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1 Model Description33

1.1 Global Epidemic and Mobility Model. We use the Global Epidemic and Mobility model34

(GLEAM), a stochastic, spatial, epidemic model based on an age-structured, metapopulation approach35

that has been used and published previously (1; 2). In the model, the world is divided into over 3, 200 ge-36

ographic subpopulations constructed using a Voronoi tessellation of the Earth’s surface. Subpopulations,37

centered around major transportation hubs (e.g., airports), consist of cells with a resolution of 15 x 1538

arc minutes (approximately 25 x 25 kilometers). High resolution data are used to define the population of39

each cell (3). Other attributes of individual subpopulations, such as age specific contact patterns, health40

infrastructure, etc., are added according to available data (4; 5).41

GLEAM integrates a human mobility layer, represented as a network, using both short-range (i.e.,42

commuting) and long-range (i.e., flights) mobility data from the Offices of Statistics for 30 countries on43

5 continents as well as the Official Aviation Guide (OAG) and IATA databases (updated in 2019) (6; 7).44

The air travel network consists of the daily passenger flows between airport pairs (origin and destination)45

worldwide mapped to their corresponding subpopulations. We define a worldwide homogeneous standard46

for GLEAM to overcome differences in the spatial resolution of the commuting data across different47

countries. Where information is not available, the short-range mobility layer is generated synthetically48

by relying on the “gravity law” or the more recent “radiation law” both calibrated using real data49

available (8). These approaches assume more frequent travel to nearby or closer subpopulations and less50

frequent travel to distant locations. In Fig. 1 we show a representation of the geographical resolution of51

the model for a few selected regions, both the long range and short range mobility networks, and the52

population structure at the global level.53

Initial conditions are set specifying the number and location of individuals capable of transmitting54

the infection. GLEAM is then able to track over time the proportion of the population in each disease55

compartment for all subpopulations. At the start of each simulated day, travelers move to their des-56

tinations via the flight network. The probability of air travel changes from day to day, varies by age57

group, and can consider the effects of location specific airline traffic reductions. Short-range mobility58

(i.e., commuting) varies by disease status. Each full day is simulated using 12 distinct time steps, and59

this process is repeated for every simulated day. Individuals and their traveling patterns are tracked as60

shown in the flow diagram for the GLEAM algorithm (Fig. 2).61

The combined population structure and mobility network create a synthetic world that is used to sim-62

ulate the unfolding dynamics of the epidemic. The infection dynamics occur within each subpopulation.63

We adopt a classic SLIR model in which individuals are classified into four compartments: susceptible,64

latent, infectious, or removed. Susceptible individuals become latent through interactions with infectious65

individuals. Latent individuals progress to the infectious stage at a rate inversely proportional to the66

latent period, and infectious individuals progress to the removed stage at a rate inversely proportional67

to the infectious period. During both the latent and infectious stages we assume that individuals are68

able to travel. Following the infectious period, individuals then progress into the removed compartment69

where they are no longer able to infect others, meaning they have either recovered, been hospitalized, or70

isolated. Individuals transition between compartments using stochastic binomial chain processes assum-71

ing parameter values from available literature that define the natural history of disease. In Table. 1 we72

report the parameter estimates used in the model. We estimate the number of deaths using the number73

of individuals in the removed compartment and assume the infection fatality ratio has a uniform prior74

from 0.4%− 2% and is age-stratified proportional to the values reported in Verity et al. (9).75

Once the mobility data layers and the disease dynamics are defined, the number of individuals in each76

compartment m, age bracket i, and subpopulation j follows a discrete and stochastic dynamical equation77

that reads as78

X
[m,i]
j (t+ ∆t)−X [m,i]

j (t) = ∆X
[m,i]
j + Ωj([m, i]) (1)

where the term, ∆X
[m,i]
j , represents the change due to the compartment transitions induced by the79
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Figure 1: Schematic representation of GLEAM. (left) The subpopulation structure for selected regions.
Subpopulations are geographic regions, formed from the Voronoi tessellation centered around airports.
They are comprised of census cells that are approximately 25km x 25km. (right) Diagrams of the
multiple mobility networks and population layer (from top to bottom): (1) the origin-destination airport
network (long range mobility network), (2) the commuting network (short-range mobility network), (3)
the population layer showing the population size of census cells.

disease dynamics and the transport operator, Ωj([m, i]), represents the variations due to the traveling80

and mobility of individuals. The latter operator takes into account the long-range airline mobility and81

defines the minimal time scale of integration as 1 day. The mobility due to the commuting flows is taken82

into account by defining effective force of infections by using a time scale separation approximation as83

detailed in Ref. (1). The ∆X
[m,i]
j is defined as the sum over all of the transitions into and out of disease84

compartment m of individuals in age group i ([m, i]). The operator Dj([m, i], [n, i]) represents the number85

of transitions from [m, i] to [n, i] during the time interval ∆t and each element of this operator is a random86

variable extracted from a multinomial distribution. The change ∆X
[m,i]
j of a compartment [m, i] in this87
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Parameters Range Ref.

Latent period (mean) [4, 7] days (10)

Infectious period (mean) [2, 4] days (11)

Days until recovery [10, 14] days (11; 9)

Generation time [6, 8] days (12; 13)

Table 1: Summary of parameter ranges explored in the
sensitivity analysis. Reference parameters are reported
in the main text
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Figure 3: Posterior distribution of the reproductive
number in China in the absence of mitigation poli-
cies.

time interval is given by a sum over all random variables {Dj([m, i], [n, i])} as follows88

∆X
[m,i]
j =

∑
[n,i]

{−Dj([m, i], [n, i]) +Dj([n, i], [m, i])} . (2)

As a concrete example let us consider the evolution of the latent compartment. Individuals in age89

group i of subpopulation j can either transition into the Latent compartment (Li
j) from the suscep-90

tible compartment (Si
j) or transition out the Latent compartment into Infectious (Iij). The elements91

of the operator acting on Li
j , are extracted from the binomial distributions: PrBin(Li

j(t), pLi
j→Iij

) and92

PrBin(Si
j(t), pSi

j→Li
j
), where pLi

j→Iij
and pSi

j→Li
j

are the transition probabilities from the latent state to93

the infectious state and from susceptible to the latent state, respectively. We assume a memoryless, dis-94

crete, stochastic transition processes. The probability pSi
j→Li

j
is the force of infection and it is determined95

by commuting flows, pattern of interactions as encoded in the age structured contact patterns, and the96

local non-pharmaceutical interventions. We consider individuals divided into 10 age groups: [0-9, 10-19,97

20-24, 25-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+]. The contacts matrix C considers interactions in98

four specific social settings: contacts at school (Cschool), workplace (Cwork), home (Chome), and in the99

general community (Ccommunity). Therefore, in general the contacts matrix is a linear combination of100

the four contributions according to the contact reductions in different locations C =
∑

s ωsCs, where ωs101

indicates the number of contacts per setting, and s indicates the different settings mentioned before. The102

baseline ωs and Cs values for each specific country are from Ref. (4). For the sake of space we refer the103

reader to Ref. (1) where the analytical framework used in the model is reported in detail.104

1.2 Interventions Timeline. In order to realistically depict the evolution of the epidemic, a compre-105

hensive set of policy interventions is applied to modify disease transmissibility and population mobility.106

On January 15, partial international travel reductions (from 10% to 40%) are applied for individuals107

traveling to/from China. Between January 23 and 28, flight and commuting reductions are applied to108

Wuhan and other subpopulations in the Hubei province to enforce government-mandated quarantines.109

In addition, on January 25, commuting reductions are applied also to all other subpopulations in110

mainland China. To do so, we collected daily travel data starting January 1, 2020 until February 25,111

2020 from the Baidu Qianxi platform (14), which provides three mobility indices (i.e., inflow index,112

outflow index, and intra-city index). The indices are proxies for the number of travelers moving in,113

out of, and inside a city, respectively. We extracted the mobility outflow index of 27 provinces and 4114

municipalities for the year 2020 and the previous year (with the same lunar date), and then mapped all115

provinces and municipalities to the metapopulation structure of the model to estimate the travel flow116

changes during the epidemic where the travel reduction can be estimated as 1− Icur
Ipre

, where Icur and Ipre117

are the mobility outflow index of year 2020 and previous year on the same lunar date, respectively.118
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On February 1, due to the increasing amount of restrictions implemented by various countries and119

airlines (15; 16; 17; 18; 19; 20), stronger travel reductions are applied between mainland China and120

the rest of the world. We use actual worldwide (both international and domestic) origin-destination121

traffic data from the OAG database to quantify travel reductions. We also apply case detection based122

on travel history and additional travel bans across pairs of countries according to the Oxford COVID-123

19 Government Response Tracker (OxCGRT) (21). We account as well for the intra-country mobility124

and contacts reduction in workplaces and social settings (22) using the COVID-19 Community Mobility125

reports obtained from Google (23).126

From mid-March 2020 all around the world, countries started to close schools as a means to slow the127

spread of COVID-19. We use the timeline of school closures provided by OxCGRT (21). As our model128

considers contact matrices for different settings, namely households, schools, workplaces and community129

contacts (4; 5), we quantify the decrease in contacts that individuals have in each of these environments.130

