Group			COVID+ patien	its				Non-COVID I	CU patients	
Sample ID	COV-1	COV-2	COV-3	COV-4	COV-5	ICU-1	ICU-2	ICU-3	ICU-4	ICU-5
Age range	61-65	61-65	61-65	45-50	51-55	55-60	61-65	61-65	41-45	55-60
Sex	М	F	F	М	М	М	F	F	М	М
Multiple organ dysfunction score Sequential Organ	8	4	11	5	5	5	0	1	3	7
Assessment Score	,	2	11	2	11	5	5	·	5	in a
Comorbidities										
Hypertension	YES	NO	YES	NO	NO	YES	NO	NO	YES	NO
Diabetes	NO	NO	YES	NO	YES	NO	YES	NO	NO	NO
Chronic kidney disease	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Cancer	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Chronic obstructive pulmonary disease	NO	NO	NO	NO	NO	NO	YES	NO	NO	NO
artery/heart disease	NO	NO	NO	NO	YES	NO	YES	NO	NO	NO
Chronic heart failure	NO	NO	NO	NO	NO	NO	YES	NO	NO	NO
Baseline labs										
WBC	12.9	6.9	41.5	10.5	23.6	7.9	6.3	19.3	11.9	17.9
Neutrophils	11.1	5.8	24.1	9.7	21.1	7.2	5.3	16.1	10.6	15.6
Lymphocytes*	0.9	0.8	0.7	0.3	0.5	0.3	0.6	1.4	0.4	1.2
Hemoglobin	122	110	94	134	93	137	75	81	124	109
Platelets	186	203	366	216	463	291	261	163	248	259
Creatinine	993	56	565	78	82	45	56	80	46	71
CXR finding	bilateral pneumonia	bilateral pneumonia	bilateral pneumonia	bilateral pneumonia	unilateral pneumonia	unilateral pneumonia	bilateral pneumonia	unilateral pneumonia	normal	unilateral pneumonia
Pao2/Fio2 ratio	59	88	120	50	160	208	143	316	363	n/a
Sepsis diagnosis	Confirmed	Confirmed	Confirmed	Confirmed	Confirmed	Suspected	Suspected	Suspected	Suspected	Suspected
Interventions during study										
Antibiotics	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
Anti-virals	NO	NO	NO	NO	NO	NO	NO	NO	YES	YES
Steroids	NO	NO	NO	NO	YES	NO	YES	YES	NO	NO
Vasoactive	YES	YES	YES	YES	YES	NO	NO	YES	NO	YES
Renal replacement therapy	YES	NO	YES	NO	NO	NO	NO	NO	NO	NO
High-flow nasal cannula	NO	YES	NO	YES	NO	NO	NO	NO	NO	NO
Non-invasive mechanical ventilation	YES	NO	NO	NO	NO	YES	YES	YES	NO	NO
Invasive mechanical ventilation	YES	YES	YES	YES	YES	YES	NO	NO	YES	YES
Patient Outcome	DEAD	DEAD	DEAD	DEAD	ALIVE	ALIVE	ALIVE	ALIVE	DEAD	DEAD

Table S1. Subject demographics and clinical data.

* 1.0-4.0 ($10^{9}/L$) for healthy adults

Subject	Age range	Sex	Day collected	TMT batch & channels
			day1	A9, C2
COV1	61-65	М	day7	A2
			day10	A6
			day1	A10, C3
COV2	61-65	F	day7	A4
			day10	A7
			day1	A11, C4
COV3	61-65	F	day7	A5
			day10	A8
			day1	B2
COV4	45-50	М	day7	B5
			day10	B7
			day1	B4
COV5	51-55	М	day7	B6
			day10	B8
ICU1	55-60	М	day1	B3, C5
ICU2	61-65	F	day1	C6
ICU3	61-65	F	day1	C7
ICU4	41-45	М	day1	B9
ICU5	55-60	М	day1	C8
HC1	55-60	М		A3, C9
HC2	61-65	F		C10
HC3	61-65	F		C11
HC4	46-50	М		B10
HC5	51-55	М		B11
PBMC, PV+				A1, B1, C1

Table S2. The list of samples for TMT labeling and mass spectrometry analysis.

