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Summary 

Background: ECDC performs epidemic intelligence activities to systematically collate information from 

a variety of sources, including Twitter, to rapidly detect public health events. The lack of a freely 
available, customisable and automated early warning tool using Twitter data, prompted ECDC to 

develop epitweetr.  

The specific objectives are to assess the performance of the geolocation and signal detection algorithms 

used by epitweetr and to assess the performance of epitweetr in comparison with the manual 

monitoring of Twitter for early detection of public health threats. 

Methods: Epitweetr collects, geolocates and aggregates tweets to generate signals and email alerts. 

Firstly, we evaluated manually the tweet geolocation characteristics of 1,200 tweets, and assessed its 
accuracy in extracting the correct location and its performance in detecting tweets with available 

information on the tweet geolocation. Secondly, we evaluated signals generated by epitweetr between 
19 October and 30 November 2020 and we calculated the positive predictive value (PPV). Then, we 

evaluated the sensitivity, specificity and timeliness of epitweetr in comparison with Twitter manual 

monitoring. 

Findings: The epitweetr geolocation algorithm had an accuracy of 30.1% and 25.9% at national and 
subnational levels, respectively. General and specific PPV of the signal detection algorithm was 3.0% 

and 74.6%, respectively. Epitweetr and/or manual monitoring detected 570 signals and 454 events. 

Epitweetr had a sensitivity of 78.6% [75.2% - 82.0%] and PPV of 74.6% [70.5% - 78.6%]; and the 

manual monitoring had a sensitivity of 47.9% [43.8% - 52.0%] and PPV of 97.9% [95.8% - 99.9%]. 

The median validation time difference between sixteen common events detected by epitweetr and 

manual monitoring was -48.6 hours [(-102.8) - (-23.7) hours]. 

Interpretation: Epitweetr has shown to have sufficient performance as an early warning tool for 
public health threats using Twitter data. Having developed epitweetr as a free, open-source tool with 

several configurable settings and a strong automated component, it is expected to increase its usability 
and usefulness to public health experts.  
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Research in context 

Evidence before this study: Previous reviews have shown how social media, including Twitter, 
have been used for public health purposes. Most recent studies, in relation to the COVID-19 

pandemic, have shown the added value of early warning tools based on Twitter and other social 
media platforms. They also noted the lack of an open-source tool for real-time monitoring and 

surveillance. 

Added value of this study: Epitweetr is a free, open-source and R-based early warning tool for 
automatic Twitter data monitoring that will support public health experts in rapidly detecting public 

health threats. The evaluation of epitweetr presented in this study shows the strengths of the tool 
which include having good performance, high degree of automation, being a near-real-time tool and 

being publicly available with various customisable settings. Furthermore, it shows which are the areas 

of improvement for the next versions of epitweetr.  

Implications of all the available evidence: This tool can be further developed to include more 

automation and machine learning components to increase usability and information processing time 
by users.  

Introduction 

The European Centre for Disease Prevention and Control (ECDC) is a European Union (EU) agency 

aiming at strengthening Europe’s defences against infectious diseases. The article 3 of the ECDC 
Founding Regulation, the Decision Number 1082/2013/EU on serious cross-border threats to health and 

the ECDC Strategy 2021-2027 have established the detection of public health threats as a core activity 
of ECDC. 

ECDC performs epidemic intelligence activities to systematically collate information from a variety of 
sources, which is then validated and analysed. The aim of epidemic intelligence at ECDC is to rapidly 

detect and assess public health events, focusing on infectious diseases, to ensure the EU’s health 

security1. Currently, ECDC monitors social media as part of its epidemic intelligence activities, in 
particular Twitter and Facebook2. In the past years, around one third of the signals detected at ECDC 

through epidemic intelligence activities originated from social media3,4. These platforms are often 
updated by local, national, and international health authorities capturing signals from small areas where 

media coverage is insufficient.  