To implement school closures in the United States and the rest of the countries we follow (24) where131

authors study the effects of school closure in the context of seasonal influenza epidemics. According to132

the date when schools were closed in the different states/countries we consider a reduction of contacts133

in all individuals attending an educational institution (21). In the United States, Spain, and Italy, this134

intervention was applied at state/region level and for the rest of the European countries analyzed it was135

applied at country level.136

Following school closures, most US states and European countries issued stay-at-home orders. In this137

case, we consider that only contacts in the household and essential workplaces were available. Using138

the COVID-19 Community Mobility reports (23) we compute the relative reduction on the number of139

contacts in workplaces and community interactions as well as the relative reduction in the intra-country140

mobility. We used data at the state or regional level for the United States, Italy, and Spain starting on141

February 15, 2020 and at the country level for all other countries available. For countries where we do142

not have mobility reports available we assume that on the date that schools closed there is a reduction143

in mobility of 50%, and an 100% reduction when there is a stay-at-home order. When the interventions144

are relaxed the mobility reduction is relaxed accordingly.145

From the Google mobility reports we use the field workplaces percent change from baseline to146

infer contacts reductions in workplaces and the field retail and recreation percent change from147

baseline to infer contacts reductions in the general community setting. The Google mobility report148

provides the percentage change rl(t) on day t of total visitors to specific locations s with respect to a149

pre-pandemic baseline calculated as the median value, for the corresponding day of the week, during a150

5 weeks period from January 3 until February 6, 2020. We turn this quantity into a rescaling factor151

for contacts such as ωs(t) = ωs(1 + rl(t)/100)2, by considering that the number of potential contacts152

per location scales as the square of the the number of visitors. We also use the ordinal index C1 School153

closing from the Oxford Coronavirus Government Response Tracker to modulate contacts in schools and154

universities. The index ranges from a minimum of 0 (no measures) to a maximum of 3 (require closing155

all levels). Furthermore, all ω factors are multiplied (or set equal to in case of contacts at home) by156

setting-specific weights from Mistry et al. (4). Finally we explore different level of overall transmissibility157

reduction (0-30%, step 10%) due to the awareness of population and behavioral changes starting at the158

date of the state of the emergency in the US and EU countries.159

2 Model Calibration160

The model described is stochastic and outputs an ensemble of possible epidemic outcomes for each set of161

initial conditions. We seed the epidemic in Wuhan, China assuming a starting date between November 15162

and December 1, 2019, with 20 initial infections (25). Given the doubling time of the epidemic, this might163

corresponds to the virus emerging in mid October to late November, 2019 (26; 27; 28; 29; 25). We simulate164

epidemic scenarios sampling reproductive numbers (R0) from a uniform prior in the range 1.6 to 3.3 (step165
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0.01). We use an Approximate Bayesian Computation (ABC) Rejection Algorithm to sample a set of166

parameter points θ (for instance R0) according to a prior distribution and simulates through the model the167

dataset E′. A distance measure s(E′, E) determines the difference between E′ and the evidence E based168

on a given metric. If the generated E′ is outside a tolerance from the evidence E (i.e., s(E′, E) > ε) the169

sampled parameter value is discarded. The sampled parameters that are accepted provide an estimate170

of the likelihood with respect to the evidence E and allows us to calculate the posterior distribution171

P (θ, E). As evidence, E, we considered the cumulative number of SARS-CoV-2 cases internationally172

imported from China during the time window of January 12 to January 21, 2020. The distance measure173

at each date is the difference between the SARS-CoV-2 cumulative imported cases generated by the174

model and the evidence with a tolerance provided by the under-detection interval estimated in Ref. (30).175

More specifically, only a fraction of imported cases are detected at the destination (31). According to176

the estimates proposed in Ref. (32), we stratify the detection capacity of countries relative to Singapore177

into three groups: high, medium and low surveillance capacity according to the Global Health Security178

Index (33), and assume an overall detection capacity for Singapore varying from 30% to 100% of imported179

cases. We also account for a non detectable 40% rate of asymptomatic individuals (sensitivity analysis180

ranging from 35% to 50%) (34; 35). The rejection algorithm accepts only configurations that satisfy the181

distance measure every day considered in the above time interval. This approach allows us to calibrate182

the model by incorporating both the growth rate of importations and their magnitude, scaled according183

to the under-detection estimates. The detailed list of importation events used is provided in Table S1184

of the supplementary materials of Ref. (36). Using the ABC calibration and the age-stratified contact185

matrices, the obtained posterior distribution P (R0 = x|E) for the basic reproductive number R0 in China186

has a median of 2.5 [95% CI 2.2-2.9] (Fig. 3), with a median doubling time of 3.8 [95% CI 3.1− 4.6] days187

in the absence of mitigation policies, for an overall detection capacity in Singapore of 60%. The posterior188

of R0 in China has small variations, yielding a median of 2.4 [95% CI 2.1-2.8] and 2.7 [95% CI 2.3-3.1]189

for an overall detection capacity in Singapore of 100% and 30% respectively.190

To estimate the posterior distribution of the infection fatality ratio (IFR) and infection attack rate
in each US state and European country, we use an additional ABC rejection approach using the weekly
model-projected and reported deaths. Specifically, we consider the subset of realizations that are (i)
consistent with the international importations from China up to January 21, 2020 (i.e., selected from
the global model calibration) and (ii) show Italy as the first country, in the group under examination,
to experience sustained local transmission (more details in section 3A). Then we estimate, for each
realization in each state and country considered, the projected deaths from the removed compartment by
considering an uniformly distributed IFR prior ranging from 0.4% to 2% that is age stratified proportional
to the values estimated by Ref. (9). We also consider that the projected deaths are subject to a reporting
delay uniformly distributed between 2 − 22 days for both the US and Europe. As a distance measure,
s(E′, E), for the ABC rejection algorithm we use the summary statistics provided by the the weighted
mean absolute percentage error (wMAPE):

wMAPE =

∑
t |Dproj(t)−Dsurv(t)|∑

tDsurv(t)
∗ 100

where Dproj corresponds to the delayed/shifted model-projected deaths (Dproj) and Dsurv to the surveil-191

lance data. We only consider the deaths that were reported between March 22, 2020 and June 27, 2020,192

and set a tolerance of 25%, keeping only the realizations with a s(E′, E) = wMAPE < 25%. Using this193

approach we generate estimates and credible intervals for the infection attack rates and IFRs in 36 US194

states and 20 European countries. In the main text we show the results of the calibration on the weekly195

deaths for four US states and four European countries. In Fig. 4 and Fig. 5 we show the projected weekly196

deaths with the reported values for all calibrated European countries and US states. We also include197

Tables 2 and 3 which report the infection attack rate, infection fatality ratio (IFR), and reproductive198

number (R0) of each for each US state and European country, respectively.199

In Fig. 6 we show the correlation between the weekly projected deaths and the reported values from200

7



2/1 3/1 4/1 5/1 6/1 7/1

50

100

150
W

ee
kl

y 
De

at
hs

Austria Projections
Reported

2/1 3/1 4/1 5/1 6/1 7/1

1,000

2,000
Belgium

2/1 3/1 4/1 5/1 6/1 7/1

20

40

Bulgaria

2/1 3/1 4/1 5/1 6/1 7/1

10

20
Croatia

2/1 3/1 4/1 5/1 6/1 7/1

20

40

60

W
ee

kl
y 

De
at

hs

Czech Republic

2/1 3/1 4/1 5/1 6/1 7/1

50

100
Denmark

2/1 3/1 4/1 5/1 6/1 7/1

2,000

4,000

6,000
France

2/1 3/1 4/1 5/1 6/1 7/1

500

1,000

1,500
Germany

2/1 3/1 4/1 5/1 6/1 7/1

10

20

30

W
ee

kl
y 

De
at

hs

Greece

2/1 3/1 4/1 5/1 6/1 7/1

50

100 Hungary

2/1 3/1 4/1 5/1 6/1 7/1

200

400
Ireland

2/1 3/1 4/1 5/1 6/1 7/1

2,000

4,000

6,000 Italy

2/1 3/1 4/1 5/1 6/1 7/1

500

1,000

W
ee

kl
y 

De
at

hs

Netherlands

2/1 3/1 4/1 5/1 6/1 7/1

100

200 Poland

2/1 3/1 4/1 5/1 6/1 7/1

100

200

Portugal

2/1 3/1 4/1 5/1 6/1 7/1

100

200 Romania

2/1 3/1 4/1 5/1 6/1 7/1

2,500

5,000

7,500

W
ee

kl
y 

De
at

hs

Spain

2/1 3/1 4/1 5/1 6/1 7/1

250

500

750 Sweden

2/1 3/1 4/1 5/1 6/1 7/1

200

400
Switzerland

2/1 3/1 4/1 5/1 6/1 7/1

2,500

5,000

7,500 United Kingdom

Europe Weekly Death Projections

Figure 4: Projections of the weekly deaths for 20 European countries using the calibration reported in
the main text. We report the median value and the 90% confidence interval.

