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1 Model Description

1.1 Global Epidemic and Mobility Model. We use the Global Epidemic and Mobility model
(GLEAM), a stochastic, spatial, epidemic model based on an age-structured, metapopulation approach
that has been used and published previously (I 2). In the model, the world is divided into over 3,200 ge-
ographic subpopulations constructed using a Voronoi tessellation of the Earth’s surface. Subpopulations,
centered around major transportation hubs (e.g., airports), consist of cells with a resolution of 15 x 15
arc minutes (approximately 25 x 25 kilometers). High resolution data are used to define the population of
each cell (3). Other attributes of individual subpopulations, such as age specific contact patterns, health
infrastructure, etc., are added according to available data (4} [5)).

GLEAM integrates a human mobility layer, represented as a network, using both short-range (i.e.,
commuting) and long-range (i.e., flights) mobility data from the Offices of Statistics for 30 countries on
5 continents as well as the Official Aviation Guide (OAG) and IATA databases (updated in 2019) (6 7).
The air travel network consists of the daily passenger flows between airport pairs (origin and destination)
worldwide mapped to their corresponding subpopulations. We define a worldwide homogeneous standard
for GLEAM to overcome differences in the spatial resolution of the commuting data across different
countries. Where information is not available, the short-range mobility layer is generated synthetically
by relying on the “gravity law” or the more recent “radiation law” both calibrated using real data
available (8). These approaches assume more frequent travel to nearby or closer subpopulations and less
frequent travel to distant locations. In Fig. [I] we show a representation of the geographical resolution of
the model for a few selected regions, both the long range and short range mobility networks, and the
population structure at the global level.

Initial conditions are set specifying the number and location of individuals capable of transmitting
the infection. GLEAM is then able to track over time the proportion of the population in each disease
compartment for all subpopulations. At the start of each simulated day, travelers move to their des-
tinations via the flight network. The probability of air travel changes from day to day, varies by age
group, and can consider the effects of location specific airline traffic reductions. Short-range mobility
(i.e., commuting) varies by disease status. Each full day is simulated using 12 distinct time steps, and
this process is repeated for every simulated day. Individuals and their traveling patterns are tracked as
shown in the flow diagram for the GLEAM algorithm (Fig. .

The combined population structure and mobility network create a synthetic world that is used to sim-
ulate the unfolding dynamics of the epidemic. The infection dynamics occur within each subpopulation.
We adopt a classic SLIR model in which individuals are classified into four compartments: susceptible,
latent, infectious, or removed. Susceptible individuals become latent through interactions with infectious
individuals. Latent individuals progress to the infectious stage at a rate inversely proportional to the
latent period, and infectious individuals progress to the removed stage at a rate inversely proportional
to the infectious period. During both the latent and infectious stages we assume that individuals are
able to travel. Following the infectious period, individuals then progress into the removed compartment
where they are no longer able to infect others, meaning they have either recovered, been hospitalized, or
isolated. Individuals transition between compartments using stochastic binomial chain processes assum-
ing parameter values from available literature that define the natural history of disease. In Table. [1| we
report the parameter estimates used in the model. We estimate the number of deaths using the number
of individuals in the removed compartment and assume the infection fatality ratio has a uniform prior
from 0.4% — 2% and is age-stratified proportional to the values reported in Verity et al. (9)).

Once the mobility data layers and the disease dynamics are defined, the number of individuals in each
compartment m, age bracket ¢, and subpopulation j follows a discrete and stochastic dynamical equation
that reads as ' ' ‘

X4 Ar) - xIm ) = Axt™ 4 0(fm,) (1)

where the term, AX J[.m’i], represents the change due to the compartment transitions induced by the
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Figure 1: Schematic representation of GLEAM. (left) The subpopulation structure for selected regions.
Subpopulations are geographic regions, formed from the Voronoi tessellation centered around airports.
They are comprised of census cells that are approximately 25km x 25km. (right) Diagrams of the
multiple mobility networks and population layer (from top to bottom): (1) the origin-destination airport
network (long range mobility network), (2) the commuting network (short-range mobility network), (3)
the population layer showing the population size of census cells.

disease dynamics and the transport operator, §2;([m,1]), represents the variations due to the traveling
and mobility of individuals. The latter operator takes into account the long-range airline mobility and
defines the minimal time scale of integration as 1 day. The mobility due to the commuting flows is taken
into account by defining effective force of infections by using a time scale separation approximation as
detailed in Ref. (I). The AX J[-m’z] is defined as the sum over all of the transitions into and out of disease
compartment m of individuals in age group i ([m, i]). The operator D;([m, 1], [n,i]) represents the number
of transitions from [m, i] to [n, 7] during the time interval At and each element of this operator is a random

]

variable extracted from a multinomial distribution. The change AX ][mz of a compartment [m, ] in this
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Median: 2.5

0.20 95% Cl:[2.2-2.9]
Parameters Range Ref. 0.151
Latent period (mean) [4, 7] days (T0) g_? 0.104
Infectious period (mean) [2, 4] days ([T
Days until recovery [10, 14] days (11 Q) .
Generation time [6, 8] days (125 [13)) 000 24 28 28 30 32

Table 1: Summary of parameter ranges explored in the Figure 3: Posterior distribution of the reproductive
sensitivity analysis. Reference parameters are reported number in China in the absence of mitigation poli-

in the main text cles.

time interval is given by a sum over all random variables {D;([m, ], [n,1])} as follows

AXIM = S (D (m ), [, ) + Dy([n. ), [m. i)} 2)

[n,d]

As a concrete example let us consider the evolution of the latent compartment. Individuals in age
group ¢ of subpopulation j can either transition into the Latent compartment (Lz) from the suscep-
tible compartment (S7) or transition out the Latent compartment into Infectious (7). The elements
of the operator acting on L;-, are extracted from the binomial distributions: Per(L;'-(t),pL;_ N I;) and

PrBi"(S; (t),pgi_i), where p;i_ ;i and pgi_ ;i are the transition probabilities from the latent state to
J J J J J J

the infectious state and from susceptible to the latent state, respectively. We assume a memoryless, dis-
crete, stochastic transition processes. The probability pgi_,;: is the force of infection and it is determined
J

by commuting flows, pattern of interactions as encoded in the age structured contact patterns, and the
local non-pharmaceutical interventions. We consider individuals divided into 10 age groups: [0-9, 10-19,
20-24, 25-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+]. The contacts matrix C considers interactions in
four specific social settings: contacts at school (Cscnoor), Wworkplace (Cyork), home (Cprome), and in the
general community (Ccommunity). Therefore, in general the contacts matrix is a linear combination of
the four contributions according to the contact reductions in different locations C =), w;Cs, where wy
indicates the number of contacts per setting, and s indicates the different settings mentioned before. The
baseline w, and Cj values for each specific country are from Ref. (4). For the sake of space we refer the
reader to Ref. (1) where the analytical framework used in the model is reported in detail.

1.2 Interventions Timeline. In order to realistically depict the evolution of the epidemic, a compre-
hensive set of policy interventions is applied to modify disease transmissibility and population mobility.
On January 15, partial international travel reductions (from 10% to 40%) are applied for individuals
traveling to/from China. Between January 23 and 28, flight and commuting reductions are applied to
Wuhan and other subpopulations in the Hubei province to enforce government-mandated quarantines.

In addition, on January 25, commuting reductions are applied also to all other subpopulations in
mainland China. To do so, we collected daily travel data starting January 1, 2020 until February 25,
2020 from the Baidu Qianxi platform (I4), which provides three mobility indices (i.e., inflow index,
outflow index, and intra-city index). The indices are proxies for the number of travelers moving in,
out of, and inside a city, respectively. We extracted the mobility outflow index of 27 provinces and 4
municipalities for the year 2020 and the previous year (with the same lunar date), and then mapped all
provinces and municipalities to the metapopulation structure of the model to estimate the travel flow
changes during the epidemic where the travel reduction can be estimated as 1 — f;: , where I, and I,
are the mobility outflow index of year 2020 and previous year on the same lunar date, respectively.
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On February 1, due to the increasing amount of restrictions implemented by various countries and
airlines (15; 16} [I7; 18 19; 20), stronger travel reductions are applied between mainland China and
the rest of the world. We use actual worldwide (both international and domestic) origin-destination
traffic data from the OAG database to quantify travel reductions. We also apply case detection based
on travel history and additional travel bans across pairs of countries according to the Oxford COVID-
19 Government Response Tracker (OxCGRT) (2I). We account as well for the intra-country mobility
and contacts reduction in workplaces and social settings (22)) using the COVID-19 Community Mobility
reports obtained from Google (23).

From mid-March 2020 all around the world, countries started to close schools as a means to slow the
spread of COVID-19. We use the timeline of school closures provided by OxCGRT (21)). As our model
considers contact matrices for different settings, namely households, schools, workplaces and community
contacts (4; [5)), we quantify the decrease in contacts that individuals have in each of these environments.
To implement school closures in the United States and the rest of the countries we follow (24) where
authors study the effects of school closure in the context of seasonal influenza epidemics. According to
the date when schools were closed in the different states/countries we consider a reduction of contacts
in all individuals attending an educational institution (2I)). In the United States, Spain, and Italy, this
intervention was applied at state/region level and for the rest of the European countries analyzed it was
applied at country level.