There have been other attempts to use social media data for the automatic early detection of signals 
of public health threats5-8 and a review of the use of Twitter for public health surveillance was published 

in December 20189. However, this extensive review mainly targeted the monitoring of already detected 
outbreaks through Twitter, without fully covering ongoing monitoring of social media for early detection 

of public health threats. In addition, the authors found out that the geolocation of tweets through 

geotagging remained a major challenge. Several other published studies have described the use of 
Twitter for outbreak investigation10-12 or for understanding the public perception of an epidemic13,14, 

but these did not provide insights on the possible use of social media for automated event detection 
and monitoring in real time. 

In the context of the coronavirus disease (COVID-19) pandemic, social media have become a key tool 
for sharing and disseminating data. In 2021, a scoping review was carried out to examine studies 

related to COVID-19 and social media during the first year of the pandemic15. ‘Surveillance and 

monitoring’ was one of the six themes extracted from these studies and according to the authors, no 
real-time surveillance monitoring has been developed for COVID-19 using social media data. Likewise, 

Lopreite and colleagues16, retrospectively analysed Twitter data to uncover early warning signals of 
COVID-19 outbreaks in Europe in the winter season 2019-2020, showing the relevance and stressing 

the urgency of having these early warning systems in place to better identify public health threats that 

may proliferate almost undetected otherwise. 

Noting the usefulness of having free, customisable and automated early warning tools using social 

media, in particular Twitter data, ECDC developed a prototype of an R-based tool in August 2018 for 
the early detection of public health threats using Twitter data. The prototype focussed on a Public 

Health Event of International Concern (PHEIC) that had a major attention in social media: Ebola virus 
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disease. This prototype was further extended in October 2019 and January 2020 by the inclusion of 
two other PHEICs: poliomyelitis and COVID-19, respectively. After the favourable results of this 

prototype, ECDC developed a free, open-source tool named epitweetr to automatically monitor Twitter 
data for early warning of public health threats. The first version of this tool was published on the 

Comprehensive R Archive Network (CRAN) in October 2020Error! Bookmark not defined..  

The main objective of this study is to evaluate epitweetr, a new automatised, open-source, R-based 
tool for early detection of public health threats using Twitter data. The specific objectives are to assess 

the performance of the geolocation and signal detection algorithms used by epitweetr and to assess 
the performance of epitweetr in comparison with the manual monitoring of Twitter for early detection 

of public health threats. 

Methods 

epitweetr  

Epitweetr17 collects Twitter data and metadata using the Twitter Standard Search API 1.1. It collects 

these data by sending queries according to a predetermined list of topics with related keywords. 
Throughout the time of this study period a list of 71 unique topics was used18.  

In parallel with the Twitter data collection, epitweetr processes these data to geolocate tweets, 
aggregate them, detect signals and send these signals through email alerts (Figure 1)19. 

Figure 1. Epitweetr pipeline from installation to email alerts. 

 

The geolocation process aims at collecting tweet and user location, with the tweet location being the 

primary location used for the signal detection. The tweet location is based on the location found in the 

tweet text or retweeted or quoted text. Epitweetr extracts the tweet location in two steps. In the first 
step, epitweetr looks for location candidates, splitting the tweet text into vectors and using language 

vectors from fasttext18 and a semi-supervised machine learning algorithm automatically trained with 
labelled datasets. In the second step, the text of these location candidates is matched against a 

reference database called geonames18 using a variant of vector space model (VSM) implemented on 

Lucene20. In each of these steps, a score is allocated and the location with the higher score is selected 
as candidate (first step) or as tweet geolocation (second step). For the user location, the location 

metadata available from the API is used. The best user location will be selected with a priority for user’s 
location at time of the tweet, followed by the self-declared user location or location as set in the public 

profile or the biography of the user. 

The aggregation process creates the data shown in the  three figures in the dashboard (Figure 2) based 
on Shiny web application framework21: time series of tweets per topic and location, map of tweet and/or 

user location, and the 20 most frequent words in the tweets per topic, time and location. 