Name Infection Attack Rate (%) IFR (%) R0

Austria 1.16 [0.74, 2.85] 0.81 [0.35, 1.23] 2.61 [2.33, 2.83]
Belgium 13.24 [8.50, 28.35] 0.71 [0.33, 1.00] 2.73 [2.34, 2.99]
Bulgaria 0.98 [0.48, 2.35] 1.06 [0.38, 1.63] 2.66 [2.26, 2.80]
Croatia 0.19 [0.12, 0.42] 1.33 [0.57, 2.04] 2.47 [2.24, 2.69]

Czech Republic 0.46 [0.27, 1.22] 0.86 [0.37, 1.31] 2.59 [2.32, 2.83]
Denmark 1.29 [0.82, 3.16] 1.00 [0.41, 1.43] 2.50 [2.24, 2.69]
France 4.79 [3.38, 10.31] 1.01 [0.47, 1.31] 2.78 [2.47, 3.02]

Germany 1.16 [0.73, 2.89] 1.02 [0.42, 1.47] 2.59 [2.34, 2.81]
Greece 0.19 [0.10, 0.46] 0.99 [0.40, 1.66] 2.58 [2.34, 2.83]

Hungary 0.80 [0.48, 2.02] 0.87 [0.35, 1.27] 2.62 [2.34, 2.85]
Ireland 5.04 [3.20, 12.19] 0.71 [0.30, 1.05] 2.73 [2.41, 2.96]
Italy 4.51 [3.13, 10.83] 1.37 [0.63, 1.78] 2.76 [2.38, 3.01]

Netherlands 4.96 [3.13, 11.65] 0.85 [0.37, 1.28] 2.69 [2.37, 2.93]
Poland 0.60 [0.30, 1.46] 0.94 [0.39, 1.56] 2.57 [2.32, 2.80]

Portugal 1.56 [0.94, 3.67] 1.07 [0.45, 1.53] 2.69 [2.38, 2.92]
Romania 1.07 [0.64, 2.53] 0.94 [0.39, 1.33] 2.69 [2.38, 2.95]

Spain 7.30 [5.18, 14.79] 1.09 [0.55, 1.38] 2.76 [2.37, 3.02]
Sweden 6.52 [3.98, 15.83] 1.11 [0.42, 1.70] 2.59 [2.31, 2.87]

Switzerland 3.03 [2.00, 7.80] 1.02 [0.42, 1.48] 2.64 [2.34, 2.87]
United Kingdom 6.68 [4.21, 15.05] 0.97 [0.42, 1.39] 2.72 [2.44, 2.93]

Table 2: Model-estimated values for the infection attack rate by July 4, 2020, infection fatality ratio, and
reproductive number (R0) for the investigated European countries. We report the median values with
the 90% CI
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Figure 5: Projections of the weekly deaths for 36 US states using the calibration reported in the main
text. We report the median value and the 90% CI.
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Name Infection Attack Rate (%) IFR (%) R0

Alabama 2.94 [1.68, 6.43] 1.01 [0.44, 1.53] 2.80 [2.51, 3.00]
Arizona 5.95 [3.04, 12.96] 0.95 [0.38, 1.59] 2.60 [2.38, 2.76]
Arkansas 1.52 [0.92, 4.07] 1.12 [0.39, 1.61] 2.64 [2.39, 2.93]
California 3.08 [1.40, 6.97] 0.83 [0.34, 1.40] 2.48 [2.24, 2.69]

Connecticut 9.44 [6.52, 19.60] 1.30 [0.63, 1.60] 2.80 [2.50, 3.04]
Delaware 8.09 [5.37, 20.86] 1.23 [0.48, 1.60] 2.78 [2.43, 3.11]
Florida 2.16 [1.29, 5.20] 1.17 [0.51, 1.80] 2.62 [2.36, 2.84]
Georgia 4.46 [2.64, 9.99] 0.89 [0.38, 1.29] 2.71 [2.45, 2.95]
Illinois 7.42 [4.41, 18.74] 1.02 [0.43, 1.47] 2.73 [2.41, 2.99]
Indiana 4.83 [2.94, 11.55] 1.07 [0.50, 1.49] 2.80 [2.52, 3.02]
Kansas 0.95 [0.57, 2.38] 0.95 [0.41, 1.42] 2.63 [2.37, 2.88]

Kentucky 1.68 [1.08, 4.16] 1.05 [0.43, 1.52] 2.79 [2.50, 2.97]
Louisiana 6.22 [4.26, 14.14] 1.13 [0.50, 1.46] 2.76 [2.40, 3.03]
Maryland 6.53 [3.83, 14.77] 1.03 [0.43, 1.48] 2.74 [2.46, 2.97]

Massachusetts 12.96 [7.80, 29.45] 1.15 [0.49, 1.59] 2.76 [2.52, 3.02]
Michigan 6.39 [4.11, 13.79] 1.03 [0.48, 1.46] 2.72 [2.43, 3.02]
Minnesota 5.76 [3.05, 13.29] 0.94 [0.35, 1.43] 2.76 [2.47, 2.94]
Mississippi 5.19 [3.23, 10.67] 1.16 [0.53, 1.54] 2.76 [2.54, 2.98]
Missouri 2.17 [1.38, 5.58] 1.03 [0.42, 1.46] 2.73 [2.45, 2.94]
Nebraska 2.89 [1.75, 7.12] 1.08 [0.44, 1.56] 2.71 [2.53, 2.99]
Nevada 2.74 [1.56, 6.68] 0.91 [0.40, 1.41] 2.62 [2.36, 2.86]

New Hampshire 6.63 [3.53, 15.18] 0.88 [0.39, 1.55] 2.55 [2.37, 2.77]
New Jersey 15.20 [10.22, 31.26] 1.20 [0.60, 1.55] 2.79 [2.49, 3.03]
New Mexico 3.55 [2.25, 8.78] 1.07 [0.45, 1.54] 2.76 [2.42, 2.97]
New York 13.37 [9.07, 26.72] 1.14 [0.56, 1.50] 2.78 [2.44, 3.02]

North Carolina 2.81 [1.53, 6.45] 0.97 [0.43, 1.50] 2.70 [2.42, 2.92]
Ohio 2.96 [1.67, 6.95] 1.12 [0.46, 1.58] 2.76 [2.52, 3.02]

Oklahoma 1.04 [0.71, 2.74] 1.04 [0.41, 1.44] 2.61 [2.32, 2.86]
Oregon 0.78 [0.48, 1.92] 1.08 [0.44, 1.56] 2.59 [2.37, 2.78]

Pennsylvania 5.56 [3.46, 12.26] 1.24 [0.57, 1.63] 2.80 [2.43, 3.04]
South Carolina 2.30 [1.36, 5.21] 0.98 [0.43, 1.51] 2.75 [2.49, 2.92]

Tennessee 1.42 [0.90, 3.46] 1.08 [0.42, 1.53] 2.60 [2.45, 2.89]
Texas 2.20 [1.20, 5.25] 0.81 [0.36, 1.27] 2.61 [2.33, 2.81]

Virginia 2.81 [1.56, 6.09] 0.96 [0.42, 1.46] 2.71 [2.42, 2.92]
Washington 1.84 [1.08, 4.28] 0.92 [0.41, 1.44] 2.64 [2.36, 2.88]
Wisconsin 1.71 [1.21, 4.46] 1.08 [0.41, 1.46] 2.66 [2.51, 2.97]

Table 3: Model-estimated values for the infection attack rate by July 4, 2020, infection fatality ratio, and
reproductive number (R0) for the investigated US states. We report the median values with the 95% CI
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Figure 6: Model calibration correlations. The correlation between the median weekly projected
deaths by the model reported in the main text and the weekly reported deaths in Europe (A) and the
US (B). Each circle represents a weekly value for a single country/state and the size of the circle is
proportional to the population size of the country/state.

surveillance data. We find a Pearson correlation coefficient of 0.99 (p < 0.001) from the results for both201

the US states and European countries. It is also important to stress that the calibration on reported202

weekly reported deaths is subject to the bias’ of that data, for example: under-reporting, the use different203

definitions of COVID-19 deaths (e.g., some states/countries report both probable and confirmed deaths204

while others only report confirmed deaths), and outliers that are a result of states/countries reporting205

backlogged data on a single day.206

Additionally, to analyze the stability of our selected list of states/countries from the calibration207

reported in the main text, we tested different tolerances of the wMAPE scores. Increasing the tolerance208

to 30% adds 4 US states and 2 European countries (US: Utah, Maine, Colorado, Iowa; EU: Slovenia and209

Norway). Decreasing the tolerance to 20% removes 5 US states and 3 European country (US: Mississippi,210

Nebraska, New Hampshire, Oregon, Wisconsin; EU: Greece, Croatia, Bulgaria). However, the different211

tolerance values do not change the overall results using the calibration reported in the main text.212

3 Sensitivity Analysis213

3.1 Unconstrained pandemic evolution realizations. In Fig. 7 we show the rank distributions214

illustrating the probability, in our simulations, that each country started the local outbreak in a particular215

order R (i.e., first, second, third etc.). While an initial start in the US and UK are the most likely scenarios216

in the ensemble (39% and 22% of simulations respectively), the empirical observations of case importation217

are also compatible with starts in other countries such as Germany, France, or Italy (13%, 10%, and 7%218

respectively). As a way to quantify and cluster the similarity of onset profiles, we compute and compare219

their cosine similarity. In particular, for each country, we create a vector where the xR component is220

the fraction of runs in which that country started the local outbreak in Rth position. We then compute,221

for each pair, the cosine similarity building a similarity matrix. On the right side of Fig. 7 we show222

the correlation network with a threshold between pairs of 0.9. We use a community detection algorithm223

based on label propagation (37) that identifies three country clusters. These clusters represent country224

onset profiles that are considered to be similar to others in that group. The first group contains the US,225

UK, France, Germany, and Italy and these are all the countries among the first to have experienced the226

epidemic. The first confirmed cases in these countries were all reported within an eight day period. The227

second cluster instead is formed by countries such as Spain, Switzerland, Poland, and Portugal which are228

in the second group of countries to start observing local spreading of the virus. Spain acts as bridge with229

the first group. We find a third cluster, that includes all countries among the last to have experienced230
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Figure 7: Onset of local outbreaks in the selected ensemble. On the left we show the distribution
of starting ranks. The plot shows the probability that each country started the local outbreak in rank
R respect to the others. On the right we show the similarity network computed considering the cosine
similarity of the starting rank distribution for each pair of countries. We threshold links showing just those
equal or above to 0.9. The size of each node is proportional to the population of the respective country.
The three clusters are identified via a community detection algorithm based on label propagation.