Following school closures, most US states and European countries issued stay-at-home orders. In this
case, we consider that only contacts in the household and essential workplaces were available. Using
the COVID-19 Community Mobility reports (23) we compute the relative reduction on the number of
contacts in workplaces and community interactions as well as the relative reduction in the intra-country
mobility. We used data at the state or regional level for the United States, Italy, and Spain starting on
February 15, 2020 and at the country level for all other countries available. For countries where we do
not have mobility reports available we assume that on the date that schools closed there is a reduction
in mobility of 50%, and an 100% reduction when there is a stay-at-home order. When the interventions
are relaxed the mobility reduction is relaxed accordingly.

From the Google mobility reports we use the field workplaces percent change from baseline to
infer contacts reductions in workplaces and the field retail and recreation percent change from
baseline to infer contacts reductions in the general community setting. The Google mobility report
provides the percentage change 7;(t) on day t of total visitors to specific locations s with respect to a
pre-pandemic baseline calculated as the median value, for the corresponding day of the week, during a
5 weeks period from January 3 until February 6, 2020. We turn this quantity into a rescaling factor
for contacts such as ws(t) = ws(1 + 7(t)/100)2, by considering that the number of potential contacts
per location scales as the square of the the number of visitors. We also use the ordinal index C1 School
closing from the Oxford Coronavirus Government Response Tracker to modulate contacts in schools and
universities. The index ranges from a minimum of 0 (no measures) to a maximum of 3 (require closing
all levels). Furthermore, all w factors are multiplied (or set equal to in case of contacts at home) by
setting-specific weights from Mistry et al. (4). Finally we explore different level of overall transmissibility
reduction (0-30%, step 10%) due to the awareness of population and behavioral changes starting at the
date of the state of the emergency in the US and EU countries.

2 Model Calibration

The model described is stochastic and outputs an ensemble of possible epidemic outcomes for each set of
initial conditions. We seed the epidemic in Wuhan, China assuming a starting date between November 15
and December 1, 2019, with 20 initial infections (25). Given the doubling time of the epidemic, this might
corresponds to the virus emerging in mid October to late November, 2019 (26; 27; 28} 29; 25). We simulate
epidemic scenarios sampling reproductive numbers (Rp) from a uniform prior in the range 1.6 to 3.3 (step
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0.01). We use an Approximate Bayesian Computation (ABC) Rejection Algorithm to sample a set of
parameter points @ (for instance Ry) according to a prior distribution and simulates through the model the
dataset E'. A distance measure s(E’, E) determines the difference between E’ and the evidence E based
on a given metric. If the generated E’ is outside a tolerance from the evidence E (i.e., s(E', E) > €) the
sampled parameter value is discarded. The sampled parameters that are accepted provide an estimate
of the likelihood with respect to the evidence E and allows us to calculate the posterior distribution
P(0,F). As evidence, E, we considered the cumulative number of SARS-CoV-2 cases internationally
imported from China during the time window of January 12 to January 21, 2020. The distance measure
at each date is the difference between the SARS-CoV-2 cumulative imported cases generated by the
model and the evidence with a tolerance provided by the under-detection interval estimated in Ref. (30).
More specifically, only a fraction of imported cases are detected at the destination (31). According to
the estimates proposed in Ref. (32), we stratify the detection capacity of countries relative to Singapore
into three groups: high, medium and low surveillance capacity according to the Global Health Security
Index (33), and assume an overall detection capacity for Singapore varying from 30% to 100% of imported
cases. We also account for a non detectable 40% rate of asymptomatic individuals (sensitivity analysis
ranging from 35% to 50%) (345 [35)). The rejection algorithm accepts only configurations that satisfy the
distance measure every day considered in the above time interval. This approach allows us to calibrate
the model by incorporating both the growth rate of importations and their magnitude, scaled according
to the under-detection estimates. The detailed list of importation events used is provided in Table S1
of the supplementary materials of Ref. (36). Using the ABC calibration and the age-stratified contact
matrices, the obtained posterior distribution P(Ry = x|F) for the basic reproductive number R in China
has a median of 2.5 [95% CI 2.2-2.9] (Fig. [3), with a median doubling time of 3.8 [95% CI 3.1 — 4.6] days
in the absence of mitigation policies, for an overall detection capacity in Singapore of 60%. The posterior
of Ry in China has small variations, yielding a median of 2.4 [95% CI 2.1-2.8] and 2.7 [95% CI 2.3-3.1]
for an overall detection capacity in Singapore of 100% and 30% respectively.

To estimate the posterior distribution of the infection fatality ratio (IFR) and infection attack rate
in each US state and European country, we use an additional ABC rejection approach using the weekly
model-projected and reported deaths. Specifically, we consider the subset of realizations that are (i)
consistent with the international importations from China up to January 21, 2020 (i.e., selected from
the global model calibration) and (ii) show Italy as the first country, in the group under examination,
to experience sustained local transmission (more details in section 3A). Then we estimate, for each
realization in each state and country considered, the projected deaths from the removed compartment by
considering an uniformly distributed IFR prior ranging from 0.4% to 2% that is age stratified proportional
to the values estimated by Ref. (9). We also consider that the projected deaths are subject to a reporting
delay uniformly distributed between 2 — 22 days for both the US and Europe. As a distance measure,
s(E', E), for the ABC rejection algorithm we use the summary statistics provided by the the weighted
mean absolute percentage error (WM APE):

Zt |mej(t) - Dsurv(t)|
>t Dsum(t)

where D,,.,; corresponds to the delayed /shifted model-projected deaths (mej) and Dy, to the surveil-
lance data. We only consider the deaths that were reported between March 22, 2020 and June 27, 2020,
and set a tolerance of 25%, keeping only the realizations with a s(E’, E) = wMAPE < 25%. Using this
approach we generate estimates and credible intervals for the infection attack rates and IFRs in 36 US
states and 20 European countries. In the main text we show the results of the calibration on the weekly
deaths for four US states and four European countries. In Fig. |4l and Fig. 5| we show the projected weekly
deaths with the reported values for all calibrated European countries and US states. We also include
Tables [2[ and [3| which report the infection attack rate, infection fatality ratio (IFR), and reproductive
number (Rp) of each for each US state and European country, respectively.

In Fig. [6] we show the correlation between the weekly projected deaths and the reported values from

wMAPE = * 100
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Figure 4: Projections of the weekly deaths for 20 European countries using the calibration reported in

the main text. We report the median value and the 90% confidence interval.

Name Infection Attack Rate (%) IFR (%) Ry
Austria 1.16 [0.74, 2.85] 0.81 [0.35, 1.23] | 2.61 [2.33, 2.83]
Belgium 13.24 [8.50, 28.35] 0.71 [0.33, 1.00] | 2.73 [2.34, 2.99]
Bulgaria 0.98 [0.48, 2.35] 1.06 [0.38, 1.63] | 2.66 [2.26, 2.80]
Croatia 0.19 [0.12, 0.42] 1.33 [0.57, 2.04] | 2.47 [2.24, 2.69]
Czech Republic 0.46 0.27, 1.22] 0.86 [0.37, 1.31] | 2.59 [2.32, 2.83]
Denmark 1.29 [0.82, 3.16] 1.00 [0.41, 1.43] | 2.50 [2.24, 2.69]
France 4.79 [3.38, 10.31] 1.01 [0.47, 1.31] | 2.78 [2.47, 3.02]
Germany 1.16 [0.73, 2.89] 1.02 [0.42, 1.47] | 2.59 [2.34, 2.81]
Greece 0.19 [0.10, 0.46] 0.99 [0.40, 1.66] | 2.58 [2.34, 2.83]
Hungary 0.80 [0.48, 2.02] 0.87 [0.35, 1.27] | 2.62 [2.34, 2.85]
Ireland 5.04 [3.20, 12.19] 0.71 [0.30, 1.05] | 2.73 [2.41, 2.96]
Ttaly 4.51 [3.13, 10.83] 1.37 [0.63, 1.78] | 2.76 [2.38, 3.01]
Netherlands 4.96 [3.13, 11.65] 0.85 [0.37, 1.28] | 2.69 [2.37, 2.93]
Poland 0.60 [0.30, 1.46] 0.94 [0.39, 1.56] | 2.57 [2.32, 2.80]
Portugal 1.56 [0.94, 3.67] 1.07 [0.45, 1.53] | 2.69 [2.38, 2.92]
Romania 1.07 [0.64, 2.53] 0.94 [0.39, 1.33] | 2.69 [2.38, 2.95]
Spain 7.30 [5.18, 14.79] 1.09 [0.55, 1.38] | 2.76 [2.37, 3.02]
Sweden 6.52 [3.98, 15.83] 1.11 [0.42, 1.70] | 2.59 [2.31, 2.87]
Switzerland 3.03 [2.00, 7.80] 1.02 [0.42, 1.48] | 2.64 [2.34, 2.87]
United Kingdom 6.68 [4.21, 15.05] 0.97 [0.42, 1.39] | 2.72 [2.44, 2.93]

Table 2: Model-estimated values for the infection attack rate by July 4, 2020, infection fatality ratio, and
reproductive number (Rp) for the investigated European countries. We report the median values with
the 90% CI
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Figure 5: Projections of the weekly deaths for 36 US states using the calibration reported in the main
text. We report the median value and the 90% CI.