Epitweetr detects signals19, using the time series of tweets per topic and location (aggregated at country 

level). Each of the univariate time series is processed by a modified version of the Early Aberration 
Reporting System (EARS) algorithm22 based on linear modelling and as implemented in the R package 

‘surveillance’23. Inspired by Farrington and colleagues24, the estimation of the threshold also 

downweights previous values if these are considered outliers. The algorithm then calculates a threshold 
for the expected tweet count for each topic and location (country level or higher) as a given quantile 

of the predictive distribution. If the threshold is exceeded a signal is created for that time series. 
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Figure 2. Epitweetr dashboard 

 

These signals are sent out in email alerts with the following variables available for each signal: date 
and hour of signal, geolocation of signal, most frequent words found in the tweet text, number of 

tweets, threshold, percentage of tweets from predetermined users and settings used at time of signal 

generation (Figure 3). 

Figure 3. Example of email sent by epitweetr with detected signals 

 

Evaluation of geolocation algorithm 

We evaluated the primary geolocation of a random selection of 300 tweets per day collected on 11, 16, 

19 and 22 September 2020, for a total of 1 200 tweets. All tweets were divided over two experts, with 
150 tweets per day each. Each expert manually identified the best fitting geolocation at national and 

subnational level if such information was available.  

The manual and epitweetr geolocations were then compared to evaluate the accuracy of the geolocation 
algorithm in extracting the correct location and the performance of the geolocation algorithm in deciding 

which tweets had available information to extract a location (hereafter referred as tweets with an 
extractable location) at national and subnational level. For each tweet, we defined a positive hit when 

a location could be extracted from the tweet and a negative hit when no location could be extracted 

from the tweet. For positive hits, tweets were considered true positives or false positives depending on 
whether epitweetr assigned a location for these tweets or not. For negative hits, tweets were considered 
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true negatives or false negatives depending on whether epitweetr assigned a location for these tweets 
or not. 

Using this information, we calculated the accuracy of extracting the correct tweet geolocation at 
national and subnational level. Furthermore, the following calculations were made regarding the 

performance in deciding which tweets had an extractable location at national and subnational level: 

sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and prevalence 
(number of tweets from which location could be extracted)25. 

The average of the results from both individuals were calculated into an overall result. Additionally, 
these calculations were made according to the geolocation score dividing tweets in two groups: tweets 

with tweet geolocation score below and above 10. 

Furthermore, we identified the most frequent errors made by the algorithm in extracting the correct 

location, and grouped them in two categories: tweets mentioning the US president and/or a ‘well 

established location’ (e.g. country names, country populations, US state names and capital cities). The 
same previously mentioned calculations were made to evaluate what would have been the performance 

of epitweetr geolocation algorithm if these locations had been extracted correctly by epitweetr.  

Evaluation of signal detection algorithm  

We evaluated signals generated by epitweetr by topic, location and time during the working days 
between 19 October and 30 November 2020 to determine which were validated events. An event was 

an epitweetr signal that fulfilled ECDC criteria based on International Health Regulations and Decision 

1082, and that was validated (i.e. deemed accurate and reliable information, and confirmed by or 
originated from an official source). The validation process can be automatic, when the information 

comes from an official source (e.g. Public Health Twitter accounts or international organisations 
websites), or manual using official sources, when the information comes from non-official sources or 

individual Twitter accounts.  

Following the epidemic intelligence steps26, we further investigated signals that seemed to fulfil ECDC 
criteria according to the most frequent words, topic, location and number of tweets. We retrieved the 

events that could have triggered those signals and validated the information. On occasions, after 
retrieving the events the signals were discarded due to the additional information provided by the event 

itself that did not fulfil ECDC criteria. 