the epidemic such as Bulgaria, Iceland, and Lithuania. The first case detected within countries of this231

final cluster was on February 25, 2020 in Croatia (38), over a month after the first case was detected in232

Europe.233

3.2 Alternative distance measure for model calibration. We further examine the robustness of234

the individual state and country results by performing an additional calibration that uses as distance235

measure in the ABC rejection algorithm the s = ln(RSS), where the RSS is the residual sum of squares236

of the weekly deaths estimated by the model with respect to the weekly surveillance data. Similar237

to the calibration used in the main text, we analyze the time window from March 22, 2020, to June238

27, 2020 and assume the same uniform prior distribution on the IFR range (0.4%-2%) and reporting239

delays (2 − 22 days). For each model realization that satisfies the global calibration, In we consider240

the empirical distribution of P (s) and accept all the simulations for which s is at a distance ∆ < 0.66,241

from the minimum value. This is equivalent to the typical information loss threshold between the model242

estimated deaths and the reported weekly incident deaths in information criteria. Using this selection, we243
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Figure 8: Calibration comparison. (A) The correlation between the weekly projected deaths using the
ABC calibration in the main text (wMAPE) and the information theoretic calibration using the residual
sum of squares distance metric (RSS). Each circle represents the weekly values for a single European
country (left) or US state (right). (B) The correlation between the cumulative infection attack rates
for each country/state as of July 4, 2020. (C) The correlation between the estimated IFRs for each
calibration method. All circle sizes are proportional to the populations of each US state and European
country.The dashed line in all figures represents the y = x line.

confirm the results reported in the main text. In Fig. 8 we show the correlation of the weekly new deaths,244

infection attack rates as of July 4, 2020, and IFRs between the model calibrated using the wMAPE,245

ABC approach (from main text) and this information-theoretic approach.246

4 SARS-CoV-2 Introduction Statistics247

We record all introduction events through April 30, 2020 as described in the main text. We aggregate the248

observations from census areas to US states or European Countries (i.e., the targets). Then we construct249

a directed and weighted network in which importation sources link the target states/countries. The width250

of the link is the average share of importations from each source across all runs selected through April251

30. Using these values, we build the chord diagrams shown in the manuscript. Since the weight of each252

link is the average across all runs of the normalized share of importation per run, the sum of incoming253

links for each target is one. To help the readability of the plots, we aggregated sources considering macro254

areas such as Europe and Asia. We keep the US (to isolate the national importations) and mainland255

China (as the epicenter of the pandemic) separate. All the other sources are grouped together and labeled256

“Others”. More specifically, source countries of importations in are grouped as:257

• Asia: Afghanistan, Armenia, Azerbaijan, Bahrain, Bangladesh, Brunei, Cambodia, Cyprus, India,258

Indonesia, Iran, Iraq, Israel, Japan, Jordan, Kazakhstan, Korea, Kuwait, Kyrgyzstan, Lao PDR,259

Lebanon, Malaysia, Maldives, Mongolia, Myanmar, Nepal, Oman, Pakistan, Philippines, Qatar,260

Saudi Arabia, Singapore, Sri Lanka, Taiwan, Tajikistan, Thailand, Turkey, United Arab Emirates,261

Uzbekistan, Vietnam, Yemen262

• China: mainland China263
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• Europe: Albania, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech264

Republic, Denmark, Estonia, Finland, France, Germany, Gibraltar, Greece, Hungary, Iceland,265

Ireland, Isle of Man, Italy, Jersey, Kosovo, Latvia, Lithuania, Luxembourg, Macedonia, Malta,266

Moldova, Montenegro, Netherlands, Norway, Poland, Portugal, Romania, Russian Federation, Ser-267

bia, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Ukraine, United Kingdom268

• Others: Algeria, Angola, Antigua and Barbuda, Argentina, Aruba, Australia, Bahamas, Barbados,269

Belize, Bermuda, Bolivia, Botswana, Brazil, British Virgin Islands, Burundi, Cameroon, Canada,270

Cape Verde, Caribbean Netherlands, Cayman Islands, Chile, Colombia, Congo, Cook Islands,271

Costa Rica, Cuba, Curaçao, Côte d’Ivoire, Djibouti, Dominica, Dominican Republic, Ecuador,272

Egypt, El Salvador, Equatorial Guinea, Ethiopia, Fiji, French Guiana, French Polynesia, Gambia,273

Ghana, Greenland, Grenada, Guadeloupe, Guatemala, Guinea, Guyana, Haiti, Honduras, Jamaica,274

Kenya, Liberia, Madagascar, Martinique, Mauritius, Mexico, Morocco, Mozambique, Namibia, New275

Zealand, Nicaragua, Nigeria, Palau, Panama, Paraguay, Peru, Rwanda, Samoa, Senegal, Seychelles,276

Sierra Leone, Somalia, South Africa, South Sudan, St-Barthélemy, St. Kitts and Nevis, St. Lucia,277

St. Maarten, St. Vincent and Grenadines, Sudan, Suriname, Tonga, Trinidad and Tobago, Tunisia,278

Turks and Caicos Islands, Uganda, Uruguay, Vanuatu, Venezuela, Zambia, Zanzibar, Zimbabwe279

• USA: all the US states plus the US territories (American Samoa, Guam, Northern Mariana Islands,280

Puerto Rico, U.S. Virgin Islands)281

In Table 4 we report the the share of introduction of SARS-Cov-2 infections for all European countries282

that experienced a local outbreak considering all the infections imported up to April 30, 2020. Compared283

with the seeding events networks (see below), the flows are radically different, especially for the first states284

and countries experiencing local transmission. The critical role of China before the travel restrictions of285

January 23, is replaced by a much larger fraction of introduction events of domestic or nearby countries286

origin.287

In Table 5 we report the the share of introduction of SARS-Cov-2 infections for all US states consid-288

ering all the infections imported up to April 30, 2020.289

5 SARS-CoV-2 Seeding Networks290

The importation networks are obtained as follows. As a first step, we track potential seeding events by291

air transportation (considering both individuals in the latent and infectious compartments) in any census292

areas of the US and Europe in all the runs selected. We then compute the day, in each run, in which the293

number of daily transitions from S to L is at least 10 in each state. In order words, we evaluate the date,294

in each run, when the state experienced the first local outbreak. We then track, in each run, the arrivals295

of latent and infectious individuals before or at the time of the local outbreak. From this standpoint, we296

build the seeding networks aggregating sources as described above.297

298

In Table 6 we report the seeding share for all European countries considered (see also Fig. 9-B).299

Interestingly, China is the dominant seeding source for the first countries to have experienced the local300

outbreak such as Italy, UK, Germany, France and Spain. As we move down the list, towards countries301

that experienced a later start of the local outbreak, the share of seeding events from China rapidly302

decreases. Asia is a key source of infections for most of countries. For Denmark (57% [IQR 40%− 76%]303

), Finland (56% [IQR 38% − 75%]), Sweden (56% [IQR 38% − 75%]), Austria (55% [IQR 36% − 75%]),304

Estonia (55% [IQR 36%−75%]) and Switzerland (52% [IQR 33%−73%]) the share of importations from305

Asian countries is above 50%. However, the role of European importation sources becomes more evident306

as we move clockwise in the plot thus looking at countries where the local outbreaks began in February.307

The range of importation shares goes from 10% [IQR 0% − 20%] in Italy to 87% [IQR 79% − 100%] in308

Slovak Republic. With the exceptions of the Netherlands (39% [IQR 20% − 57%]), Finland (37% [IQR309
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State Europe China Asia USA Others
Italy 0.69 (0.6, 0.8) <0.01 (<0.01, <0.01) 0.21 (0.13, 0.28) 0.06 (0.02, 0.06) 0.04 (0.02, 0.05)

United Kingdom 0.58 (0.48, 0.68) <0.01 (<0.01, <0.01) 0.27 (0.19, 0.35) 0.08 (0.03, 0.09) 0.07 (0.03, 0.08)
Germany 0.53 (0.42, 0.64) <0.01 (<0.01, <0.01) 0.38 (0.27, 0.48) 0.04 (0.02, 0.05) 0.04 (0.02, 0.05)

France 0.53 (0.42, 0.63) <0.01 (<0.01, <0.01) 0.27 (0.18, 0.35) 0.06 (0.02, 0.07) 0.15 (0.1, 0.18)
Spain 0.84 (0.79, 0.91) <0.01 (0.0, <0.01) 0.10 (0.05, 0.12) 0.04 (0.01, 0.04) 0.02 (<0.01, 0.03)

Switzerland 0.54 (0.42, 0.64) <0.01 (0.0, <0.01) 0.38 (0.27, 0.48) 0.05 (0.02, 0.06) 0.04 (0.01, 0.04)
Netherlands 0.58 (0.47, 0.69) <0.01 (0.0, <0.01) 0.25 (0.16, 0.32) 0.06 (0.02, 0.07) 0.12 (0.06, 0.15)