Note: The channel 3 data (A3, B3 and C3) were not used for analysis due to strong reporter ion interferences from channel 1 (pervanadate-treated PBMC booster channel, A1, B1 and C1).

SUPPLEMENTARY METHODS

Study design and blood sample collection

This study was approved by the Western University, Human Research Ethics Board (study number: 116284). Patients were admitted to level-3 academic intensive care unit (ICU) at London Health Sciences Centre-Victoria Campus (London, Ontario) and were suspected of having COVID-19 based on standard hospital screening procedures ¹. Blood samples were collected starting at admission for COVID-19⁻ patients, or day 1, 7 and 10 for COVID-19⁺ patients. COVID-19 status was confirmed as part of standard hospital testing by detection of two SARS-CoV-2 viral genes using polymerase chain reaction. Although ICU severity of illness scores have not been validated in COVID-19⁺ patients, we calculated multiple organ dysfunction score (MODS) and Sequential Organ Failure Assessment (SOFA) score for both COVID-19⁺².

Final participant groups were constructed by age- and sex-matching COVID-19⁺ ICU patients with COVID-19⁻ ICU patients, as well as healthy controls that had blood samples previously banked in the Translational Research Centre, London, ON, Canada) (directed by Dr. D. D. Fraser; https://translationalresearchcentre.com/)^{3,4}.

The peripheral blood mononuclear cell (PBMC)/buffy coat and plasma samples were deidentified prior to transfer from the hospital to a biosafety Level 3 (CL3) lab (ImPaKT, Western University) following Transportation of Dangerous Goods (TDG) guidelines. All plasma samples were heat-inactivated at 56 °C for 30 minutes and PBMCs were lysed in 9M Urea in HEPES buffer (20mM HEPES, 1mM sodium orthovanadate, 10mM NaF, pH8.0) at the ImPaKT CL3 facility as per Western university biosafety regulation. Heat inactivated plasma and lysed PBMCs samples were verified free of virus before they were transferred to the testing laboratory.

Sample processing for proteomics and phosphoproteomics analyses by mass spectrometry

Hemoglobin depletion and protein precipitation

Hemoglobin was depleted from PBMC whole cell lysate samples according to HemogloBindTM manufacturer instruction with modifications. Briefly, 10 ml HemogloBind beads were added to 1 ml whole cell lysate suspended in 20mM HEPES buffer pH 6.5 containing 1mM sodium

orthovanadate, 10mM NaF, and the mixture was vortexed for 10 min at room temperature. The Mixture was then centrifuged for 5 minutes at 10,000 rpm and the protein supernatant was collected and precipitated with 5 volumes of ice-cold acetone/ethanol/acetic acid/ (v/v/v)=50/50/0.1) at -20 °C overnight. Protein pellets were collected by centrifugation at 17,000g for 20 min the following day and the resulting pellets were washed with ice-cold 75% ethanol once and centrifuged at 17,000g for 3min. Ethanol was removed and pellets were dried briefly and then resuspended in urea lysis buffer (9M urea, 20 mM HEPES, 1 mM sodium orthovanadate, 10mM NaF, pH8.0)

Protein processing and digestion

Protein concentration was estimated by Bio-Rad protein assay kit. The protein concentration was adjusted to 8 μ g/ μ l in urea lysis buffer and reduced with 10 mM dithiothreitol (DTT) for 1 hour at room temperature. Protein was then alkylated with iodoacetamide (IAA) to a final concertation of 10 mM IAA followed by incubation for 45min in the dark at room temperature. Protein solution was then diluted 1:3 (vol/vol) with digestion buffer (50 mM HEPES, 1 mM orthovandate, 10 mM NaF, pH 8.0) to decrease urea concentration, LysC was then added in a ratio of 1 mAU per 50 μ g of total protein followed by incubation of 2 hours at 25°C with gentle shaking. Trypsin was then added in a ratio 1:50, and incubated overnight at 28°C. The resulting peptide was desalted using SepPak C18 cartridges (Waters WAT054955) and SpeedVac dried.