We defined the general positive predictive value (𝑃𝑃𝑉𝑔) and specific PPV (𝑃𝑃𝑉𝑠) as: 

𝑃𝑃𝑉𝑔 =
𝑒𝑣𝑒𝑛𝑡𝑠

𝑒𝑣𝑒𝑛𝑡𝑠 + (𝑒𝑝𝑖𝑡𝑤𝑒𝑒𝑡𝑟 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 − 𝑒𝑣𝑒𝑛𝑡𝑠)
; 

𝑃𝑃𝑉𝑠 =
𝑒𝑣𝑒𝑛𝑡𝑠

𝑒𝑣𝑒𝑛𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑠𝑖𝑔𝑛𝑎𝑙𝑠
; 

where events were epitweetr signals that fulfil ECDC criteria and were validated, epitweetr signals were 
the total number of signals detected by epitweetr during the study period, and false signals were 

evaluated signals that did not fulfil ECDC criteria and/or were not validated.  

Evaluation of epitweetr 

We developed a study protocol to evaluate the sensitivity, specificity and timeliness of epitweetr in 

comparison to the manual monitoring of Twitter for early detection of public health threats 
(supplementary material).  

Ethics statement 

Epitweetr collects Twitter data using the Twitter Standard Search API which provides relevant and only 

publicly available tweets matching a specific query from the previous seven days. These data are similar 

but not identical to the results provided by the Search User Interface feature in Twitter mobile or web 
clients. 

Results 

Evaluation of geolocation algorithm  
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At the country level, the epitweetr geolocation algorithm had an overall accuracy of 30.1%, while at 
the subnational level this was 25.9% (Table 1).  

Table 1. Summarised results from the tweet geolocation evaluation 

 All results >10 score 

Level Country Subnational Country Subnational 

Total tweets 1200 1200 804 804 

Extracting 
correct 

location 

Correct hits 361 311 292 283 

Accuracy 30.1% 25.9% 36.3% 35.2% 

Detecting 

tweets with 
extractable 

location 

Sensitivity 72.6% 72.2% 56.6% 56.2% 

Specificity 51.6% 50.6% 69.2% 68.3% 

PPV 74.9% 74.2% 75.7% 74.9% 

NPV 48.6% 48.1% 48.6% 48.1% 

Prevalence 66.6% 66.3% 62.8% 62.7% 

If all tweets with the name of the US president had been correctly assigned (n=281 tweets), we 
observed an accuracy of 38.5%, a sensitivity of 76.0%, a specificity of 51.6% and a PPV of 75.8% at 

country level. If also all ‘well established locations’ had been correctly assigned (n=371), which includes 
besides the US president also country names, country populations, capitals, and US states, this would 

have led to an accuracy of 52.4%, a sensitivity of 88.8%, a specificity of 51.5% and a PPV of 78.5%. 

Evaluation of signal detection algorithm  

During the study period, 11,313 signals were detected by epitweetr from which 448 were evaluated. 

From these evaluated signals, 334 were events and 114 were false signals. 

From these 448 evaluated signals, 63 were related to COVID-19, including 48 events and 15 false 

signals. In addition, 49 of the 448 signals had only one tweet, including 24 events and 25 false signals.  

Overall, the 𝑃𝑃𝑉𝑔 was 3.0% and the 𝑃𝑃𝑉𝑠 was 74.6%. The 𝑃𝑃𝑉𝑠 for COVID-19 related events and for 

other events were 76.2% and 74.3%, respectively. 

Evaluation of epitweetr  

In order to reach the minimum sample size, data were collected from 19 October to 30 November 2020. 

Overall, 570 signals were evaluated, including 122 signals detected by the manual method, 297 signals 

detected by epitweetr and 151 signals detected by both methods. From these 570 evaluated signals, 
157 were related to COVID-19, including 120 signals detected by the manual method, 24 signals 

detected by epitweetr and 39 signals detected by both methods.  