Sweden 0.67 (0.56, 0.77) <0.01 (0.0, <0.01) 0.28 (0.18, 0.37) 0.04 (0.01, 0.04) 0.02 (<0.01, 0.02)
Denmark 0.54 (0.42, 0.65) <0.01 (0.0, 0.0) 0.39 (0.27, 0.5) 0.05 (0.02, 0.05) 0.03 (<0.01, 0.03)
Austria 0.53 (0.42, 0.64) <0.01 (0.0, <0.01) 0.41 (0.3, 0.51) 0.03 (0.01, 0.04) 0.03 (0.01, 0.04)
Belgium 0.57 (0.46, 0.69) <0.01 (0.0, 0.0) 0.33 (0.22, 0.43) 0.05 (0.02, 0.06) 0.04 (0.02, 0.05)
Poland 0.73 (0.65, 0.83) <0.01 (0.0, 0.0) 0.21 (0.13, 0.28) 0.03 (<0.01, 0.04) 0.02 (<0.01, 0.03)

Portugal 0.84 (0.79, 0.91) <0.01 (0.0, 0.0) 0.07 (0.04, 0.1) 0.04 (0.01, 0.04) 0.05 (0.01, 0.05)
Czech Republic 0.62 (0.52, 0.72) <0.01 (0.0, 0.0) 0.31 (0.21, 0.4) 0.04 (0.01, 0.04) 0.04 (0.01, 0.04)

Ireland 0.75 (0.67, 0.85) <0.01 (0.0, 0.0) 0.11 (0.06, 0.14) 0.10 (0.04, 0.12) 0.05 (0.01, 0.05)
Norway 0.75 (0.67, 0.84) <0.01 (0.0, 0.0) 0.22 (0.13, 0.29) 0.03 (<0.01, 0.03) 0.01 (<0.01, 0.01)
Finland 0.63 (0.53, 0.74) <0.01 (0.0, 0.0) 0.32 (0.22, 0.42) 0.03 (<0.01, 0.03) 0.02 (<0.01, 0.02)
Hungary 0.70 (0.62, 0.81) <0.01 (0.0, <0.01) 0.23 (0.14, 0.29) 0.04 (0.01, 0.05) 0.03 (<0.01, 0.03)
Romania 0.76 (0.69, 0.85) <0.01 (0.0, 0.0) 0.20 (0.11, 0.25) 0.02 (<0.01, 0.03) 0.02 (<0.01, 0.02)

Greece 0.79 (0.73, 0.87) <0.01 (0.0, 0.0) 0.14 (0.08, 0.17) 0.05 (0.01, 0.05) 0.03 (<0.01, 0.03)
Bulgaria 0.72 (0.65, 0.82) <0.01 (0.0, 0.0) 0.23 (0.14, 0.3) 0.03 (<0.01, 0.03) 0.02 (<0.01, 0.02)

Malta 0.90 (0.87, 0.95) <0.01 (0.0, 0.0) 0.07 (0.03, 0.09) 0.01 (<0.01, 0.01) 0.02 (<0.01, 0.02)
Lithuania 0.81 (0.75, 0.89) <0.01 (0.0, 0.0) 0.17 (0.1, 0.22) 0.02 (0.0, 0.02) <0.01 (0.0, <0.01)
Croatia 0.73 (0.65, 0.82) <0.01 (0.0, 0.0) 0.18 (0.11, 0.23) 0.04 (0.01, 0.05) 0.05 (0.01, 0.06)
Latvia 0.74 (0.67, 0.83) <0.01 (0.0, 0.0) 0.23 (0.14, 0.29) 0.02 (0.0, 0.03) 0.01 (0.0, 0.02)

Estonia 0.65 (0.55, 0.76) <0.01 (0.0, 0.0) 0.31 (0.21, 0.41) 0.03 (<0.01, 0.03) <0.01 (0.0, 0.01)
Iceland 0.69 (0.6, 0.82) <0.01 (0.0, 0.0) 0.07 (0.03, 0.09) 0.16 (0.07, 0.2) 0.08 (0.02, 0.1)

Luxembourg 0.82 (0.76, 0.89) <0.01 (0.0, 0.0) 0.13 (0.07, 0.17) 0.03 (<0.01, 0.04) 0.02 (<0.01, 0.02)
Slovak Republic 0.90 (0.86, 0.96) <0.01 (0.0, 0.0) 0.09 (0.03, 0.12) <0.01 (0.0, 0.0) <0.01 (0.0, <0.01)

Slovenia 0.71 (0.62, 0.82) <0.01 (0.0, 0.0) 0.24 (0.14, 0.31) 0.04 (0.0, 0.04) 0.02 (0.0, 0.02)

Table 4: Introduction of SARS-Cov-2 infections thorugh April 30. Sources are listed from the second
column on. Targets are the European countries listed in the first column. Numbers are rounded to the
second digit.
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State USA China Asia Europe Others
California 0.69 (0.6, 0.81) <0.01 (<0.01, <0.01) 0.11 (0.05, 0.15) 0.05 (0.02, 0.07) 0.14 (0.07, 0.19)
New York 0.56 (0.43, 0.67) <0.01 (<0.01, <0.01) 0.11 (0.05, 0.15) 0.14 (0.07, 0.19) 0.19 (0.12, 0.23)

New Jersey 0.56 (0.44, 0.68) <0.01 (<0.01, <0.01) 0.10 (0.05, 0.14) 0.13 (0.06, 0.18) 0.20 (0.12, 0.24)
Florida 0.71 (0.62, 0.82) <0.01 (0.0, <0.01) 0.03 (0.01, 0.03) 0.07 (0.03, 0.1) 0.20 (0.11, 0.24)
Texas 0.78 (0.71, 0.87) <0.01 (0.0, <0.01) 0.05 (0.02, 0.07) 0.04 (0.02, 0.05) 0.12 (0.06, 0.15)
Illinois 0.71 (0.63, 0.82) <0.01 (0.0, <0.01) 0.07 (0.03, 0.1) 0.06 (0.03, 0.08) 0.15 (0.08, 0.18)

Washington 0.81 (0.74, 0.89) <0.01 (0.0, <0.01) 0.06 (0.02, 0.08) 0.03 (0.01, 0.04) 0.10 (0.04, 0.12)
Massachusetts 0.69 (0.6, 0.8) <0.01 (0.0, <0.01) 0.05 (0.02, 0.07) 0.10 (0.04, 0.14) 0.15 (0.09, 0.19)

Maryland 0.71 (0.62, 0.82) <0.01 (0.0, <0.01) 0.08 (0.04, 0.11) 0.08 (0.03, 0.1) 0.12 (0.07, 0.15)
Nevada 0.78 (0.71, 0.89) <0.01 (0.0, 0.0) 0.03 (<0.01, 0.03) 0.04 (0.02, 0.05) 0.15 (0.05, 0.2)
Virginia 0.75 (0.67, 0.84) <0.01 (0.0, <0.01) 0.07 (0.03, 0.09) 0.06 (0.03, 0.08) 0.12 (0.07, 0.15)
Georgia 0.78 (0.7, 0.86) <0.01 (0.0, 0.0) 0.07 (0.03, 0.09) 0.05 (0.02, 0.06) 0.10 (0.06, 0.13)
Arizona 0.82 (0.77, 0.92) <0.01 (0.0, <0.01) 0.02 (<0.01, 0.03) 0.02 (<0.01, 0.03) 0.13 (0.05, 0.17)

Colorado 0.83 (0.77, 0.9) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.04 (0.01, 0.05) 0.12 (0.06, 0.15)
Pennsylvania 0.78 (0.72, 0.86) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.05 (0.02, 0.07) 0.14 (0.08, 0.18)

Ohio 0.81 (0.76, 0.89) <0.01 (0.0, <0.01) 0.03 (<0.01, 0.03) 0.04 (0.01, 0.05) 0.12 (0.07, 0.15)
Connecticut 0.64 (0.54, 0.76) <0.01 (<0.01, <0.01) 0.07 (0.03, 0.1) 0.10 (0.04, 0.14) 0.18 (0.11, 0.22)

Michigan 0.79 (0.73, 0.87) <0.01 (0.0, 0.0) 0.03 (0.01, 0.04) 0.05 (0.02, 0.06) 0.13 (0.07, 0.16)
North Carolina 0.81 (0.75, 0.89) <0.01 (0.0, 0.0) 0.03 (<0.01, 0.03) 0.05 (0.02, 0.06) 0.11 (0.06, 0.14)

Minnesota 0.77 (0.69, 0.85) <0.01 (0.0, 0.0) 0.04 (0.02, 0.06) 0.04 (0.01, 0.05) 0.16 (0.09, 0.19)
Indiana 0.78 (0.71, 0.87) <0.01 (0.0, <0.01) 0.04 (0.02, 0.05) 0.05 (0.02, 0.06) 0.13 (0.07, 0.16)
Oregon 0.84 (0.79, 0.92) <0.01 (0.0, 0.0) 0.04 (0.01, 0.05) 0.02 (<0.01, 0.03) 0.10 (0.04, 0.12)

Utah 0.86 (0.82, 0.93) <0.01 (0.0, 0.0) 0.03 (<0.01, 0.04) 0.03 (<0.01, 0.04) 0.08 (0.04, 0.11)
New Hampshire 0.68 (0.58, 0.79) <0.01 (0.0, <0.01) 0.05 (0.02, 0.07) 0.11 (0.05, 0.14) 0.15 (0.09, 0.19)

Tennessee 0.82 (0.76, 0.9) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.04 (0.01, 0.05) 0.12 (0.06, 0.15)
Missouri 0.82 (0.76, 0.89) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.03 (<0.01, 0.04) 0.13 (0.07, 0.17)