Name Infection Attack Rate (%) IFR (%) Ry
Alabama 2.94 [1.68, 6.43] 1.01 [0.44, 1.53] | 2.80 [2.51, 3.00]
Arizona 5.95 [3.04, 12.96] 0.95 [0.38, 1.59] | 2.60 [2.38, 2.76]
Arkansas 1.52 [0.92, 4.07] 1.12 [0.39, 1.61] | 2.64 [2.39, 2.93]
California 3.08 [1.40, 6.97] 0.83 [0.34, 1.40] | 2.48 [2.24, 2.69]
Connecticut 9.44 [6.52, 19.60] 1.30 [0.63, 1.60] | 2.80 [2.50, 3.04]
Delaware 8.09 [5.37, 20.86] 1.23 [0.48, 1.60] | 2.78 [2.43, 3.11]
Florida 2.16 [1.29, 5.20] 1.17 [0.51, 1.80] | 2.62 [2.36, 2.84]
Georgia 4.46 [2.64, 9.99] 0.89 [0.38, 1.29] | 2.71 [2.45, 2.95]
Tllinois 7.42 [4.41, 18.74] 1.02 [0.43, 1.47) | 2.73 [2.41, 2.99]
Indiana 4.83 [2.94, 11.55) 1.07 [0.50, 1.49] | 2.80 [2.52, 3.02]
Kansas 0.95 [0.57, 2.38] 0.95 [0.41, 1.42] | 2.63 [2.37, 2.88]
Kentucky 1.68 [1.08, 4.16] 1.05 [0.43, 1.52] | 2.79 [2.50, 2.97]
Louisiana 6.22 [4.26, 14.14] 1.13 [0.50, 1.46] | 2.76 [2.40, 3.03]
Maryland 6.53 [3.83, 14.77] 1.03 [0.43, 1.48] | 2.74 [2.46, 2.97]
Massachusetts 12.96 [7.80, 29.45] 1.15 [0.49, 1.59] | 2.76 [2.52, 3.02]
Michigan 6.39 [4.11, 13.79] 1.03 [0.48, 1.46] | 2.72 [2.43, 3.02]
Minnesota 5.76 [3.05, 13.29] 0.94 [0.35, 1.43] | 2.76 [2.47, 2.94]
Mississippi 5.19 [3.23, 10.67] 1.16 [0.53, 1.54] | 2.76 [2.54, 2.98]
Missouri 2.17 [1.38, 5.58] 1.03 [0.42, 1.46] | 2.73 [2.45, 2.94]
Nebraska 2.89 [1.75, 7.12] 1.08 [0.44, 1.56] | 2.71 [2.53, 2.99]
Nevada 2.74 [1.56, 6.68] 0.91 [0.40, 1.41] | 2.62 [2.36, 2.86]
New Hampshire 6.63 [3.53, 15.18] 0.88 [0.39, 1.55] | 2.55 [2.37, 2.77]
New Jersey 15.20 [10.22, 31.26] 1.20 [0.60, 1.55] | 2.79 [2.49, 3.03]
New Mexico 3.55 [2.25, 8.78] 1.07 [0.45, 1.54] | 2.76 [2.42, 2.97]
New York 13.37 [9.07, 26.72] 1.14 [0.56, 1.50] | 2.78 [2.44, 3.02]
North Carolina 2.81 [1.53, 6.45] 0.97 [0.43, 1.50] | 2.70 [2.42, 2.92]
Ohio 2.96 [1.67, 6.95] 1.12 [0.46, 1.58] | 2.76 [2.52, 3.02]
Oklahoma 1.04 [0.71, 2.74] 1.04 [0.41, 1.44] | 2.61 [2.32, 2.86]
Oregon 0.78 [0.48, 1.92] 1.08 [0.44, 1.56] | 2.59 [2.37, 2.78]
Pennsylvania 5.56 [3.46, 12.26] 1.24 [0.57, 1.63] | 2.80 [2.43, 3.04]
South Carolina 2.30 [1.36, 5.21] 0.98 [0.43, 1.51] | 2.75 [2.49, 2.92]
Tennessee 1.42 [0.90, 3.46] 1.08 [0.42, 1.53] | 2.60 [2.45, 2.89]
Texas 2.20 [1.20, 5.25] 0.81 [0.36, 1.27] | 2.61 [2.33, 2.81]
Virginia 2.81 [1.56, 6.09] 0.96 [0.42, 1.46] | 2.71 [2.42, 2.92]
Washington 1.84 [1.08, 4.28] 0.92 [0.41, 1.44] | 2.64 [2.36, 2.88]
Wisconsin 1.71 [1.21, 4.46] 1.08 [0.41, 1.46] | 2.66 [2.51, 2.97]

Table 3: Model-estimated values for the infection attack rate by July 4, 2020, infection fatality ratio, and
reproductive number (Ry) for the investigated US states. We report the median values with the 95% CI
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Figure 6: Model calibration correlations. The correlation between the median weekly projected
deaths by the model reported in the main text and the weekly reported deaths in Europe (A) and the
US (B). Each circle represents a weekly value for a single country/state and the size of the circle is
proportional to the population size of the country/state.

surveillance data. We find a Pearson correlation coefficient of 0.99 (p < 0.001) from the results for both
the US states and European countries. It is also important to stress that the calibration on reported
weekly reported deaths is subject to the bias’ of that data, for example: under-reporting, the use different
definitions of COVID-19 deaths (e.g., some states/countries report both probable and confirmed deaths
while others only report confirmed deaths), and outliers that are a result of states/countries reporting
backlogged data on a single day.

Additionally, to analyze the stability of our selected list of states/countries from the calibration
reported in the main text, we tested different tolerances of the wM APFE scores. Increasing the tolerance
to 30% adds 4 US states and 2 European countries (US: Utah, Maine, Colorado, Iowa; EU: Slovenia and
Norway). Decreasing the tolerance to 20% removes 5 US states and 3 European country (US: Mississippi,
Nebraska, New Hampshire, Oregon, Wisconsin; EU: Greece, Croatia, Bulgaria). However, the different
tolerance values do not change the overall results using the calibration reported in the main text.

3 Sensitivity Analysis

3.1 Unconstrained pandemic evolution realizations. In Fig. [7| we show the rank distributions
illustrating the probability, in our simulations, that each country started the local outbreak in a particular
order R (i.e., first, second, third etc.). While an initial start in the US and UK are the most likely scenarios
in the ensemble (39% and 22% of simulations respectively), the empirical observations of case importation
are also compatible with starts in other countries such as Germany, France, or Italy (13%, 10%, and 7%
respectively). As a way to quantify and cluster the similarity of onset profiles, we compute and compare
their cosine similarity. In particular, for each country, we create a vector where the xr component is
the fraction of runs in which that country started the local outbreak in R*" position. We then compute,
for each pair, the cosine similarity building a similarity matrix. On the right side of Fig. [7] we show
the correlation network with a threshold between pairs of 0.9. We use a community detection algorithm
based on label propagation (37) that identifies three country clusters. These clusters represent country
onset profiles that are considered to be similar to others in that group. The first group contains the US,
UK, France, Germany, and Italy and these are all the countries among the first to have experienced the
epidemic. The first confirmed cases in these countries were all reported within an eight day period. The
second cluster instead is formed by countries such as Spain, Switzerland, Poland, and Portugal which are
in the second group of countries to start observing local spreading of the virus. Spain acts as bridge with
the first group. We find a third cluster, that includes all countries among the last to have experienced
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Figure 7: Onset of local outbreaks in the selected ensemble. On the left we show the distribution
of starting ranks. The plot shows the probability that each country started the local outbreak in rank
R respect to the others. On the right we show the similarity network computed considering the cosine
similarity of the starting rank distribution for each pair of countries. We threshold links showing just those
equal or above to 0.9. The size of each node is proportional to the population of the respective country.
The three clusters are identified via a community detection algorithm based on label propagation.

the epidemic such as Bulgaria, Iceland, and Lithuania. The first case detected within countries of this
final cluster was on February 25, 2020 in Croatia (38), over a month after the first case was detected in
Europe.

3.2 Alternative distance measure for model calibration. We further examine the robustness of
the individual state and country results by performing an additional calibration that uses as distance
measure in the ABC rejection algorithm the s = In(RSS), where the RSS is the residual sum of squares
of the weekly deaths estimated by the model with respect to the weekly surveillance data. Similar
to the calibration used in the main text, we analyze the time window from March 22, 2020, to June
27, 2020 and assume the same uniform prior distribution on the IFR range (0.4%-2%) and reporting
delays (2 — 22 days). For each model realization that satisfies the global calibration, In we consider
the empirical distribution of P(s) and accept all the simulations for which s is at a distance A < 0.66,
from the minimum value. This is equivalent to the typical information loss threshold between the model
estimated deaths and the reported weekly incident deaths in information criteria. Using this selection, we

—~

12



244

245

246

247

248

249

251

252

253

254

256

257

258

260

261

262

263

Europe United States

9 r:0.998, p<0.001 3 r:0.999, p<0.001 o 5
5D 10° S5 103 1 y @
8_& 10 qicn/:) 10 4
o= o=
xe &g 107
28 10 . 81004 P
3o g v 283 e
= c® = 100 -
10° 10! 10? 10° 10° 10t 102 103
Weekly Projected Deaths (WMAPE) Weekly Projected Deaths (WMAPE)
-« r:0.885, p<0.001 - r:0.993, p<0.001 [
S 10 4 B S _ 104 -
23 =
cx o- cXx T
S81004 T 22 8
ge ] ge ey
e | E 100 T
10° 10! 10° 10!
Infection Attack Rate (WMAPE) Infection Attack Rate (WMAPE)
1.50 4 r:0.918, p<0.001 r:0.855,p<0.0001 -

e 124 o T

@ 1254 e %)

172 i O L 1%

o = o -

x 1004 e = 1.0 P

T [

0754 e T e
0.84 77
0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 0.8 0.9 1.0 1.1 1.2 1.3
IFR (WMAPE) IFR(WMAPE)

Figure 8: Calibration comparison. (A) The correlation between the weekly projected deaths using the
ABC calibration in the main text (WMAPE) and the information theoretic calibration using the residual
sum of squares distance metric (RSS). Each circle represents the weekly values for a single European
country (left) or US state (right). (B) The correlation between the cumulative infection attack rates
for each country/state as of July 4, 2020. (C) The correlation between the estimated IFRs for each
calibration method. All circle sizes are proportional to the populations of each US state and European
country.The dashed line in all figures represents the y = « line.

confirm the results reported in the main text. In Fig. [§| we show the correlation of the weekly new deaths,
infection attack rates as of July 4, 2020, and IFRs between the model calibrated using the wMAPE,
ABC approach (from main text) and this information-theoretic approach.