Overall, 454 events were detected, including 120 events detected by the manual method, 185 events 

detected by epitweetr and 149 events detected by both methods. From these 454 events, 157 were 
related to COVID-19, including 94 events detected by the manual method, 24 events detected by 

epitweetr and 39 events detected by both methods.  

The number of signals and events, IRA and PPV of both methods are presented in Table 2. 

A total of 16 unique events were found by both methods, including 10 events related to COVID-19. The 

median of the validation time differences was -48.6 hours with an interquartile range (IQR) of -102.8 
and -23.7 hours, showing an earlier validation of common events by epitweetr. Figure 4 shows the 

distribution of the validation time differences in hours.  
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Table 2. Summarised metrics of epitweetr evaluation. 

Variables Manual method epitweetr 

Number of signals 188 448 

Number of events 184 334 

IRA [95% CI] 47.9% [43.8% - 52.0%] 78.6% [75.2% - 82.0%] 

PPV [95% CI] 97.9% [95.8% - 99.9%]  74.6% [70.5% - 78.6%] 

Figure 4. Histogram showing validation time differences in hours between epitweetr and 

manual method 

 

The Wilcoxon signed rank test showed that the validation time difference is significantly smaller than 
zero (p-value = 1.5 × 10−5), meaning that we validated events detected by epitweetr earlier than those 

detected by the manual method.  

Discussion 

In this article we present the evaluation of epitweetr, a new automatised, open-source, R-based tool 
for early detection of public health threats using Twitter data. We developed this tool after finding a 

knowledge gap and after performing a feasibility study through a manual prototype of this type of tool.   

Previous studies have shown the relevance of having an appropriate geolocation when using social 

media data to better understand where the event or threat is happening. We focus our geolocation 

evaluation on the tweet geolocation since it is more relevant for the objective of the tool (early detection 
of threats) providing a more accurate information related to the event rather than to the user. The 

tweet geolocation evaluation showed an accuracy of around 30%, being higher at national than at 
subnational level. The vast majority of the wrongly geolocated tweets were related to few recurrent 

errors from the algorithm such as US president and population citizens not being recognized (e.g. 

Trump, American, Chilean) or common words getting high priority (e.g. ‘real’ for the location Ciudad 
Real, Spain). By adding a supervised learning layer to the existing algorithm, the user could easily 

improve by training it and thus increasing substantially its accuracy and specificity. This was seen in 
the increased accuracy at national level from 30.1% to 38.5% and 52.4% respectively if the US 

president or a group of ‘well established locations’ could have been correctly identified. This naturally 
also increased the sensitivity (up to 88.8%). However, the PPV only increased slightly (from 74.9% to 

75.8% and 78.5% respectively) as some of these tweets had already been assigned a location even if 

it was the wrong location. 
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Epitweetr users can modify the threshold used by the geolocation algorithm to prioritise sensitivity or 
accuracy and specificity. Our evaluation proved that using a score above 10 as threshold increased the 

accuracy from 30.1 to 36.3% and the specificity from 51.6% to 69.2%, but it also decreased the 
sensitivity as expected.  

We decided to use the Early Aberration Reporting System (EARS) as a baseline for the signal detection 

algorithm since it is a well-established methodology initially developed by the United States Centers for 
Disease Control and Prevention (US CDC)27. The initial evaluation of the modified EARS algorithm 

stressed the need of having an adaptable system to adjust false positive rate and sensitivity. We 
addressed this need by adding configurable settings that can be adjusted even by topic. Additionally, 

we added a downweighting system for signal outliers, not to miss relevant signals afterwards. Likewise, 
we included Bonferroni correction with configurable settings since we are performing multiple tests at 

regional and country level28. Since the use of Bonferroni depends on the circumstances of the study, 

epitweetr users can activate or deactivate it according to their needs.  

This modified EARS algorithm used by epitweetr for signal detection had a much higher sensitivity in 

comparison with the manual method and allowed to detect small signals containing only one tweet. In 
general, epitweetr detected more events than the manual method in a timelier manner.  

