may, of course,199

still constitute only a rather small fraction of a very large host population. In200

this situation we may put201

s(t) = 1− x(t) (4.1)

6
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into (3.3) and assume that x is so small that it makes sense to replace the202

exponential by the zero’th and first order terms of its Taylor expansion. This203

yields the linearized equation204

x(t+ 1) =
∞∑
k=1

Ãkx(t− k + 1). (4.2)

We define205

R0 =
∞∑
k=1

Ãk =
∞∑
k=1

AkN, (4.3)

and interpret, based on the last identity, R0 as the expected number of secondary206

cases caused by a primary case in a totally susceptible host population.207

In order to show that positive solutions of (4.2) grow when R0 > 1, but208

decline when R0 < 1, we make the Ansatz209

x(t) = λt. (4.4)

By substitution of (4.4) into (4.2) we find that x defined by (4.4) is indeed a210

solution if and only if λ is a real root of the discrete time characteristic equation211

1 =
∞∑
k=1

λ−kÃk (4.5)

known as the Euler-Lotka equation. The non-negativity of Ãk, k = 1, 2, . . .,212

guarantees that (4.5) has at most one real root ρ and that it does indeed have a213

real root when the right hand side assumes a value bigger than one for some real214

λ, so in particular when R0 > 1 (when R0 < 1 and Ãk has power-like behaviour215

for k → ∞, the value of the right hand side may jump from a value less than one216

to infinity when λ is decreased; when Ãk = 0 for large k, this cannot happen and217

ρ exists). Readers who wonder (or even worry) about the potential importance218

of complex roots can consult [6, Section 8.2] and the references given there, to219

be eased.220

So we see that a key point is that the right hand side of (4.5) is a monotone221

decreasing function of real λ. And as a consequence we have222

sign(ρ− 1) = sign(R0 − 1). (4.6)

(Incidentally, note that ρ corresponds to er, with r the Malthusian parameter223

featuring in the continuous time theory.) General linear theory, cf. [1], guaran-224

tees that positive solutions of (4.2) grow geometrically with rate ρ for t → ∞225

when ρ > 1 (and decline with rate ρ, when ρ exists and is less than one). Gen-226

eral nonlinear theory, cf. [20], guarantees that the steady state solution s(t) ≡ 1227

of (3.3) is asymptotically stable for ρ < 1 (hence for R0 < 1), but unstable for228

ρ > 1, i.e., for R0 > 1 (here we refer to the Principle of Linearized Stability; the229

more general Hartman-Grobman Theorem implies that the intersection of the230

unstable manifold and the positive cone is one-dimensional; this means that,231

modulo translation, there is exactly one positive solution of (3.3) that has limit232

1 for t → −∞, see [4] for the continuous time version).233

So when R0 > 1, the introduction of the pathogen will, provided the pathogen234

does not go extinct by bad (or good, depending on the point of view) luck when235

7
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Figure 1: Graph of the final size 1 − s(∞), i.e., the fraction of the population
that gets infected in the course of the outbreak, as a function of the basic
reproduction number R0.

still very rare, break through and cause s to decrease to below 1. The interpre-236

tation makes it obvious that s is a monotone decreasing function of time, and237

that it has a limit for t → ∞. We denote this limit by s(∞). The equation238

s(∞) = e−R0(1−s(∞)) (4.7)

is obtained by passing to the limit in (3.3), while using that the {Ãk} are239

summable. For R0 > 1 this equation has a unique solution in (0, 1), see Figure240

1, and [6, Exercise 1.19].241

A comparison of the results in [13], [6, Chapter 1] and [3], with those above,242

establishes that when we compare the continuous time and discrete time for-243

mulations,244

• there is only a formal difference in the expressions for R0;245

• if we put ρ = er, there is only a formal difference in the equations charac-246

terizing, respectively, ρ and r;247

• the equations specifying s(∞) on the basis of R0 are identical (as already248

noted in [2]).249

We conclude that at the level of theory, there is an exact parallel.250

5 Compartmental formulation for some very spe-251

cial cases252

We shall use the standard notational convention (or should one say “ambigu-253

ity”?) that a compartment and its contents are denoted by the same symbol.254

We start with SIR and after that generalize to SEIR, hoping that these two255
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examples elucidate the general pattern how to construct discrete time models256