4 SARS-CoV-2 Introduction Statistics

We record all introduction events through April 30, 2020 as described in the main text. We aggregate the
observations from census areas to US states or European Countries (i.e., the targets). Then we construct
a directed and weighted network in which importation sources link the target states/countries. The width
of the link is the average share of importations from each source across all runs selected through April
30. Using these values, we build the chord diagrams shown in the manuscript. Since the weight of each
link is the average across all runs of the normalized share of importation per run, the sum of incoming
links for each target is one. To help the readability of the plots, we aggregated sources considering macro
areas such as Europe and Asia. We keep the US (to isolate the national importations) and mainland
China (as the epicenter of the pandemic) separate. All the other sources are grouped together and labeled
“Others”. More specifically, source countries of importations in are grouped as:

e Asia: Afghanistan, Armenia, Azerbaijan, Bahrain, Bangladesh, Brunei, Cambodia, Cyprus, India,
Indonesia, Iran, Iraq, Israel, Japan, Jordan, Kazakhstan, Korea, Kuwait, Kyrgyzstan, Lao PDR,
Lebanon, Malaysia, Maldives, Mongolia, Myanmar, Nepal, Oman, Pakistan, Philippines, Qatar,
Saudi Arabia, Singapore, Sri Lanka, Taiwan, Tajikistan, Thailand, Turkey, United Arab Emirates,
Uzbekistan, Vietnam, Yemen

e China: mainland China
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e Europe: Albania, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech
Republic, Denmark, Estonia, Finland, France, Germany, Gibraltar, Greece, Hungary, Iceland,
Ireland, Isle of Man, Italy, Jersey, Kosovo, Latvia, Lithuania, Luxembourg, Macedonia, Malta,
Moldova, Montenegro, Netherlands, Norway, Poland, Portugal, Romania, Russian Federation, Ser-
bia, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Ukraine, United Kingdom

e Others: Algeria, Angola, Antigua and Barbuda, Argentina, Aruba, Australia, Bahamas, Barbados,
Belize, Bermuda, Bolivia, Botswana, Brazil, British Virgin Islands, Burundi, Cameroon, Canada,
Cape Verde, Caribbean Netherlands, Cayman Islands, Chile, Colombia, Congo, Cook Islands,
Costa Rica, Cuba, Curagao, Cote d’Ivoire, Djibouti, Dominica, Dominican Republic, Ecuador,
Egypt, El Salvador, Equatorial Guinea, Ethiopia, Fiji, French Guiana, French Polynesia, Gambia,
Ghana, Greenland, Grenada, Guadeloupe, Guatemala, Guinea, Guyana, Haiti, Honduras, Jamaica,
Kenya, Liberia, Madagascar, Martinique, Mauritius, Mexico, Morocco, Mozambique, Namibia, New
Zealand, Nicaragua, Nigeria, Palau, Panama, Paraguay, Peru, Rwanda, Samoa, Senegal, Seychelles,
Sierra Leone, Somalia, South Africa, South Sudan, St-Barthélemy, St. Kitts and Nevis, St. Lucia,
St. Maarten, St. Vincent and Grenadines, Sudan, Suriname, Tonga, Trinidad and Tobago, Tunisia,
Turks and Caicos Islands, Uganda, Uruguay, Vanuatu, Venezuela, Zambia, Zanzibar, Zimbabwe

e USA: all the US states plus the US territories (American Samoa, Guam, Northern Mariana Islands,
Puerto Rico, U.S. Virgin Islands)

In Table 4] we report the the share of introduction of SARS-Cov-2 infections for all European countries
that experienced a local outbreak considering all the infections imported up to April 30, 2020. Compared
with the seeding events networks (see below), the flows are radically different, especially for the first states
and countries experiencing local transmission. The critical role of China before the travel restrictions of
January 23, is replaced by a much larger fraction of introduction events of domestic or nearby countries
origin.

In Table [5| we report the the share of introduction of SARS-Cov-2 infections for all US states consid-
ering all the infections imported up to April 30, 2020.

5 SARS-CoV-2 Seeding Networks

The importation networks are obtained as follows. As a first step, we track potential seeding events by
air transportation (considering both individuals in the latent and infectious compartments) in any census
areas of the US and Europe in all the runs selected. We then compute the day, in each run, in which the
number of daily transitions from S to L is at least 10 in each state. In order words, we evaluate the date,
in each run, when the state experienced the first local outbreak. We then track, in each run, the arrivals
of latent and infectious individuals before or at the time of the local outbreak. From this standpoint, we
build the seeding networks aggregating sources as described above.

In Table [6| we report the seeding share for all European countries considered (see also Fig. [9}B).
Interestingly, China is the dominant seeding source for the first countries to have experienced the local
outbreak such as Italy, UK, Germany, France and Spain. As we move down the list, towards countries
that experienced a later start of the local outbreak, the share of seeding events from China rapidly
decreases. Asia is a key source of infections for most of countries. For Denmark (57% [IQR 40% — 76%)
), Finland (56% [IQR 38% — 75%]), Sweden (56% [IQR 38% — 75%)]), Austria (55% [IQR 36% — 75%]),
Estonia (55% [IQR 36% — 75%)]) and Switzerland (52% [IQR 33% — 73%]) the share of importations from
Asian countries is above 50%. However, the role of European importation sources becomes more evident
as we move clockwise in the plot thus looking at countries where the local outbreaks began in February.
The range of importation shares goes from 10% [IQR 0% — 20%)] in Italy to 87% [IQR 79% — 100%)] in
Slovak Republic. With the exceptions of the Netherlands (39% [IQR 20% — 57%)]), Finland (37% [IQR
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State Europe China Asia USA Others

Italy 0.69 (0.6, 0.8) | <0.01 (<0.01, <0.01) | 0.21 (0.13, 0.28) 0.06 (0.02, 0.06) 0.04 (0.02, 0.05)