When comparing the performance of epitweetr and the manual method for the COVID-19 signals and 

events, the latter detected more events. This can be explained by the fact that COVID-19 became a 
much-tweeted topic and the query used by epitweetr was too generic to detect these specific events. 

Creating more specific queries for COVID-19 (e.g. COVID-19 vaccines, COVID-19 treatment, COVID-19 
schools) would have allowed to detect more events with epitweetr. This is relevant when a new event 

or threat is being monitored since a generic query can be used in the early stages and subqueries or 
more specific queries should be developed once the event becomes more popular and it is mentioned 

more frequently by Twitter users.  

Epitweetr showed a lower positive predictive value in comparison with the manual method as expected 
for this signal detection algorithm. We developed epitweetr to detect small signals so having a very 

sensitive tool was a priority. There are some configurable settings that allow epitweetr users to modify 
the false positive rate of the tool. Furthermore, adding a machine learning module to epitweetr could 

increase the positive predictive value by combining supervised and unsupervised learning to 

continuously train the model and adapt to possible concept drifts in Twitter streams29 without 
jeopardising the sensitivity and IRA achieved by the underlying signal detection algorithm. 

Throughout the evaluation, we found that having many configurable settings increased the flexibility of 
the tool and its ability to adapt to different contexts or specific uses. The dashboard of the epitweetr 

application is intended for testing all these settings before epitweetr users decide which values or 

parameters to use in their context. This decision will depend on the resources available, which relates 
to the specificity of the tool (e.g. experts available to assess all signals detected by epitweetr, including 

possible false signals) and the granularity required, which relates to the sensitivity of the tool (e.g. 
which would be the consequences of missing a small signal).  

The main limitation of epitweetr relates to the variation in Twitter data dynamics and different scopes 
within early detection of threats that epitweetr users may have. We have overcome this by adding most 

of the parameters as configurable settings that can be changed not only for the tool itself but also 

depending on the topic. Likewise, the dashboard facilitates this decision showing the immediate results 
of choosing different parameters. 

In conclusion, epitweetr has shown to have sufficient performance for early detection of public health 
threats using Twitter data. This type of tool has shown to be useful to public health experts. Moreover, 

publishing epitweetr in a public repository with several customisable settings allows other users to adapt 

the tool to their specific needs and, even, further develop this tool. Additionally, since epitweetr has a 
strong automated component providing outputs in a near-real-time manner, we believe it can become 

a useful tool in the daily public health practice of infectious disease event and threat detection. 

Code and Data sharing 

All code used by epitweetr are available as an R package from CRAN. Source maintenance and 

interaction occurs through the GitHub repository18. The historical Twitter data used in the present 
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analysis cannot be shared. However, a dataset with the anonymised signals and events detected by 
epitweetr and the manual method for these data is publicly available30. 
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Supplementary material 

Appendix A. Additional methods: epitweetr evaluation 

The manual monitoring (hereafter referred to as the manual method) consisted of screening twice a day most 

recent tweets posted by a list of over 100 validated Twitter users followed by ECDC EI team. In this method, we 

defined a signal as a tweet that fulfils ECDC criteria and required further action (e.g. validation of the information). 

The time of this tweet was recorded as the signal time and, in case several Twitter accounts were tweeting about 

the same topic in the same screening round, the earliest set the signal time.  

The epitweetr screening consisted of screening twice a day email alerts (i.e. unexpected increase in the number of 

tweets by topic, location and time) sent by epitweetr at approximately 4.30 Central European Time (CET) and 

13.30 CET. In this method, we defined a signal as an alert for a specific topic, location and time which top words 

and other information included in the email suggested it fulfilled ECDC criteria. The time of the earliest alert of 

the day was recorded as the signal time.  

In both epitweetr and the manual method, an event was a validated signal deemed trustful and reliable by an 

official source. The approximate time at which this validation was done was recorded as the event time, both in 

case of positive and negative validation. 