in compartmental settings. See [12] for a more general set-up.257

Assume that, upon infection, an individual is transferred from the com-258

partment S to the compartment I of infectious individuals. Assume that every259

following time step this infected individual stays in I with probability 1−α while260

being “removed” (i.e., losing infectiousness, either by way of the immune sys-261

tem conquering the pathogen, or by death) with probability α. We put removed262

individuals in a compartment R and assume that immunity is permanent (and263

resurrection impossible). Finally, we assume that the cumulative force of infec-264

tion equals βI, i.e., the per capita contribution to the force of infection equals265

β. Note that β is proportional to the length of the discretization interval, i.e.,266

the time between census points, and that α = 1 − e−α̃ with α̃ proportional to267

this length.268

These assumptions lead to the system of recurrence relations

S(t+ 1) = e−βI(t)S(t),

I(t+ 1) = (1− e−βI(t))S(t) + (1− α)I(t), (5.1)
R(t+ 1) = αI(t) +R(t).

We show that the system (5.1) may be reduced to the scalar recurrence (3.3)269

by choosing the Ãk appropriately:270

Ãk = β(1− α)k−1N. (5.2)

The first step corresponds to the derivation of (3.8): by iteration of the first271

equation of (5.1) we obtain272

S(t+ 1) = e−β
∑∞

j=0 I(t−j)N.

Rewriting the second equation of (5.1) as273

I(t+ 1) = S(t)− S(t+ 1) + (1− α)I(t)

we obtain by summation the identity274

∞∑
j=0

I(t− j) = N − S(t) + (1− α)

∞∑
j=0

I(t− j − 1),

and by substitution of this identity repeatedly at the right hand side,275

∞∑
j=0

I(t− j) = N − S(t) + (1− α)(N − S(t− 1)) + (1− α)2N(S(t− 2)) + · · ·

Finally, substitution of this last identity in the formula for S(t+1) above yields276

(3.8).277

Conversely, starting from (3.3) with Ãk given by (5.2), we easily recover278

(5.1) by defining279

I(t) :=
∞∑
k=1

[S(t− k)− S(t− k + 1)](1− α)k−1 (5.3)

9
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(note that the equation for R(t) is just an appendix; it has no impact on the280

dynamics of S(t) and I(t); it simply keeps track of individuals that are no longer281

infectious).282

We emphasize that if one replaces e−βI(t) by 1 − βI(t), the reduction to a283

higher order scalar recursion relation fails (we invite readers to convince them-284

selves of this fact)!285

In order to capture a latent period, we next change the assumptions. Upon286

infection, an individual now enters the compartment E of exposed (i.e., infected287

but not yet infectious) individuals. When the length of the latent period is288

geometrically distributed with parameter γ, we have to replace (5.1) by289

S(t+ 1) = e−βI(t)S(t),

E(t+ 1) = (1− e−βI(t))S(t) + (1− γ)E(t),

I(t+ 1) = γE(t) + (1− α)I(t),

R(t+ 1) = αI(t) +R(t).

(5.4)

Do parameters Ãk exist such that (5.4) can be condensed to (3.3)? It is helpful290

to think in terms of a stochastic process in which an individual can be in the291

states S, E, I and R. In fact, E and I suffice, since we start “looking” at the292

individual when it is infected and stop “looking” when it loses infectiousness. If293

we label E with index 1 and I with index 2, then the probability distribution294

of the state-at-infection is represented by the vector295 (
1
0

)
.

The state transitions are described by the matrix296

M =

(
1− γ 0
γ 1− α

)
and infectiousness by the vector297

b =
(
0 β

)
.

So the expected infectiousness k units of time after becoming infected is given298

by299

Ak = bMk−1

(
1
0

)
and hence by300

Ak = b(Mk−1)2,1 = β
k−1∑
l=1

γ(1− γ)l−1(1− α)k−1−l (5.5)

(with the convention that the sum equals zero when the upper index does not301

exceed or equal the lower index). The parameters Ãk are again defined by (3.5).302

And when Ãk has the form defined by (3.5) and (5.5), then (5.4) follows from303

(3.3) if we define304

E(t) =
∞∑
j=1

[S(t− j)− S(t− j + 1)](1− γ)j−1,

I(t) =
∞∑
j=1

[S(t− j)− S(t− j + 1)]
∞∑
l=1

γ(1− γ)l−1(1− α)j−1−l.