United Kingdom | 0.58 (0.48, 0.68) | <0.01 (<0.01, <0.01) | 0.27 (0.19, 0.35) 0.08 (0.03, 0.09) 0.07 (0.03, 0.08)
Germany | 0.53 (0.42, 0.64) | <0.01 (<0.01, <0.01) | 0.38 (0.27, 0.48) 0.04 (0.02, 0.05) 0.04 (0.02, 0.05)
France | 0.53 (0.42, 0.63) | <0.01 (<0.01, <0.01) | 0.27 (0.18, 0.35) 0.06 (0.02, 0.07) 0.15 (0.1, 0.18)
Spain | 0.84 (0.79, 0.91) <0.01 (0.0, <0.01) | 0.10 (0.05, 0.12) 0.04 (0.01, 0.04) 0.02 (<0.01, 0.03)
Switzerland | 0.54 (0.42, 0.64) <0.01 (0.0, <0.01) | 0.38 (0.27, 0.48) 0.05 (0.02, 0.06) 0.04 (0.01, 0.04)
Netherlands | 0.58 (0.47, 0.69) <0.01 (0.0, <0.01) | 0.25 (0.16, 0.32) 0.06 (0.02, 0.07) 0.12 (0.06, 0.15)
Sweden | 0.67 (0.56, 0.77) <0.01 (0.0, <0.01) | 0.28 (0.18, 0.37) 0.04 (0.01, 0.04) 0.02 (<0.01, 0.02)
Denmark | 0.54 (0.42, 0.65) <0.01 (0.0, 0.0) 0.39 (0.27, 0.5) 0.05 (0.02, 0.05) 0.03 (<0.01, 0.03)
Austria | 0.53 (0.42, 0.64) <0.01 (0.0, <0.01) 0.41 (0.3, 0.51) 0.03 (0.01, 0.04) 0.03 (0.01, 0.04)
Belgium | 0.57 (0.46, 0.69) <0.01 (0.0, 0.0) | 0.33 (0.22, 0.43) 0.05 (0.02, 0.06) 0.04 (0.02, 0.05)
Poland | 0.73 (0.65, 0.83) <0.01 (0.0, 0.0) | 0.21 (0.13, 0.28) | 0.03 (<0.01, 0.04) 0.02 (<0.01, 0.03)
Portugal | 0.84 (0.79, 0.91) <0.01 (0.0, 0.0) 0.07 (0.04, 0.1) 0.04 (0.01, 0.04) 0.05 (0.01, 0.05)
Czech Republic | 0.62 (0.52, 0.72) <0.01 (0.0, 0.0) 0.31 (0.21, 0.4) 0.04 (0.01, 0.04) 0.04 (0.01, 0.04)
Ireland | 0.75 (0.67, 0.85) <0.01 (0.0, 0.0) | 0.11 (0.06, 0.14) 0.10 (0.04, 0.12) 0.05 (0.01, 0.05)
Norway | 0.75 (0.67, 0.84) <0.01 (0.0, 0.0) | 0.22 (0.13, 0.29) | 0.03 (<0.01, 0.03) 0.01 (<0.01, 0.01)
Finland | 0.63 (0.53, 0.74) <0.01 (0.0, 0.0) | 0.32 (0.22, 0.42) | 0.03 (<0.01, 0.03) 0.02 (<0.01, 0.02)
Hungary | 0.70 (0.62, 0.81) <0.01 (0.0, <0.01) | 0.23 (0.14, 0.29) 0.04 (0.01, 0.05) 0.03 (<0.01, 0.03)
Romania | 0.76 (0.69, 0.85) <0.01 (0.0, 0.0) | 0.20 (0.11, 0.25) | 0.02 (<0.01, 0.03) 0.02 (<0.01, 0.02)
Greece | 0.79 (0.73, 0.87) <0.01 (0.0, 0.0) | 0.14 (0.08, 0.17) 0.05 (0.01, 0.05) 0.03 (<0.01, 0.03)
Bulgaria | 0.72 (0.65, 0.82) <0.01 (0.0, 0.0) 0.23 (0.14, 0.3) | 0.03 (<0.01, 0.03) 0.02 (<0.01, 0.02)
Malta | 0.90 (0.87, 0.95) <0.01 (0.0, 0.0) | 0.07 (0.03, 0.09) | 0.01 (<0.01, 0.01) 0.02 (<0.01, 0.02)
Lithuania | 0.81 (0.75, 0.89) <0.01 (0.0, 0.0) 0.17 (0.1, 0.22) 0.02 (0.0, 0.02) | <0.01 (0.0, <0.01)
Croatia | 0.73 (0.65, 0.82) <0.01 (0.0, 0.0) | 0.18 (0.11, 0.23) 0.04 (0.01, 0.05) 0.05 (0.01, 0.06)
Latvia | 0.74 (0.67, 0.83) <0.01 (0.0, 0.0) | 0.23 (0.14, 0.29) 0.02 (0.0, 0.03) 0.01 (0.0, 0.02)
Estonia | 0.65 (0.55, 0.76) <0.01 (0.0, 0.0) | 0.31 (0.21, 0.41) | 0.03 (<0.01, O. 03) <0.01 (0.0, 0.01)
Iceland 0.69 (0.6, 0.82) <0.01 (0.0, 0.0) | 0.07 (0.03, 0.09) 0.16 (0.07, 0.2) 0.08 (0.02, 0.1)
Luxembourg | 0.82 (0.76, 0.89) <0.01 (0.0, 0.0) | 0.13 (0.07, 0.17) | 0.03 (<0.01, 0. 04) 0.02 (<0.01, 0.02)
Slovak Republic | 0.90 (0.86, 0.96) <0.01 (0.0, 0.0) | 0.09 (0.03, 0.12) <0.01 (0.0, 0.0) | <0.01 (0.0, <0.01)
Slovenia | 0.71 (0.62, 0.82) <0.01 (0.0, 0.0) | 0.24 (0.14, 0.31) 0.04 (0.0, 0.04) 0.02 (0.0, 0.02)

Table 4: Introduction of SARS-Cov-2 infections thorugh April 30. Sources are listed from the second
column on. Targets are the European countries listed in the first column. Numbers are rounded to the
second digit.
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State USA China Asia Europe Others
California 0.69 (0.6, 0.81) | <0.01 (<0.01, <0.01) 0.11 (0.05, 0.15) 0.05 (0.02, 0.07) | 0.14 (0.07, 0.19)
New York | 0.56 (0.43, 0.67) | <0.01 (<0.01, <0.01) 0.11 (0.05, 0.15) 0.14 (0.07, 0.19) | 0.19 (0.12, 0.23)

New Jersey | 0.56 (0.44, 0.68) | <0.01 (<0.01, <0.01) 0.10 (0.05, 0.14) 0.13 (0.06, 0.18) | 0.20 (0.12, 0.24)
Florida | 0.71 (0.62, 0.82) <0.01 (0.0, <0.01) 0.03 (0.01, 0.03) 0.07 (0.03, 0.1) | 0.20 (0.11, 0.24)

Texas | 0.78 (0.71, 0.87) <0.01 (0.0, <0.01) 0.05 (0.02, 0.07) 0.04 (0.02, 0.05) | 0.12 (0.06, 0.15)

Illinois | 0.71 (0.63, 0.82) <0.01 (0.0, <0.01) 0.07 (0.03, 0.1) 0.06 (0.03, 0.08) | 0.15 (0.08, 0.18)
Washington | 0.81 (0.74, 0.89) <0.01 (0.0, <0.01) 0.06 (0.02, 0.08) 0.03 (0.01, 0.04) | 0.10 (0.04, 0.12)
Massachusetts 0.69 (0.6, 0.8) <0.01 (0.0, <0.01) 0.05 (0.02, 0.07) 0.10 (0.04, 0.14) | 0.15 (0.09, 0.19)
Maryland | 0.71 (0.62, 0.82) <0.01 (0.0, <0.01) 0.08 (0.04, 0.11) 0.08 (0.03, 0.1) | 0.12 (0.07, 0.15)
Nevada | 0.78 (0.71, 0.89) <0.01 (0.0, 0.0) 0.03 (<0.01, 0.03) 0.04 (0.02, 0.05) 0.15 (0.05, 0.2)
Virginia | 0.75 (0.67, 0.84) <0.01 (0.0, <0.01) 0.07 (0.03, 0.09) 0.06 (0.03, 0.08) | 0.12 (0.07, 0.15)
Georgia 0.78 (0.7, 0.86) <0.01 (0.0, 0.0) 0.07 (0.03, 0.09) 0.05 (0.02, 0.06) | 0.10 (0.06, 0.13)
Arizona | 0.82 (0.77, 0.92) <0.01 (0.0, <0.01) 0.02 (<0.01, 0.03) 0.02 (<0.01, 0.03) | 0.13 (0.05, 0.17)
Colorado 0.83 (0.77, 0.9) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.04 (0.01, 0.05) | 0.12 (0.06, 0.15)
Pennsylvania | 0.78 (0.72, 0.86) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.05 (0.02, 0.07) | 0.14 (0.08, 0.18)
Ohio | 0.81 (0.76, 0.89) <0.01 (0.0, <0.01) 0.03 (<0.01, 0.03) 0.04 (0.01, 0.05) | 0.12 (0.07, 0.15)
Connecticut | 0.64 (0.54, 0.76) | <0.01 (<0.01, <0.01) 0.07 (0.03, 0.1) 0.10 (0.04, 0.14) | 0.18 (0.11, 0.22)
Michigan | 0.79 (0.73, 0.87) <0.01 (0.0, 0.0) 0.03 (0.01, 0.04) 0.05 (0.02, 0.06) | 0.13 (0.07, 0.16)
North Carolina | 0.81 (0.75, 0.89) <0.01 (0.0, 0.0) 0.03 (<0.01, 0.03) 0.05 (0.02, 0.06) | 0.11 (0.06, 0.14)
Minnesota | 0.77 (0.69, 0.85) <0.01 (0.0, 0.0) 0.04 (0.02, 0.06) 0.04 (0.01, 0.05) | 0.16 (0.09, 0.19)
Indiana | 0.78 (0.71, 0.87) <0.01 (0.0, <0.01) 0.04 (0.02, 0.05) 0.05 (0.02, 0.06) | 0.13 (0.07, 0.16)
Oregon | 0.84 (0.79, 0.92) <0.01 (0.0, 0.0) 0.04 (0.01, 0.05) 0.02 (<0.01, 0.03) | 0.10 (0.04, 0.12)

Utah | 0.86 (0.82, 0.93) <0.01 (0.0, 0.0) 0.03 (<0.01, 0.04) 0.03 (<0.01, 0.04) | 0.08 (0.04, 0.11)

New Hampshire | 0.68 (0.58, 0.79) <0.01 (0.0, <0.01) 0.05 (0.02, 0.07) 0.11 (0.05, 0.14) | 0.15 (0.09, 0.19)
Tennessee 0.82 (0.76, 0.9) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.04 (0.01, 0.05) | 0.12 (0.06, 0.15)
Missouri | 0.82 (0.76, 0.89) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.03 (<0.01, 0.04) | 0.13 (0.07, 0.17)
Wisconsin 0.85 (0.8, 0.92) <0.01 (0.0, 0.0) | <0.01 (<0.01, 0.01) 0.02 (<0.01, 0.03) | 0.12 (0.06, 0.16)
Louisiana | 0.84 (0.79, 0.91) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.04 (0.01, 0.05) | 0.11 (0.05, 0.13)
South Carolina | 0.83 (0.78, 0.91) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.04 (0.01, 0.06) | 0.10 (0.05, 0.13)
Kansas | 0.84 (0.79, 0.91) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.02) 0.03 (<0.01, 0.04) | 0.12 (0.06, 0.14)
Oklahoma | 0.83 (0.78, 0.91) <0.01 (0.0, 0.0) 0.03 (<0.01, 0.03) 0.03 (<0.01, 0.04) | 0.11 (0.06, 0.14)
Kentucky 0.82 (0.76, 0.9) <0.01 (0.0, 0.0) 0.03 (<0.01, 0.04) 0.04 (0.01, 0.05) | 0.12 (0.06, 0.15)
Idaho | 0.88 (0.84, 0.94) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.02) 0.02 (<0.01, 0.02) | 0.08 (0.03, 0.11)