Wisconsin 0.85 (0.8, 0.92) <0.01 (0.0, 0.0) <0.01 (<0.01, 0.01) 0.02 (<0.01, 0.03) 0.12 (0.06, 0.16)
Louisiana 0.84 (0.79, 0.91) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.04 (0.01, 0.05) 0.11 (0.05, 0.13)

South Carolina 0.83 (0.78, 0.91) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.04 (0.01, 0.06) 0.10 (0.05, 0.13)
Kansas 0.84 (0.79, 0.91) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.02) 0.03 (<0.01, 0.04) 0.12 (0.06, 0.14)

Oklahoma 0.83 (0.78, 0.91) <0.01 (0.0, 0.0) 0.03 (<0.01, 0.03) 0.03 (<0.01, 0.04) 0.11 (0.06, 0.14)
Kentucky 0.82 (0.76, 0.9) <0.01 (0.0, 0.0) 0.03 (<0.01, 0.04) 0.04 (0.01, 0.05) 0.12 (0.06, 0.15)

Idaho 0.88 (0.84, 0.94) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.02) 0.02 (<0.01, 0.02) 0.08 (0.03, 0.11)
New Mexico 0.89 (0.86, 0.95) <0.01 (0.0, 0.0) 0.01 (<0.01, 0.02) 0.02 (<0.01, 0.03) 0.07 (0.03, 0.09)

Iowa 0.82 (0.76, 0.89) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.03 (<0.01, 0.04) 0.13 (0.07, 0.17)
Alabama 0.70 (0.61, 0.83) <0.01 (0.0, 0.0) 0.18 (0.08, 0.24) 0.03 (<0.01, 0.04) 0.09 (0.04, 0.11)

Maine 0.81 (0.75, 0.89) <0.01 (0.0, <0.01) 0.02 (<0.01, 0.03) 0.04 (0.02, 0.06) 0.12 (0.06, 0.16)
Alaska 0.85 (0.8, 0.94) <0.01 (0.0, 0.0) 0.04 (<0.01, 0.05) 0.02 (0.0, 0.02) 0.09 (0.03, 0.12)

Nebraska 0.82 (0.76, 0.9) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.03 (<0.01, 0.04) 0.13 (0.07, 0.17)
Rhode Island 0.87 (0.83, 0.94) <0.01 (0.0, 0.0) <0.01 (0.0, 0.0) 0.05 (<0.01, 0.06) 0.08 (0.04, 0.11)

Montana 0.89 (0.85, 0.95) <0.01 (0.0, 0.0) <0.01 (<0.01, 0.01) 0.02 (<0.01, 0.02) 0.09 (0.04, 0.11)
Arkansas 0.84 (0.79, 0.91) <0.01 (0.0, 0.0) 0.03 (<0.01, 0.03) 0.03 (<0.01, 0.04) 0.10 (0.05, 0.13)
Delaware 0.75 (0.67, 0.84) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.06 (0.02, 0.08) 0.17 (0.1, 0.21)

Mississippi 0.85 (0.8, 0.92) <0.01 (0.0, 0.0) 0.01 (<0.01, 0.02) 0.04 (<0.01, 0.05) 0.10 (0.04, 0.13)
Vermont 0.87 (0.83, 0.94) <0.01 (0.0, 0.0) 0.02 (0.0, 0.02) 0.02 (0.0, 0.02) 0.09 (0.04, 0.12)

West Virginia 0.86 (0.81, 0.93) <0.01 (0.0, 0.0) 0.01 (<0.01, 0.01) 0.03 (<0.01, 0.04) 0.10 (0.04, 0.13)
Wyoming 0.86 (0.81, 0.95) <0.01 (0.0, 0.0) 0.05 (<0.01, 0.06) 0.02 (<0.01, 0.02) 0.07 (0.02, 0.09)

North Dakota 0.88 (0.85, 0.94) <0.01 (0.0, 0.0) <0.01 (0.0, 0.0) <0.01 (0.0, <0.01) 0.11 (0.05, 0.14)
South Dakota 0.85 (0.8, 0.93) <0.01 (0.0, 0.0) <0.01 (0.0, 0.0) 0.02 (0.0, 0.02) 0.13 (0.06, 0.17)

Table 5: Introduction of SARS-Cov-2 infections through April 30. Sources are listed from the second
column on. Targets are the European countries listed in the first column. Numbers are rounded to the
second digit.
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Country Europe China Asia USA Others
Italy 0.10 (0.0, 0.2) 0.72 (0.5, 1.0) 0.16 (0.0, 0.29) <0.01 (0.0, 0.0) <0.01 (0.0, 0.0)

United Kingdom 0.15 (0.0, 0.23) 0.52 (0.31, 0.71) 0.28 (0.1, 0.43) 0.02 (0.0, 0.0) 0.04 (0.0, 0.0)
Germany 0.22 (0.0, 0.33) 0.31 (0.11, 0.5) 0.43 (0.23, 0.62) 0.02 (0.0, 0.0) 0.02 (0.0, 0.0)

France 0.22 (0.0, 0.33) 0.41 (0.17, 0.62) 0.33 (0.11, 0.5) 0.02 (0.0, 0.0) 0.02 (0.0, 0.0)
Spain 0.55 (0.38, 0.75) 0.15 (0.0, 0.2) 0.26 (0.08, 0.4) 0.02 (0.0, 0.0) 0.02 (0.0, 0.0)

Switzerland 0.32 (0.12, 0.5) 0.09 (0.0, 0.11) 0.52 (0.33, 0.73) 0.03 (0.0, 0.0) 0.03 (0.0, 0.0)
Netherlands 0.39 (0.2, 0.57) 0.12 (0.0, 0.14) 0.42 (0.22, 0.6) 0.03 (0.0, 0.0) 0.04 (0.0, 0.0)

Sweden 0.32 (0.15, 0.5) 0.07 (0.0, 0.05) 0.56 (0.38, 0.75) 0.03 (0.0, 0.0) 0.02 (0.0, 0.0)
Denmark 0.33 (0.14, 0.5) 0.06 (0.0, 0.0) 0.57 (0.4, 0.76) 0.03 (0.0, 0.0) 0.02 (0.0, 0.0)
Austria 0.34 (0.14, 0.5) 0.07 (0.0, 0.04) 0.55 (0.36, 0.75) 0.02 (0.0, 0.0) 0.02 (0.0, 0.0)
Belgium 0.47 (0.25, 0.67) 0.07 (0.0, 0.0) 0.41 (0.2, 0.6) 0.03 (0.0, 0.0) 0.02 (0.0, 0.0)
Poland 0.55 (0.35, 0.75) 0.03 (0.0, 0.0) 0.39 (0.18, 0.56) 0.02 (0.0, 0.0) 0.02 (0.0, 0.0)

Portugal 0.70 (0.57, 0.89) 0.05 (0.0, 0.0) 0.19 (0.0, 0.3) 0.02 (0.0, 0.0) 0.04 (0.0, 0.0)
Czech Republic 0.40 (0.18, 0.6) 0.09 (0.0, 0.0) 0.47 (0.25, 0.68) 0.02 (0.0, 0.0) 0.02 (0.0, 0.0)

Ireland 0.56 (0.38, 0.76) 0.05 (0.0, 0.0) 0.25 (0.06, 0.38) 0.07 (0.0, 0.1) 0.07 (0.0, 0.09)
Norway 0.47 (0.3, 0.64) 0.01 (0.0, 0.0) 0.48 (0.32, 0.67) 0.03 (0.0, 0.0) 0.02 (0.0, 0.0)
Finland 0.37 (0.2, 0.53) 0.03 (0.0, 0.0) 0.56 (0.38, 0.75) 0.02 (0.0, 0.0) 0.02 (0.0, 0.0)
Hungary 0.50 (0.29, 0.71) 0.09 (0.0, 0.02) 0.38 (0.17, 0.57) 0.02 (0.0, 0.0) 0.02 (0.0, 0.0)
Romania 0.65 (0.5, 0.86) 0.02 (0.0, 0.0) 0.30 (0.11, 0.45) 0.01 (0.0, 0.0) 0.01 (0.0, 0.0)

Greece 0.60 (0.43, 0.8) 0.02 (0.0, 0.0) 0.32 (0.12, 0.5) 0.03 (0.0, 0.0) 0.02 (0.0, 0.0)
Bulgaria 0.60 (0.43, 0.8) 0.01 (0.0, 0.0) 0.36 (0.17, 0.5) 0.02 (0.0, 0.0) 0.01 (0.0, 0.0)

Malta 0.79 (0.67, 1.0) <0.01 (0.0, 0.0) 0.18 (0.0, 0.25) 0.01 (0.0, 0.0) 0.02 (0.0, 0.0)
Lithuania 0.69 (0.56, 0.87) <0.01 (0.0, 0.0) 0.29 (0.11, 0.42) 0.01 (0.0, 0.0) <0.01 (0.0, 0.0)
Croatia 0.46 (0.25, 0.68) <0.01 (0.0, 0.0) 0.45 (0.21, 0.67) 0.03 (0.0, 0.0) 0.05 (0.0, 0.04)
Latvia 0.57 (0.4, 0.76) <0.01 (0.0, 0.0) 0.39 (0.2, 0.56) 0.02 (0.0, 0.0) 0.01 (0.0, 0.0)

Estonia 0.42 (0.21, 0.6) <0.01 (0.0, 0.0) 0.55 (0.36, 0.75) 0.02 (0.0, 0.0) <0.01 (0.0, 0.0)
Iceland 0.61 (0.46, 0.8) 0.01 (0.0, 0.0) 0.16 (0.0, 0.23) 0.14 (0.0, 0.2) 0.08 (0.0, 0.1)