(5.6)
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We trust that our presentation above, in terms of two vectors and one matrix, all305

having a well-defined interpretation, makes clear how one can in general relate306

compartmental epidemic models to a scalar higher order recursion. See Section307

9.3 of [7] for a detailed elaboration of the continuous time case.308

We conclude that there is a multitude of compartmental models that corre-309

spond to a special choice of the parameters Ak. To prove the results of Section310

4 directly for a model with 27 compartments is a hell of a job, especially if one311

does not recognize the underlying structure (and 27 components make recogni-312

tion difficult). More importantly, it is an unnecessary job: one only needs to313

observe that one deals with a special case of (3.3).314

6 On the choice of parameters Ak315

The ingredients {Ak} subsume mechanistic properties of the process of contact316

between hosts as well as physiological/immunological properties of within-host317

dynamics. As a rule, information about such properties is scarce. One has to318

make educated guesses. See [15] for a concrete example.319

The SIR and SEIR formulations of the last section have the advantage of320

involving just a few parameters. But, in our opinion, they have the disadvan-321

tage of being wrongly-educated guesses: they result from the tendency to do322

what others do, despite the fact that data, as a rule, do not support geometric323

distributions for the length of the latent- and/or the infectious period.324

A facilitating aspect is that Ak are averages (see [6, Section 2.1] for a detailed325

exposition, including examples). If we “know” that at day six after infection326

only 10% of the infected individuals is infectious, while at day seven this rises to327

20%, we can use this information directly in our choice of Ak. If we know that328

at days six and seven the degree of infectiousness differs among individuals, we329

can still use the guestimated average.330

A more theoretical example is the following. Assume that a fraction p of the331

infected individuals is asymptomatic. Assume that a symptomatic individual332

has at day j after infection a probability θj to be detected and next put into333

quarantine. Assume that the intrinsic infectiousness and contact intensity of334

symptomatic and asymptomatic cases is identical and given by {Bk}. Then we335

choose336

Ak =

p+ (1− p)

k∏
j=1

(1− θj)

Bk. (6.1)

Note that (6.1) is based on the debatable assumption that at the day of its de-337

tection an individual does not contribute to the force of infection. This weakness338

is easily remedied, but at the cost of introducing yet another parameter.339

The parameters θj can capture the effect of testing. During a serious out-340

break, such as the Covid-19 pandemic, the testing policy and possibility depend341

on calendar day. This introduces time dependence in the parameters θj . Sim-342

ilarly, control measures that reduce contact opportunities affect the Bk in a343

time-dependent multiplicative manner. In the next section we introduce a com-344

putational scheme in which such time dependence is easily incorporated.345
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7 Reformulation as a first order system346

As Section 4 shows, the scalar higher order recursion relation (3.3) is very conve-347

nient for theoretical purposes. But for doing computations, a first order system348

of equations is more convenient.349

For feasibility, we want a finite dimensional system. To achieve this, we350

make the very reasonable assumption that the indices j for which Aj is strictly351

positive have a finite upper bound. In other words, we assume that an integer352

m exists such that Aj = 0 for all j ≥ m + 1. The relevant consequence is that353

the history of S, that matters for determining the future, has finite length.354

Define355

Xj(t) := s(t+ 1− j), j = 1, . . . ,m. (7.1)
Much of the dynamics of the vector X amounts to shifting:356

Xj(t+ 1) = Xj−1(t), j = 2, . . . ,m. (7.2)

Combination of (2.1) and (3.3) yields the rule for extension357

X1(t+ 1) = X1(t)e
−

∑m
j=1 Ãj(Xj+1(t)−Xj(t)). (7.3)

In (7.3) it is harmless to allow Ãj to depend on time t!358

Alternatively we might start from (3.9) and choose as before359

X1(t) = s(t) (7.4)

but for j > 1360

Xj(t) = s(t+ 1− j)− s(t+ 2− j) (7.5)
which corresponds to the incidence in time window t+ 1− j. This leads to the
update rules