New Mexico | 0.89 (0.86, 0.95) <0.01 (0.0, 0.0) 0.01 (<0.01, 0.02) 0.02 (<0.01, 0.03) | 0.07 (0.03, 0.09)
Towa | 0.82 (0.76, 0.89) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.03 (<0.01, 0.04) | 0.13 (0.07, 0.17)
Alabama | 0.70 (0.61, 0.83) <0.01 (0.0, 0.0) 0.18 (0.08, 0.24) 0.03 (<0.01, 0.04) | 0.09 (0.04, 0.11)

Maine | 0.81 (0.75, 0.89) <0.01 (0.0, <0.01) 0.02 (<0.01, 0.03) 0.04 (0.02, 0.06) | 0.12 (0.06, 0.16)

Alaska 0.85 (0.8, 0.94) <0.01 (0.0, 0.0) 0.04 (<0.01, 0.05) 0.02 (0.0, 0.02) | 0.09 (0.03, 0.12)
Nebraska 0.82 (0.76, 0.9) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.03 (<0.01, 0.04) | 0.13 (0.07, 0.17)

Rhode Island | 0.87 (0.83, 0.94) <0.01 (0.0, 0.0) <0.01 (0.0, 0.0) 0.05 (<0.01, 0.06) | 0.08 (0.04, 0.11)
Montana | 0.89 (0.85, 0.95) <0.01 (0.0, 0.0) | <0.01 (<0.01, 0.01) 0.02 (<0.01, 0.02) | 0.09 (0.04, 0.11)
Arkansas | 0.84 (0.79, 0.91) <0.01 (0.0, 0.0) 0.03 (<0.01, 0.03) 0.03 (<0.01, 0.04) | 0.10 (0.05, 0.13)
Delaware | 0.75 (0.67, 0.84) <0.01 (0.0, 0.0) 0.02 (<0.01, 0.03) 0.06 (0.02, 0.08) 0.17 (0.1, 0.21)

Mississippi 0.85 (0.8, 0.92) <0.01 (0.0, 0.0) 0.01 (<0.01, 0.02) 0.04 (<0.01, 0.05) | 0.10 (0.04, 0.13)
Vermont | 0.87 (0.83, 0.94) <0.01 (0.0, 0.0) 0.02 (0.0, 0.02) 0.02 (0.0, 0.02) | 0.09 (0.04, 0.12)

West Virginia | 0.86 (0.81, 0.93) <0.01 (0.0, 0.0) 0.01 (<0.01, 0.01) 0.03 (<0.01, 0.04) | 0.10 (0.04, 0.13)
Wyoming | 0.86 (0.81, 0.95) <0.01 (0.0, 0.0) 0.05 (<0.01, 0.06) 0.02 (<0.01, 0.02) | 0.07 (0.02, 0.09)

North Dakota | 0.88 (0.85, 0.94) <0.01 (0.0, 0.0) <0.01 (0.0, 0.0) | <0.01 (0.0, <0.01) | 0.11 (0.05, 0.14)

South Dakota 0.85 (0.8, 0.93) <0.01 (0.0, 0.0) <0.01 (0.0, 0.0) 0.02 (0.0, 0.02) | 0.13 (0.06, 0.17)

Table 5: Introduction of SARS-Cov-2 infections through April 30. Sources are listed from the second
column on. Targets are the European countries listed in the first column. Numbers are rounded to the
second digit.
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Country Europe China Asia USA Others
Ttaly 0.10 (0.0, 0.2) 0.72 (0.5, 1.0) 0.16 (0.0, 0.29) | <0.01 (0.0, 0.0) | <0.01 (0.0, 0.0)

United Kingdom | 0.15 (0.0, 0.23) | 0.52 (0.31, 0.71) | 0.28 (0.1, 0.43) | 0.02 (0.0, 0.0) | 0.04 (0.0, 0.0)
Germany | 0.22 (0.0, 0.33) | 0.31 (0.11, 0.5) | 0.43 (0.23, 0.62) | 0.02 (0.0, 0.0) | 0.02 (0.0, 0.0)
France 0.22 (0.0, 0.33) | 0.41 (0.17, 0.62) 0.33 (0.11, 0.5) 0.02 (0.0, 0.0) 0.02 (0.0, 0.0)
Spain | 0.55 (0.38, 0.75) 0.15 (0.0, 0.2) 0.26 (0.08, 0.4) 0.02 (0.0, 0.0) 0.02 (0.0, 0.0)
Switzerland 0.32 (0.12, 0.5) 0.09 (0.0, 0.11) | 0.52 (0.33, 0.73) 0.03 (0.0, 0.0) 0.03 (0.0, 0.0)
Netherlands 0.39 (0.2, 0.57) 0.12 (0.0, 0.14) 0.42 (0.22, 0.6) 0.03 (0.0, 0.0) 0.04 (0.0, 0.0)
Sweden 0.32 (0.15, 0.5) 0.07 (0.0, 0.05) | 0.56 (0.38, 0.75) 0.03 (0.0, 0.0) 0.02 (0.0, 0.0)
Denmark 0.33 (0.14, 0.5) 0.06 (0.0, 0.0) 0.57 (0.4, 0.76) 0.03 (0.0, 0.0) 0.02 (0.0, 0.0)
Austria 0.34 (0.14, 0.5) 0.07 (0.0, 0.04) | 0.55 (0.36, 0.75) 0.02 (0.0, 0.0) 0.02 (0.0, 0.0)
Belgium | 0.47 (0.25, 0.67) 0.07 (0.0, 0.0) 0.41 (0.2, 0.6) 0.03 (0.0, 0.0) 0.02 (0.0, 0.0)
Poland | 0.55 (0.35, 0.75) 0.03 (0.0, 0.0) | 0.39 (0.18, 0.56) 0.02 (0.0, 0.0) 0.02 (0.0, 0.0)
Portugal | 0.70 (0.57, 0.89) 0.05 (0.0, 0.0) 0.19 (0.0, 0.3) | 0.02 (0.0, 0.0) | 0.04 (0.0, 0.0)
Czech Republic | 0.40 (0.18, 0.6) 0.09 (0.0, 0.0) | 0.47 (0.25, 0.68) | 0.02 (0.0, 0.0) | 0.02 (0.0, 0.0)
Ireland | 0.56 (0.38, 0.76) 0.05 (0.0, 0.0) | 0.25 (0.06, 0.38) 0.07 (0.0, 0.1) 0.07 (0.0, 0.09)
Norway 0.47 (0.3, 0.64) 0.01 (0.0, 0.0) | 0.48 (0.32, 0.67) 0.03 (0.0, 0.0) 0.02 (0.0, 0.0)
Finland 0.37 (0.2, 0.53) 0.03 (0.0, 0.0) | 0.56 (0.38, 0.75) 0.02 (0.0, 0.0) 0.02 (0.0, 0.0)
Hungary | 0.50 (0.29, 0.71) 0.09 (0.0, 0.02) | 0.38 (0.17, 0.57) 0.02 (0.0, 0.0) 0.02 (0.0, 0.0)
Romania 0.65 (0.5, 0.86) 0.02 (0.0, 0.0) | 0.30 (0.11, 0.45) 0.01 (0.0, 0.0) 0.01 (0.0, 0.0)
Greece 0.60 (0.43, 0.8) 0.02 (0.0, 0.0) 0.32 (0.12, 0.5) 0.03 (0.0, 0.0) 0.02 (0.0, 0.0)
Bulgaria 0.60 (0.43, 0.8) 0.01 (0.0, 0.0) 0.36 (0.17, 0.5) 0.02 (0.0, 0.0) 0.01 (0.0, 0.0)
Malta 0.79 (0.67, 1.0) <0.01 (0.0, 0.0) 0.18 (0.0, 0.25) 0.01 (0.0, 0.0) 0.02 (0.0, 0.0)
Lithuania | 0.69 (0.56, 0.87) | <0.01 (0.0, 0.0) | 0.29 (0.11, 0.42) | 0.01 (0.0, 0.0) | <0.01 (0.0, 0.0)
Croatia | 0.46 (0.25, 0.68) | <0.01 (0.0, 0.0) | 0.45 (0.21, 0.67) | 0.03 (0.0, 0.0) | 0.05 (0.0, 0.04)
Latvia 0.57 (0.4, 0.76) <0.01 (0.0, 0.0) 0.39 (0.2, 0.56) 0.02 (0.0, 0.0) 0.01 (0.0, 0.0)
Estonia 0.42 (0.21, 0.6) <0.01 (0.0, 0.0) | 0.55 (0.36, 0.75) 0.02 (0.0, 0.0) | <0.01 (0.0, 0.0)
Iceland 0.61 (0.46, 0.8) 0.01 (0.0, 0.0) 0.16 (0.0, 0.23) 0.14 (0.0, 0.2) 0.08 (0.0, 0.1)
Luxembourg | 0.71 (0.58, 0.89) <0.01 (0.0, 0.0) | 0.24 (0.08, 0.33) 0.03 (0.0, 0.0) 0.02 (0.0, 0.0)
Slovak Republic 0.85 (0.79, 1.0) <0.01 (0.0, 0.0) 0.14 (0.0, 0.2) | <0.01 (0.0, 0.0) | <0.01 (0.0, 0.0)
Slovenia 0.56 (0.4, 0.75) <0.01 (0.0, 0.0) | 0.38 (0.18, 0.56) 0.03 (0.0, 0.0) 0.02 (0.0, 0.0)