Luxembourg 0.71 (0.58, 0.89) <0.01 (0.0, 0.0) 0.24 (0.08, 0.33) 0.03 (0.0, 0.0) 0.02 (0.0, 0.0)
Slovak Republic 0.85 (0.79, 1.0) <0.01 (0.0, 0.0) 0.14 (0.0, 0.2) <0.01 (0.0, 0.0) <0.01 (0.0, 0.0)

Slovenia 0.56 (0.4, 0.75) <0.01 (0.0, 0.0) 0.38 (0.18, 0.56) 0.03 (0.0, 0.0) 0.02 (0.0, 0.0)

Table 6: Importation of seeding events. Sources are listed from the second column on. Targets are the
countries listed in the first column. Numbers are rounded to the second digit.
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State USA China Asia Europe Others
California 0.09 (0.0, 0.14) 0.74 (0.6, 1.0) 0.13 (0.0, 0.2) 0.01 (0.0, 0.0) 0.03 (0.0, 0.0)
New York 0.20 (0.0, 0.32) 0.45 (0.15, 0.71) 0.21 (0.0, 0.33) 0.09 (0.0, 0.14) 0.05 (0.0, 0.06)

New Jersey 0.28 (0.11, 0.42) 0.28 (0.07, 0.43) 0.25 (0.1, 0.37) 0.12 (0.0, 0.17) 0.07 (0.0, 0.1)
Florida 0.59 (0.42, 0.8) 0.05 (0.0, 0.0) 0.13 (0.0, 0.2) 0.11 (0.0, 0.17) 0.12 (0.0, 0.17)
Texas 0.57 (0.39, 0.79) 0.11 (0.0, 0.11) 0.21 (0.0, 0.33) 0.04 (0.0, 0.06) 0.07 (0.0, 0.1)
Illinois 0.46 (0.24, 0.68) 0.19 (0.0, 0.23) 0.22 (0.0, 0.34) 0.06 (0.0, 0.08) 0.07 (0.0, 0.1)

Washington 0.56 (0.38, 0.78) 0.11 (0.0, 0.11) 0.23 (0.04, 0.36) 0.03 (0.0, 0.03) 0.07 (0.0, 0.08)
Massachusetts 0.49 (0.29, 0.71) 0.16 (0.0, 0.17) 0.17 (0.0, 0.26) 0.11 (0.0, 0.17) 0.08 (0.0, 0.11)

Maryland 0.48 (0.28, 0.7) 0.11 (0.0, 0.09) 0.25 (0.07, 0.37) 0.09 (0.0, 0.14) 0.07 (0.0, 0.09)
Nevada 0.63 (0.47, 0.83) 0.04 (0.0, 0.0) 0.17 (0.0, 0.25) 0.04 (0.0, 0.06) 0.12 (0.0, 0.17)
Virginia 0.55 (0.37, 0.75) 0.08 (0.0, 0.06) 0.23 (0.07, 0.33) 0.08 (0.0, 0.12) 0.07 (0.0, 0.08)
Georgia 0.62 (0.46, 0.83) 0.07 (0.0, 0.0) 0.19 (<0.01, 0.29) 0.06 (0.0, 0.08) 0.06 (0.0, 0.08)
Arizona 0.71 (0.57, 0.92) 0.03 (0.0, <0.01) 0.11 (<0.01, 0.15) 0.03 (0.0, <0.01) 0.12 (0.0, 0.17)

Colorado 0.75 (0.64, 0.92) 0.01 (0.0, 0.0) 0.10 (0.0, 0.14) 0.04 (0.0, 0.06) 0.09 (0.0, 0.12)
Pennsylvania 0.71 (0.56, 0.9) 0.02 (0.0, 0.0) 0.10 (0.0, 0.15) 0.08 (0.0, 0.12) 0.09 (0.0, 0.12)

Ohio 0.71 (0.58, 0.9) 0.03 (0.0, <0.01) 0.13 (<0.01, 0.19) 0.06 (0.0, 0.08) 0.07 (0.0, 0.1)
Connecticut 0.45 (0.24, 0.65) 0.08 (0.01, 0.08) 0.23 (0.09, 0.33) 0.14 (0.04, 0.19) 0.10 (0.01, 0.12)

Michigan 0.63 (0.49, 0.85) 0.08 (0.0, 0.0) 0.16 (0.0, 0.23) 0.07 (0.0, 0.1) 0.07 (0.0, 0.1)
North Carolina 0.68 (0.54, 0.88) 0.06 (0.0, 0.0) 0.13 (0.0, 0.18) 0.07 (0.0, 0.09) 0.07 (0.0, 0.09)

Minnesota 0.68 (0.51, 0.87) 0.01 (0.0, 0.0) 0.16 (0.0, 0.25) 0.05 (0.0, 0.07) 0.10 (0.0, 0.13)
Indiana 0.66 (0.5, 0.85) 0.04 (0.0, 0.02) 0.16 (0.04, 0.22) 0.06 (0.0, 0.08) 0.08 (0.0, 0.1)
Oregon 0.73 (0.61, 0.9) 0.03 (0.0, 0.0) 0.15 (<0.01, 0.22) 0.02 (0.0, 0.02) 0.07 (0.0, 0.09)

Utah 0.79 (0.67, 0.96) <0.01 (0.0, 0.0) 0.10 (0.0, 0.14) 0.04 (0.0, 0.05) 0.07 (0.0, 0.09)
New Hampshire 0.53 (0.36, 0.72) 0.09 (0.0, 0.06) 0.16 (0.04, 0.23) 0.13 (0.02, 0.19) 0.09 (0.0, 0.12)

Tennessee 0.74 (0.62, 0.92) <0.01 (0.0, 0.0) 0.11 (0.0, 0.15) 0.05 (0.0, 0.07) 0.09 (0.0, 0.12)
Missouri 0.77 (0.67, 0.92) <0.01 (0.0, 0.0) 0.10 (0.0, 0.13) 0.04 (0.0, 0.06) 0.08 (0.0, 0.11)

Wisconsin 0.83 (0.75, 0.98) <0.01 (0.0, 0.0) 0.04 (0.0, 0.03) 0.03 (0.0, 0.01) 0.09 (0.0, 0.13)
Louisiana 0.78 (0.67, 0.94) <0.01 (0.0, 0.0) 0.08 (0.0, 0.11) 0.05 (0.0, 0.08) 0.08 (0.0, 0.11)

South Carolina 0.77 (0.66, 0.93) <0.01 (0.0, 0.0) 0.10 (0.0, 0.13) 0.06 (0.0, 0.08) 0.06 (0.0, 0.08)
Kansas 0.80 (0.7, 0.94) <0.01 (0.0, 0.0) 0.08 (0.0, 0.11) 0.04 (0.0, 0.06) 0.07 (0.0, 0.1)

Oklahoma 0.79 (0.69, 0.96) <0.01 (0.0, 0.0) 0.08 (<0.01, 0.11) 0.04 (0.0, 0.06) 0.08 (<0.01, 0.11)
Kentucky 0.77 (0.67, 0.92) <0.01 (0.0, 0.0) 0.10 (<0.01, 0.12) 0.05 (0.0, 0.07) 0.07 (0.0, 0.1)

Idaho 0.84 (0.76, 0.98) <0.01 (0.0, 0.0) 0.07 (<0.01, 0.1) 0.02 (0.0, <0.01) 0.06 (0.0, 0.08)
New Mexico 0.86 (0.79, 1.0) <0.01 (0.0, 0.0) 0.05 (0.0, 0.07) 0.04 (0.0, 0.04) 0.05 (0.0, 0.07)

Iowa 0.78 (0.68, 0.94) <0.01 (0.0, 0.0) 0.08 (0.0, 0.1) 0.04 (0.0, 0.05) 0.09 (0.0, 0.13)
Alabama 0.73 (0.6, 0.92) <0.01 (0.0, 0.0) 0.16 (<0.01, 0.22) 0.05 (<0.01, 0.07) 0.06 (<0.01, 0.08)

Maine 0.77 (0.68, 0.91) 0.02 (0.0, <0.01) 0.07 (0.02, 0.08) 0.07 (0.02, 0.09) 0.08 (<0.01, 0.09)
Alaska 0.78 (0.67, 0.94) <0.01 (0.0, 0.0) 0.12 (0.0, 0.17) 0.02 (0.0, 0.0) 0.08 (0.0, 0.12)

Nebraska 0.81 (0.72, 0.94) <0.01 (0.0, 0.0) 0.06 (0.0, 0.07) 0.04 (0.0, 0.05) 0.09 (<0.01, 0.14)
Rhode Island 0.87 (0.8, 1.0) <0.01 (0.0, 0.0) 0.02 (0.0, 0.0) 0.06 (0.0, 0.08) 0.05 (0.0, 0.07)

Montana 0.90 (0.86, 1.0) <0.01 (0.0, 0.0) 0.01 (0.0, <0.01) 0.02 (0.0, <0.01) 0.07 (0.0, 0.1)
Arkansas 0.83 (0.75, 0.97) <0.01 (0.0, 0.0) 0.06 (0.0, 0.08) 0.05 (0.0, 0.07) 0.06 (0.0, 0.09)
Delaware 0.73 (0.63, 0.87) <0.01 (0.0, 0.0) 0.05 (0.01, 0.07) 0.10 (0.03, 0.14) 0.11 (0.03, 0.15)