X1(t+ 1) = X1(t)e
−

∑∞
k=1 Xk+1(t)Ãk , (7.6)

X2(t+ 1) = X1(t)−X1(t+ 1), (7.7)
Xj(t+ 1) = Xj−1(t) for j > 2. (7.8)

In this formulation too, we can allow Ãk to depend on time t.361

This seems a good moment to point out that the use of labels like ‘exposed’362

or ‘infectious’ is perfectly possible within the general framework. For any such363

label, say L, specify, on the basis of the choice of the parameters Ak as described364

in Section 6, the probability πj that an individual carries this label at time j365

after becoming infected. Then the number of individuals carrying label L at366

time t is given by367

NL(t) =
N∑
j=1

πjXj+1(t). (7.9)

So all one needs to do to plot the time course of NL, is to add to (7.6)-(7.8) the368

equation (7.9) (with t replaced by t+ 1, for consistency).369

Note that (5.3) and (5.6) are examples of (7.9). In the very special situation370

considered in Section 5, the labels actually correspond to states at the individual371

level and as a consequence one can express NL(t + 1), for L = S, E, I, R in372

terms of these same quantities at time t, without reference to X(t). In general373
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this is impossible. (Incidentally, note that probabilists often speak about non-374

Markovian models when the labels refer to compartments and sojourn time375

distributions are not exponential, while calling the labels ‘states’, even though,376

strictly speaking, they do not qualify as such.)377

8 About the peak of the incidence curve378

An epidemic curve has many features, such as379

• the initial growth rate ρ;380

• the height and timing of the peak;381

• the final size.382

For the first and last of these, it is well understood how they relate to the383

parameters of simple models that ignore heterogeneity. For instance, the final384

size is completely determined by R0, while ρ is a solution of the Euler-Lotka385

equation, cf. (4.5).386

At the start of an outbreak, one may observe the initial growth rate and387

next use information about the generation interval to make inferences about388

R0, see [17, 18] and the references given there. Next one may choose the model389

parameters such that ρ and R0 of the model correspond to the estimated values.390

The ongoing outbreak of Covid-19 generates much interest in peaks, largely391

because of concern that hospitals may be overwhelmed with patients, leading392

to healthcare breakdown. As far as we know, there is no analytical method to393

determine the height and timing of the peak from model parameters (except,394

perhaps, in the oversimplified SIR system of differential equations). So one has395

to rely on numerical calculations.396

The key question addressed in this section is: how much is peak height397

influenced by model details? Here, we systematically compare the discrete-time398

SEIR model, described by (5.4) and corresponding to geometric distributions of399

the length of the latent and infectious period, to a model with deterministic, i.e.,400

fixed, duration of these periods and constant infectiousness during the infectious401

period. Thus both types of model have three parameters. By restricting to402

R0 = 2.5 we fixed the infectiousness parameter in terms of the other two. We403

calibrated the models by making sure that ρ and the mean length of the latent404

period are the same, thus creating a one-to-one relationship between the two405

parameters of one type of model and the two parameters of the other type of406

model.407

As initial condition we took a short history of decreasing fractions of sus-408

ceptibles, reflecting an exponential increase in new cases at the rate ρ. We409

computed the peak value of the incidence for both types as a function of the410

two parameters and next their ratio. The results are depicted in Figure 2.411

The main conclusions are:412

• deterministic periods lead to higher peaks than geometrically distributed413

periods;414

• this is most prominent when the latent period is large and the infectious415

period is small;416
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Figure 2: Comparing incidences between two types of models. In the block
model, the lengths of the latent and infectious periods are deterministic (fixed
for all individuals); in the SEIR model, the lengths of these periods are stochas-
tic (independently exponentially distributed with identical parameters, respec-
tively, 1/TE and 1/TI). See Appendix for details. Top row: maximum incidence
of the block model (with deterministic periods; left), SEIR model (with stochas-
tic periods; middle) and the relative ratio between the two (i.e., block−SEIR