Table 6: Importation of seeding events. Sources are listed from the second column on. Targets are the
countries listed in the first column. Numbers are rounded to the second digit.
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State USA China Asia Europe Others
California 0.09 (0.0, 0.14) 0.74 (0.6, 1.0) 0.13 (0.0, 0.2) 0.01 (0.0, 0.0) 0.03 (0.0, 0.0)
New York 0.20 (0.0, 0.32) 0.45 (0.15, 0.71) 0.21 (0.0, 0.33) 0.09 (0.0, 0.14) 0.05 (0.0, 0.06)

New Jersey | 0.28 (0.11, 0.42) 0.28 (0.07, 0.43) 0.25 (0.1, 0.37) 0.12 (0.0, 0.17) 0.07 (0.0, 0.1)
Florida 0.59 (0.42, 0.8) 0.05 (0.0, 0.0) 0.13 (0.0, 0.2) 0.11 (0.0, 0.17) 0.12 (0.0, 0.17)

Texas | 0.57 (0.39, 0.79) 0.11 (0.0, 0.11) 0.21 (0.0, 0.33) 0.04 (0.0, 0.06) 0.07 (0.0, 0.1)

Tllinois | 0.46 (0.24, 0.68) 0.19 (0.0, 0.23) 0.22 (0.0, 0.34) 0.06 (0.0, 0.08) 0.07 (0.0, 0.1)
Washington | 0.56 (0.38, 0.78) 0.11 (0.0, 0.11) 0.23 (0.04, 0.36) 0.03 (0.0, 0.03) 0.07 (0.0, 0.08)
Massachusetts | 0.49 (0.29, 0.71) 0.16 (0.0, 0.17) 0.17 (0.0, 0.26) 0.11 (0.0, 0.17) 0.08 (0.0, 0.11)
Maryland 0.48 (0.28, 0.7) 0.11 (0.0, 0.09) 0.25 (0.07, 0.37) 0.09 (0.0, 0.14) 0.07 (0.0, 0.09)
Nevada | 0.63 (0.47, 0.83) 0.04 (0.0, 0.0) 0.17 (0.0, 0.25) 0.04 (0.0, 0.06) 0.12 (0.0, 0.17)
Virginia | 0.55 (0.37, 0.75) 0.08 (0.0, 0.06) 0.23 (0.07, 0.33) 0.08 (0.0, 0.12) 0.07 (0.0, 0.08)
Georgia | 0.62 (0.46, 0.83) 0.07 (0.0, 0.0) | 0.19 (<0.01, 0.29) 0.06 (0.0, 0.08) 0.06 (0.0, 0.08)
Arizona | 0.71 (0.57, 0.92) | 0.03 (0.0, <0.01) | 0.11 (<0.01, 0.15) 0.03 (0.0, <0.01) 0.12 (0.0, 0.17)
Colorado | 0.75 (0.64, 0.92) 0.01 (0.0, 0.0) 0.10 (0.0, 0.14) 0.04 (0.0, 0.06) 0.09 (0.0, 0.12)
Pennsylvania 0.71 (0.56, 0.9) 0.02 (0.0, 0.0) 0.10 (0.0, 0.15) 0.08 (0.0, 0.12) 0.09 (0.0, 0.12)
Ohio 0.71 (0.58, 0.9) | 0.03 (0.0, <0.01) | 0.13 (<0.01, 0.19) 0.06 (0.0, 0.08) 0.07 (0.0, 0.1)
Connecticut | 0.45 (0.24, 0.65) 0.08 (0.01, 0.08) 0.23 (0.09, 0.33) 0.14 (0.04, 0.19) 0.10 (0.01, 0.12)
Michigan | 0.63 (0.49, 0.85) 0.08 (0.0, 0.0) 0.16 (0.0, 0.23) 0.07 (0.0, 0.1) 0.07 (0.0, 0.1)
North Carolina | 0.68 (0.54, 0.88) 0.06 (0.0, 0.0) 0.13 (0.0, 0.18) 0.07 (0.0, 0.09) 0.07 (0.0, 0.09)
Minnesota | 0.68 (0.51, 0.87) 0.01 (0.0, 0.0) 0.16 (0.0, 0.25) 0.05 (0.0, 0.07) 0.10 (0.0, 0.13)
Indiana 0.66 (0.5, 0.85) 0.04 (0.0, 0.02) 0.16 (0.04, 0.22) 0.06 (0.0, 0.08) 0.08 (0.0, 0.1)
Oregon 0.73 (0.61, 0.9) 0.03 (0.0, 0.0) | 0.15 (<0.01, 0.22) 0.02 (0.0, 0.02) 0.07 (0.0, 0.09)

Utah | 0.79 (0.67, 0.96) <0.01 (0.0, 0.0) 0.10 (0.0, 0.14) 0.04 (0.0, 0.05) 0.07 (0.0, 0.09)

New Hampshire | 0.53 (0.36, 0.72) 0.09 (0.0, 0.06) 0.16 (0.04, 0.23) 0.13 (0.02, 0.19) 0.09 (0.0, 0.12)
Tennessee | 0.74 (0.62, 0.92) <0.01 (0.0, 0.0) 0.11 (0.0, 0.15) 0.05 (0.0, 0.07) 0.09 (0.0, 0.12)
Missouri | 0.77 (0.67, 0.92) <0.01 (0.0, 0.0) 0.10 (0.0, 0.13) 0.04 (0.0, 0.06) 0.08 (0.0, 0.11)
Wisconsin | 0.83 (0.75, 0.98) <0.01 (0.0, 0.0) 0.04 (0.0, 0.03) 0.03 (0.0, 0.01) 0.09 (0.0, 0.13)
Louisiana | 0.78 (0.67, 0.94) <0.01 (0.0, 0.0) 0.08 (0.0, 0.11) 0.05 (0.0, 0.08) 0.08 (0.0, 0.11)
South Carolina | 0.77 (0.66, 0.93) <0.01 (0.0, 0.0) 0.10 (0.0, 0.13) 0.06 (0.0, 0.08) 0.06 (0.0, 0.08)
Kansas 0.80 (0.7, 0.94) <0.01 (0.0, 0.0) 0.08 (0.0, 0.11) 0.04 (0.0, 0.06) 0.07 (0.0, 0.1)
Oklahoma | 0.79 (0.69, 0.96) <0.01 (0.0, 0.0) | 0.08 (<0.01, 0.11) 0.04 (0.0, 0.06) | 0.08 (<0.01, 0.11)
Kentucky | 0.77 (0.67, 0.92) <0.01 (0.0, 0.0) | 0.10 (<0.01, 0.12) 0.05 (0.0, 0.07) 0.07 (0.0, 0.1)
Idaho | 0.84 (0.76, 0.98) <0.01 (0.0, 0.0) 0.07 (<0.01, 0.1) 0.02 (0.0, <0.01) 0.06 (0.0, 0.08)

New Mexico 0.86 (0.79, 1.0) <0.01 (0.0, 0.0) 0.05 (0.0, 0.07) 0.04 (0.0, 0.04) 0.05 (0.0, 0.07)
TIowa | 0.78 (0.68, 0.94) <0.01 (0.0, 0.0) 0.08 (0.0, 0.1) 0.04 (0.0, 0.05) 0.09 (0.0, 0.13)
Alabama 0.73 (0.6, 0.92) <0.01 (0.0, 0.0) | 0.16 (<0.01, 0.22) 0.05 (<0.01, 0.07) | 0.06 (<0.01, 0.08)

Maine | 0.77 (0.68, 0.91) | 0.02 (0.0, <0.01) 0.07 (0.02, 0.08) 0.07 (0.02, 0.09) | 0.08 (<0.01, 0.09)

Alaska | 0.78 (0.67, 0.94) <0.01 (0.0, 0.0) 0.12 (0.0, 0.17) 0.02 (0.0, 0.0) 0.08 (0.0, 0.12)
Nebraska | 0.81 (0.72, 0.94) <0.01 (0.0, 0.0) 0.06 (0.0, 0.07) 0.04 (0.0, 0.05) | 0.09 (<0.01, 0.14)

Rhode Island 0.87 (0.8, 1.0) <0.01 (0.0, 0.0) 0.02 (0.0, 0.0) 0.06 (0.0, 0.08) 0.05 (0.0, 0.07)
Montana 0.90 (0.86, 1.0) <0.01 (0.0, 0.0) 0.01 (0.0, <0.01) 0.02 (0.0, <0.01) 0.07 (0.0, 0.1)
Arkansas | 0.83 (0.75, 0.97) <0.01 (0.0, 0.0) 0.06 (0.0, 0.08) 0.05 (0.0, 0.07) 0.06 (0.0, 0.09)
Delaware | 0.73 (0.63, 0.87) <0.01 (0.0, 0.0) 0.05 (0.01, 0.07) 0.10 (0.03, 0.14) 0.11 (0.03, 0.15)