Mississippi 0.83 (0.75, 0.96) <0.01 (0.0, 0.0) 0.05 (0.0, 0.04) 0.06 (0.0, 0.08) 0.07 (0.0, 0.09)
Vermont 0.87 (0.8, 1.0) <0.01 (0.0, 0.0) 0.05 (0.0, 0.06) 0.03 (0.0, <0.01) 0.05 (0.0, 0.07)

West Virginia 0.85 (0.79, 0.96) <0.01 (0.0, 0.0) 0.03 (<0.01, 0.03) 0.05 (<0.01, 0.05) 0.07 (<0.01, 0.08)
Wyoming 0.83 (0.75, 0.98) <0.01 (0.0, 0.0) 0.07 (<0.01, 0.09) 0.02 (<0.01, <0.01) 0.07 (<0.01, 0.09)

North Dakota 0.91 (0.86, 1.0) <0.01 (0.0, 0.0) <0.01 (0.0, 0.0) 0.01 (0.0, 0.0) 0.08 (0.0, 0.11)
South Dakota 0.88 (0.82, 1.0) <0.01 (0.0, 0.0) <0.01 (0.0, 0.0) 0.02 (0.0, 0.0) 0.09 (0.0, 0.13)

Table 7: Importation of seeding events. Sources are listed from the second column on. Targets are the
US states listed in the first column. Numbers are rounded to the second digit.
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20% − 53%]), Austria (34% [IQR 14% − 50%]), Denmark (33% [IQR 14% − 50%]), Switzerland (32%310

[IQR 12% − 50%]), and Sweden (32% [IQR 15% − 50%]), all countries that experience a local onset of311

transmission after the first week of February are characterized by a share of European importations above312

or equal to 40%.313

In Table 7 we report the seeding share for the US states. Within the US, while importations from314

mainland China contribute to early introductions of the virus, we find that other potential sources of315

importation play a key role in seeding the epidemic in different places. As shown in Fig. 9-A, the share316

of infection importations originating from Europe in California was nine times smaller than those in317

New York state (9% [IQR 0% − 14%]). Among the states for which the model estimates an early onset318

of local transmission before the third week of February (considering median values), European sources319

are statistically contributing 12% [IQR 0% − 17%] of SARS-CoV-2 importations for New Jersey, 11%320

[IQR 0% − 17%] for Florida, and only 4% [IQR 0% − 6%] for Texas. It is important to notice how, for321

countries in Europe, the US implemented additional travel advisories and restrictions a month later at322

the end February and early March. The share of importations from Asia is more significant for countries323

among the first to experience local outbreaks and becomes progressively smaller as we move clockwise in324

the plot. The range goes from 25% [IQR 10% − 37%] in New Jersey and 21% [IQR 0% − 33%] in New325

York to values smaller than 1% in North and South Dakota. As we mentioned above, the contribution326

from Asia is overall smaller than that of Europe. Interestingly, the domestic importations are, across327

the board, statistically relevant in seeding the epidemic in many states. Among the states for which we328

estimated a late onset of local transmission (second half of February), domestic sources account for 81%329

[IQR 72% − 94%] of the virus introductions in Nebraska, 86% [IQR 79% − 100%] in New Mexico, 83%330

[IQR 75%− 97%] in Arkansas, and 91% [IQR 86%− 100%] in North Dakota.331
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Figure 9: Share of importations of infections in all continental states (A) and in European countries (C)
from US, China, Europe, Asia and all other countries before the start of the local outbreak. US states
and European countries are ordered, clockwise, according to the start of the local outbreak.

6 Correlation Analysis332

As mentioned and shown in the main text, during the early phases of the spreading, mobility plays a333

crucial role. In order to highlight this aspect, here we report the full correlation analysis between the334
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Figure 10: Correlation between the order in which states reached 100 confirmed cases (top row) or deaths
(bottom row) and their International (left) or National (right) air traffic. The size of each state is assigned
proportional to the population size. The first two columns refer to countries in Europe. The last two to
the US states

real data and the mobility indicators. In particular, we compute the order in which states reached 100335

cases/deaths in the real surveillance data and compare it with the order of European countries and US336

states according to their air traffic (considering both national and international travels). Note how the337

correlation plot in the main text considered as a mobility indicator the sum of the two types of traffic.338

In Fig. 10 we show the result reporting also the value of the Kendall’s tau. In European countries both339

cases and deaths are highly correlated with international travels. The national flows are correlated by340

to a less extent. In US states, the rank of cases are more correlated to both international and national341

travels than deaths.342

The countries and states that were the first to experience the outbreak, besides being hubs in the343

air transportation network, are also very populous. It is then natural to wonder how rankings based on344

population compare with respect to those based on air traffic. In Figure 11 we show the comparison.345

In particular, we order European countries and US states according to their population and density and346

to the epidemic indicators from surveillance (cases and deaths). We find high correlation levels with347

population ranks for both Europe and US states for both cases and deaths. It is interesting to note how348

those reported considering air travels are comparable or higher. The correlation for the number of deaths349

(bottom row) is lower with respect to the number of cases (top row) for US. Furthermore, it is interesting350

to notice how the correlations are even smaller when considering the population density, especially in the351

case of cases in Europe.352

In Figure 12 we repeat the same analysis considering the model’s projections. The correlations are353

comparable to the previous. Also in the model, population density is less correlated.354

It is important to observe that air travel traffic, population and population densities are not indepen-355

dent indicators. Figure 13 highlights this observation. Particularly high is the correlation between air356

traffic and population. Also, population and population densities are well correlated (especially in USA)357

while air traffic and density are not. This is due, in part, to the many countries/states that, due to their358

location, see lots of traffic but are not very dense.359

The correlations between rankings reported above have been computed by using the Kendall’s tau (39)360

as implemented by the scipy.stats library (40). The metric is designed to compare the rankings obtained361

ordering items, states in our case, according to pairs of different quantities. The Kendall’s tau is defined362

only in the case that the ranks have the same size. In case the two ranks have different size (i.e., some363

states did not yet go above a given threshold) the metric is applied to the common subset of the two.364
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(bottom row) and their population (left) or population density (right). The size of each state is assigned
proportional to the population size. The first two columns refer to countries in Europe. The last two to
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Figure 13: Correlation between travel, population and population density for the European countries
(left) and continental US states (right)
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Country Age Study period Prevalence (%) Model AR (%) (median and 95%CI) Reference
Denmark 17-69 04/27/20-05/03/20 2.4 1.05 [0.67-3.03] (42)

France 0+ 05/11/20-05/17/20 4.9 4.60 [3.13-11.05] (43)
Czech Republic 18-89 04/23/20-05/01/20 0.4 0.38 [0.22-1.02] (44)

Portugal 1+ 05/21/20-07/08/20 2.7 1.60 [0.89-4.56] (44)
Hungary 14+ 05/01/20-05/16/20 0.6 0.71 [0.42-1.99] (45)

Spain 0+ 04/27/20-05/11/20 4.5 7.12 [4.95-16.05] (46)
Italy 0+ 05/25/20-07/15/20 2.6 4.97 [3.06-17.43] (47)

Sweden 0-95 06/08/20-06/14/20 5.6 6.26 [3.52-16.86] (48)
Netherlands 18-72 05/11/20-05/18/20 5.6 4.67 [2.68-12.08] (49)

Belgium 05/13/20 8.5 12.79 [7.90-31.25] (50)
United Kingdom 05/24/20 6.78 6.44 [3.96-15.90] (51)

State/City Age Study period Prevalence (%) Model AR (%) (median and 95%CI) Reference
Los Angeles, CA 04/10/20-04/11/20 4.1 0.89 [0.27-2.91] (52)

Connecticut 0-65+ 04/26/20-05/03/20 4.9 8.11 [5.77-19.26] (53)
Louisiana 0-65+ 04/01/20-04/08/20 5.8 3.92 [2.59-11.57] (53)

Minneapolis 0-65+ 04/30/20-05/12/20 2.4 3.87 [2.34-10.93] (53)
Missouri 0-65+ 04/20/20-04/26/20 2.7 1.43 [0.91-4.14] (53)

Philadelphia, PA 0-65+ 04/13/20-04/25/20 3.2 6.26 [1.35-21.11] (53)
San Francisco 0-65+ 04/23/20-04/27/20 1 1.97 [0.32-7.79] (53)

New York 18+ 04/19/20-04/28/20 14 12.98 [8.32-29.88] (54)
New York City 18+ 04/19/20-04/28/20 22.7 19.78 [12.13-44.08] (54)

Table 8: Summary of the country and state level serological studies used for comparison against model
estimates.

7 Data365

7.1 Epidemic surveillance data. The surveillance data of the reported cases and deaths are taken366

from the John Hopkins University Coronavirus Resource Center (41).367

7.2 Model intervention data. The model incorporates Google COVID-19 Community Mobility Re-368

ports data (23) to estimate, on the one hand, changes in mobility and, on the other hand, changes in369

contact patterns in workplaces and in the general community. Non-pharmaceutical interventions and370

other policy interventions are tracked using the Oxford Covid-19 Government Response Tracker (Ox-371

CGRT) (21). Lastly, reductions in air travel are computed by considering the percent change between372

the monthly origin-destination passenger flows between corresponding months in 2020 and 2019 (7).373

Implementation details are provided in Section 1.2.374

7.3 Serological data comparison. We did an extensive literature search for serological studies per-375

formed from April-July 2020. In Fig. 5D, in the main text, we show the correlation between the estimated376

prevalence of SARS-CoV-2 antibodies and the model’s estimated infection attack rate reported on the377

last date of that study. In Table 8 we report the prevalence values and study dates ranges for each378

serological survey considered along with our estimated infection attack rate.379

380

381
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