SEIR ;
right), as a function of TE , the (actual resp. expected) time individuals are
exposed and TI , the (actual resp. expected) time individuals are infectious.
Models were compared after ensuring that they have the same R0 and initial
speed ρ. Note that the incidence of the deterministic model always reaches a
higher peak within the ranges of TE and TI considered, by about 8-15%, than
the corresponding SEIR model. Middle and bottom rows: example simulations
with the deterministic model (blue) and corresponding SEIR model (red) with
the same R0 and ρ. The middle row corresponds to the parameters at which
the ratio of peak heights is minimal, (TE , TI) = (3, 4); the bottom row to when
this ratio is maximal, (TE , TI) = (6, 4). One can clearly see that the incidence
grows initially at the same rate.
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Figure 3: The fraction of the population that is either latently infected or
infectious in the block model (blue) and the corresponding SEIR model. Left:
(TE , TI) = (3, 4); right: (TE , TI) = (6, 4). The corresponding incidences can
be found in Figure 2. Note that although the peak incidences are not so very
different (see Fig. 2), there is a large difference in the fraction of infected-and-
not-yet-removed individuals, due to the comparatively fatter tail in the expected
future contribution to the force of infection in the SEIR model.

• the difference is, for reasonable parameter values, in the order of 10%.417

(Note that, since compartmental models have fatter tails, they need, for418

given R0, to have an earlier peak of infectiousness in order to have the same ρ.419

This is clearly visible in Figures 2 and 4.)420

After the first conclusion emerged, we aspired to find a somewhat mecha-421

nistic explanation. This led to the following observation. Roughly speaking,422

an outbreak reaches its peak when S is reduced to the level corresponding to423

R0 = 1. How many more cases there will be after the peak depends largely on424

the number of individuals that are, or are on the way of becoming, infectious425

at the time the peak is reached. (In [6, Section 1.3.2] it is explained how the426

overshoot phenomenon corresponding to a large stock of recently infected indi-427

viduals at the time of reaching the peak, causes the final size, as fraction of the428

population, to increase when R0 increases.) For compartmental models, there is429

a relatively fat tail in the distribution of the time until becoming ‘removed’, i.e.,430

having no future infectiousness. So when comparing models with the same R0,431

and hence the same final size, we should expect that for compartmental models432

the reservoir of latent and infectious individuals is less big, at peak-time, than433

for models in which expected future infectiousness reduces to zero after finite434

time. This is illustrated in Figure 3. And as reservoir size correlates with peak435

size, we should expect lower peaks for compartmental models, exactly as found436

in our numerical results.437

Just to elucidate that the higher-peak-phenomenon matters in Covid-19 con-438

text, we chose, on the one hand, the parameters Ak as integrals over one day439

time-intervals of the Weibull generation-interval distribution as derived from440

data in [8] and, on the other hand, determined the one-parameter family of441

SEIR models that has both R0 and ρ equal to these quantities for the Weibull.442

The results of a comparison are presented in Figure 4. The peak heights differ443

5 to 10%.444
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Figure 4: Comparing a model with parameters corresponding to the Weibull
distribution derived from SARS-CoV-2 generation-interval data in [8] to the
SEIR model with the same reproduction number R0 and the same initial growth
rate ρ. Top row: left: relative ratio between the maximal incidences (−1, as in
Figure 2) as a function of TE , the expected length of the exposed period (note
that the SARS-CoV-2 model does not depend on TE , see the Appendix). right:
expected contribution to force of infection for the SARS-CoV-2 model. Middle
row: left: incidence of the SARS-CoV-2 model (blue) and the SEIR model
(red) with TE = 1. At this TE , the relative difference in the peak incidences
are maximal. right: the expected contribution of the SEIR-model for TE = 1.
Bottom row: same, but now for TE = 3, at which the difference in peak incidence
is minimal. For TE > 4.12, the SEIR-model cannot be parameterized to have
the same R0 and ρ as the SARS-CoV-2 model. For further details, see the
Appendix.
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9 Conclusions445