Mississippi | 0.83 (0.75, 0.96) <0.01 (0.0, 0.0) 0.05 (0.0, 0.04) 0.06 (0.0, 0.08) 0.07 (0.0, 0.09)
Vermont 0.87 (0.8, 1.0) <0.01 (0.0, 0.0) 0.05 (0.0, 0.06) 0.03 (0.0, <0.01) 0.05 (0.0, 0.07)

West Virginia | 0.85 (0.79, 0.96) <0.01 (0.0, 0.0) | 0.03 (<0.01, 0.03) 0.05 (<0.01, 0.05) | 0.07 (<0.01, 0.08)
Wyoming | 0.83 (0.75, 0.98) <0.01 (0.0, 0.0) | 0.07 (<0.01, 0.09) | 0.02 (<0.01, <0.01) | 0.07 (<0.01, 0.09)

North Dakota 0.91 (0.86, 1.0) <0.01 (0.0, 0.0) <0.01 (0.0, 0.0) 0.01 (0.0, 0.0) 0.08 (0.0, 0.11)

South Dakota 0.88 (0.82, 1.0) <0.01 (0.0, 0.0) <0.01 (0.0, 0.0) 0.02 (0.0, 0.0) 0.09 (0.0, 0.13)

Table 7: Importation of seeding events. Sources are listed from the second column on. Targets are the
US states listed in the first column. Numbers are rounded to the second digit.
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20% — 53%])), Austria (34% [IQR 14% — 50%]), Denmark (33% [IQR 14% — 50%]), Switzerland (32%
[IQR 12% — 50%]), and Sweden (32% [IQR 15% — 50%]), all countries that experience a local onset of
transmission after the first week of February are characterized by a share of European importations above
or equal to 40%.

In Table [7] we report the seeding share for the US states. Within the US, while importations from
mainland China contribute to early introductions of the virus, we find that other potential sources of
importation play a key role in seeding the epidemic in different places. As shown in Fig. [0}A, the share
of infection importations originating from Europe in California was nine times smaller than those in
New York state (9% [IQR 0% — 14%]). Among the states for which the model estimates an early onset
of local transmission before the third week of February (considering median values), European sources
are statistically contributing 12% [IQR 0% — 17%] of SARS-CoV-2 importations for New Jersey, 11%
[IQR 0% — 17%] for Florida, and only 4% [IQR 0% — 6% for Texas. It is important to notice how, for
countries in Europe, the US implemented additional travel advisories and restrictions a month later at
the end February and early March. The share of importations from Asia is more significant for countries
among the first to experience local outbreaks and becomes progressively smaller as we move clockwise in
the plot. The range goes from 25% [IQR 10% — 37%]| in New Jersey and 21% [IQR 0% — 33%] in New
York to values smaller than 1% in North and South Dakota. As we mentioned above, the contribution
from Asia is overall smaller than that of Europe. Interestingly, the domestic importations are, across
the board, statistically relevant in seeding the epidemic in many states. Among the states for which we
estimated a late onset of local transmission (second half of February), domestic sources account for 81%
[IQR 72% — 94%)] of the virus introductions in Nebraska, 86% [IQR 79% — 100%] in New Mexico, 83%
[IQR 75% — 97%)] in Arkansas, and 91% [IQR 86% — 100%] in North Dakota.
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Figure 9: Share of importations of infections in all continental states (A) and in European countries (C)
from US, China, Europe, Asia and all other countries before the start of the local outbreak. US states
and European countries are ordered, clockwise, according to the start of the local outbreak.

6 Correlation Analysis

As mentioned and shown in the main text, during the early phases of the spreading, mobility plays a
crucial role. In order to highlight this aspect, here we report the full correlation analysis between the
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Figure 10: Correlation between the order in which states reached 100 confirmed cases (top row) or deaths
(bottom row) and their International (left) or National (right) air traffic. The size of each state is assigned
proportional to the population size. The first two columns refer to countries in Europe. The last two to
the US states

real data and the mobility indicators. In particular, we compute the order in which states reached 100
cases/deaths in the real surveillance data and compare it with the order of European countries and US
states according to their air traffic (considering both national and international travels). Note how the
correlation plot in the main text considered as a mobility indicator the sum of the two types of traffic.
In Fig. [10] we show the result reporting also the value of the Kendall’s tau. In European countries both
cases and deaths are highly correlated with international travels. The national flows are correlated by
to a less extent. In US states, the rank of cases are more correlated to both international and national
travels than deaths.

The countries and states that were the first to experience the outbreak, besides being hubs in the
air transportation network, are also very populous. It is then natural to wonder how rankings based on
population compare with respect to those based on air traffic. In Figure we show the comparison.
In particular, we order European countries and US states according to their population and density and
to the epidemic indicators from surveillance (cases and deaths). We find high correlation levels with
population ranks for both Europe and US states for both cases and deaths. It is interesting to note how
those reported considering air travels are comparable or higher. The correlation for the number of deaths
(bottom row) is lower with respect to the number of cases (top row) for US. Furthermore, it is interesting
to notice how the correlations are even smaller when considering the population density, especially in the
case of cases in Europe.

In Figure [12| we repeat the same analysis considering the model’s projections. The correlations are
comparable to the previous. Also in the model, population density is less correlated.

It is important to observe that air travel traffic, population and population densities are not indepen-
dent indicators. Figure highlights this observation. Particularly high is the correlation between air
traffic and population. Also, population and population densities are well correlated (especially in USA)
while air traffic and density are not. This is due, in part, to the many countries/states that, due to their
location, see lots of traffic but are not very dense.

The correlations between rankings reported above have been computed by using the Kendall’s tau (39)
as implemented by the scipy.stats library (40). The metric is designed to compare the rankings obtained
ordering items, states in our case, according to pairs of different quantities. The Kendall’s tau is defined
only in the case that the ranks have the same size. In case the two ranks have different size (i.e., some
states did not yet go above a given threshold) the metric is applied to the common subset of the two.
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Country Age Study period | Prevalence (%) | Model AR (%) (median and 95%CI) | Reference
Denmark | 17-69 | 04/27/20-05/03/20 2.4 1.05 [0.67-3.03] @)
France 0+ | 05/11/20-05/17/20 4.9 4.60 [3.13-11.05] 43)

Czech Republic | 18-89 | 04/23/20-05/01/20 0.4 0.38 [0.22-1.02] @)
Portugal 1+ | 05/21/20-07/08/20 2.7 1.60 [0.89-4.56] @)
Hungary | 14+ | 05/01/20-05/16/20 0.6 0.71 [0.42-1.99] 45)

Spain 0+ | 04/27/20-05/11/20 45 7.12 [4.95-16.05] (46)

Ttaly 0+ | 05/25/20-07/15/20 2.6 4.97 [3.06-17.43] @)

Sweden | 0-95 | 06/08/20-06/14/20 5.6 6.26 [3.52-16.86] @s)
Netherlands | 18-72 | 05/11/20-05/18/20 5.6 4.67 [2.68-12.08] (9)
Belgium 05/13/20 8.5 12.79 [7.90-31.25] 0)

United Kingdom 05/24/20 6.78 6.44 [3.96-15.90] BI)
State/City Age Study period | Prevalence (%) | Model AR (%) (median and 95%CI) | Reference
Los Angeles, CA 04/10/20-04/11/20 4.1 0.89 [0.27-2.91] (52))
Connecticut | 0-65+ | 04/26/20-05/03/20 49 8.11 [5.77-19.26] G3)
Louisiana | 0-65+ | 04/01/20-04/08/20 5.8 3.92 [2.59-11.57] B3)
Minneapolis | 0-65+ | 04/30/20-05/12/20 2.4 3.87 [2.34-10.93] ©3)
Missouri | 0-65+ | 04/20/20-04/26/20 2.7 1.43 [0.91-4.14] 53)
Philadelphia, PA | 0-65+ | 04/13/20-04/25/20 3.2 6.26 [1.35-21.11] (53)
San Francisco | 0-65+ | 04/23/20-04/27/20 1 1.97 [0.32-7.79] B3)
New York | 18+ | 04/19/20-04/28,/20 14 12.98 [8.32-29.88] 1)

New York City | 18+ | 04/19/20-04/28/20 22.7 19.78 [12.13-44.08] GA)

Table 8: Summary of the country and state level serological studies used for comparison against model
estimates.

7 Data

7.1 Epidemic surveillance data. The surveillance data of the reported cases and deaths are taken
from the John Hopkins University Coronavirus Resource Center (41)).

7.2 Model intervention data. The model incorporates Google COVID-19 Community Mobility Re-
ports data (23) to estimate, on the one hand, changes in mobility and, on the other hand, changes in
contact patterns in workplaces and in the general community. Non-pharmaceutical interventions and
other policy interventions are tracked using the Oxford Covid-19 Government Response Tracker (Ox-
CGRT) (21)). Lastly, reductions in air travel are computed by considering the percent change between
the monthly origin-destination passenger flows between corresponding months in 2020 and 2019 (7).
Implementation details are provided in Section

7.3 Serological data comparison. We did an extensive literature search for serological studies per-
formed from April-July 2020. In Fig. 5D, in the main text, we show the correlation between the estimated
prevalence of SARS-CoV-2 antibodies and the model’s estimated infection attack rate reported on the
last date of that study. In Table |8| we report the prevalence values and study dates ranges for each
serological survey considered along with our estimated infection attack rate.
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