Two EI experts screened during alternate weeks Twitter data twice a day using both methods and recorded signals 

and events detected by each method until the minimum sample size was achieved. 

Considering there is no prior estimate available for the sensitivity and specificity and having a maximal marginal 

error of 0.15 for sensitivity and specificity, we defined the minimum sample size as: 

𝑛 ≥  
𝑧2

4𝑑2
; 

where n is the minimum sample size, z is the 97.5% percentile of the standard normal distribution, and d is the 

maximal marginal error. 

In order to achieve a minimum sample size, a time period with the following criteria was selected: at least 43 

different events found by any of the methods, at least 43 signals found by each method and at least 10 events 

found by both methods. 

Since it is difficult to evaluate the classification accuracy of the generated events by the two methods, because no 

independent gold standard exists and there is no available information on all events that should be detected by 

both methods, we used instead an inter-rater agreement (IRA) between the two methods as a relative definition of 

sensitivity1. We defined the IRA of the manual method (𝐼𝑅𝐴𝑚) and the IRA of epitweetr (𝐼𝑅𝐴𝑒), with their 95% 

confidence interval (CI), as: 

𝐼𝑅𝐴𝑚 =
𝑎 + 𝑐

𝑎 + 𝑏 + 𝑐
              𝐶𝐼: [𝐼𝑅𝐴𝑚 ± 1.96√

𝐼𝑅𝐴𝑜(1 − 𝐼𝑅𝐴𝑚)

𝑎 + 𝑏 + 𝑐
 ] ; 

𝐼𝑅𝐴𝑒 =
𝑎 + 𝑏

𝑎 + 𝑏 + 𝑐
              𝐶𝐼: [𝐼𝑅𝐴𝑒 ± 1.96√

𝐼𝑅𝐴𝑒(1 − 𝐼𝑅𝐴𝑒)

𝑎 + 𝑏 + 𝑐
 ] ; 

where a was the number of events detected by both methods, b was the number of events detected only by 

epitweetr, and c the number of events detected only by the manual method. 

Since the estimation of the specificity was not feasible in this context, we calculated the PPV as the proportion of 

signals corresponding to a validated event. We defined the manual method PPV (𝑃𝑃𝑉𝑚) and the epitweetr PPV 

(𝑃𝑃𝑉𝑒), with their 95% CI, as: 

𝑃𝑃𝑉𝑚 =
𝑁𝑚

𝑒𝑣

𝑁𝑚
𝑠𝑖𝑔

              𝐶𝐼: [𝑃𝑃𝑉𝑚 ± 1.96√
𝑃𝑃𝑉𝑚(1 − 𝑃𝑃𝑉𝑚)

𝑁𝑚
𝑠𝑖𝑔

 ] ; 

𝑃𝑃𝑉𝑒 =
𝑁𝑒

𝑒𝑣

𝑁𝑒
𝑠𝑖𝑔

              𝐶𝐼: [𝑃𝑃𝑉𝑒 ± 1.96√
𝑃𝑃𝑉𝑒(1 − 𝑃𝑃𝑉𝑒)

𝑁𝑒
𝑠𝑖𝑔

 ] ; 
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where 𝑁𝑚
𝑒𝑣 was the number of events detected by the manual method, 𝑁𝑚

𝑠𝑖𝑔
 the number of signals detected by the 

manual method, 𝑁𝑒
𝑒𝑣 the number of events detected by epitweetr, and 𝑁𝑒

𝑠𝑖𝑔
 the number of signals detected by 

epitweetr. 

We defined the timeliness as the difference between the validation time of events found by epitweetr and manual 

method. In case an event was detected in several days, only the earliest was kept for the analysis. We performed 

a descriptive analysis, including measures of central tendency and variability. Likewise, we performed a 

significance test using the signed rank test where the null hypothesis assumed there was no true difference and 

the alternative hypothesis assumed epitweetr had earlier validation times than the manual method.  
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