The success of the SIR and SEIR variants dwarfs the attention for the general446

Kermack-McKendrick model from 1927, even though, in principle, the latter has447

much on offer for a would-be modeller. We surmise that the reason is that the448

general model is formulated as a renewal (or, Volterra integral) equation and449

that for these unfamiliar equations there are no user friendly numerical tools450

available.451

Here we introduced a discrete time version that has many advantages:452

• the generality and flexibility is retained;453

• computing the epidemic time course is super easy;454

• the time step can be adjusted to the time interval between data points455

(e.g., one day or one week).456

In Section 8 we showed that precise assumptions about the latent and infec-457

tious period matter for predicting the peak of the incidence curve, a quantity of458

interest from a public health perspective. So, we claim, the generality matters459

for practical issues and is not just an academic fancy. Of course in a practical460

context all kinds of heterogeneity (e.g., reflecting age) matter as well. These461

have been neglected here, but in the text book [6] and in [3] they have received462

ample attention in the continuous time setting, so it should not be too difficult463

to incorporate them in the discrete time framework as well.464

Our hope is that our pragmatic reformulation leads to, well-deserved and465

long overdue [5], popularity of the true Kermack-McKendrick model.466
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10 Appendix528

10.1 Detailed description of numerical work displayed in529

Figure 2530

In Figure 2 we numerically compare two types of models that have the same
initial rate of increase ρ and basic reproduction number R0 but different ex-
pected contributions to the force of infection Ak. Both models are defined by
prescribing the values of the rescaled expected contribution to the force of in-
fection, Ãk, where k is the number of days that have elapsed since becoming
infected. Let us choose TE , the number of days an individual is exposed but
not yet infectious, and TI , the number of days an individual is infectious. In
the ‘block model’, in which these periods are assumed to be deterministic, so
the same for all individuals, we set

Ãk = 0, 1 ≤ k ≤ TE , k ≥ TE + TI + 1,

Ãk = R0/TI , TE + 1 ≤ k ≤ TE + TI .

In this way,
∑∞

k=1 Ãk = R0. The initial exponential rate ρ with which the531

epidemic spreads is the solution to (4.5).532

With R0, ρ, and TE , we can set up now the corresponding SEIR model.533

Using the explicit expression of the Ak for the SEIR model (5.5), we can de-534

termine the relation between α, β and γ on the one hand, and ρ on the other,535

using (4.5),536

1

N
=

βγ

(α+ ρ− 1)(γ + ρ− 1)
. (10.1)

From the expression (4.3) for R0, we obtain the familiar expression R0 = βN
α .537

Substitution into (10.1) gives us538

α =
(ρ+ γ − 1)(ρ− 1)

1− ρ+ γ(R0 − 1)
. (10.2)

Lastly, the link between γ and TE is simply γ = 1
TE

. So in all, TE , ρ and R0539

define the following parameters for the SEIR model,540

α =
(ρ+ γ − 1)(ρ− 1)

1− ρ+ γ(R0 − 1)
,

β =
R0

N

(ρ+ γ − 1)(ρ− 1)

1− ρ+ γ(R0 − 1)
,

γ =
1

TE
.

(10.3)

so that the Ãk are given by541

Ãk =
R0

TE

(ρ+ γ − 1)(ρ− 1)

1− ρ+ γ(R0 − 1)

k−1∑
l=1

(
1− 1

TE

)l−1 (
1− (ρ+ γ − 1)(ρ− 1)

1− ρ+ γ(R0 − 1)

)k−l−1

.
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(The reader may verify that with this choice
∑∞

k=1 Ãk = R0, and that the542

characteristic equation (4.5) is satisfied exactly at λ = ρ, as required.)543

The numerical simulations were carried out using (3.9), using an initial con-544

dition in which the epidemic has started increasing at rate ρ for six days:545

s(t) = 1− 0.00001ρt+6, t = −1,−2, . . . ,−6.

10.2 Figure 3: Comparing the SEIR model with a SARS-546

CoV-2 model547

In [8], the generation interval distribution g(τ) is approximated by a Weibull548

distribution with shape parameter 2.826, and scale parameter 5.665. We dis-549

cretized this,550

gk =

∫ k

k−1

g(τ)dτ, k = 1, 2, . . .

Then we set Ãk = R0gk, k = 1, 2, . . .. The initial rate of increase is again551

estimated using 4.5, and gives ρ = 1.1919.552

The corresponding SEIR-model is now given by using α, β and γ as in553

(10.3) and defining the Ãk as before.554

The initial condition is the same as in the previous illustration.555

20
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