Pervanadate treatment for the booster channel PBMC

PBMCs isolated from normal blood samples was treated by pervanadate as descried in ⁵ with modifications. Briefly, the pervanadate solution was prepared by adding 10 μ l of 0.1 M sodium orthovanadate to 10 μ l of 0.2 M hydrogen peroxide (diluted 50-fold from a 30% stock). The solution was then incubated at room temperature for 15 min. Excess hydrogen peroxide was inactivated by adding 2 μ l of catalase in PBS (10 mg/ml). PBMCs were suspended in 5 volumes 0.1 mM pervanadate in a buffer containing 20 mM HEPES-NaOH (pH 7.4) and incubated at 37° for 10 min.

Tandem Mass Tag (TMT) labelling

For mass spectrometry analysis, we labelled 25 patient or healthy control samples with the 11plex TMT isobaric labelling reagent (Thermo A37725) (Table S2) for sample identities with TMT set/channel numbers). In addition, we employed the pervanadate BOOST channel approach ⁶ by including the pervanadate-treated human PBMC sample as the reference channel (channel 1 of each 11-plex sample). Three sets of 11-plex reagents were used to label all samples.

The TMT labelling procedure was modified from ⁷. The desalted peptides were reconstituted in 0.1% formic acid to determine peptide concentration by the BCA protein assay kit (Pierce 23225). 200 μ g portions of peptides from each sample were aliquoted and vacuum-dried to evaporate formic acid. Each of 0.8 mg 11-plex TMT labelling reagents was reconstituted in 41 μ l acetonitrile. The peptides were reconstituted in 40 μ l of 50 mM HEPES (pH 8.5) to prepare 5 mg/ml peptide solution and were mixed with 20.5 μ l of the TMT reagent to label the peptides at room temperature for two hours. The reaction was quenched by adding 4 μ l of 5% hydroxylamine. The 11 samples were combined (2.2 mg total peptides) and desalted by the SepPak C18 cartridge.

We previously reported that superbinder SH2 domains could be used to enrich pTyr peptides for mass spectrometry analysis ⁸. For enrichment of pTyr peptides, the SH2 superbinder was covalently coupled to agarose beads (Thermo 20402). The digested peptides were reconstituted in 50 mM ammonium bicarbonate and incubated with the SH2 superbinder beads for 30 min at room temperature with rotation. The flow-through fraction was saved for later analysis. The beads were washed four times with the same buffer. The bound pTyr peptides were eluted by 0.4% trifluoroacetic acid (TFA). The eluted peptides were loaded on the High pH peptide fractionation kit (Pierce 84868). The peptides were separated into eight fractions and the fractions were combined into four vials for mass spec injections.

The flow-through fraction contains peptides not captured by the superbinder SH2 domain. A 100 μ g portion was separated into 12 fractions by the High-pH fractionation kit for full proteome analysis. A 500 μ g portion was used for phosphopeptide enrichment by the Ti⁴⁺-IMAC resin⁹. The phosphopeptides were eluted by 10% ammonia and vacuum-dried. The dried phosphopeptides were separated into eight fractions and then combined into four vials for mass spec injections.

LC-MS/MS experiments

The peptides were analyzed by the data-dependent acquisition method on the EASY-nLC 1000 system coupled to the Q-Exactive Plus mass spectrometer (Thermo Scientific). The peptides were

separated on an EASY-Spray ES803A analytical column (Thermo Scientific) applying a flow rate of 300 nl/min and a linear gradient from 3 to 40% acetonitrile in 0.1% formic acid. The gradient length was 2 hours for pTyr phosphoproteome fractions, 4 hours for full proteome and IMAC phosphoproteome fractions. See Table S3 for mass spectrometry data acquisition parameters.

Peptide identification and quantification were performed using MaxQuant version 1.6.17.0¹⁰. The mass spectra were searched against the human SwissProt sequences (20367 entries, downloaded on February 7, 2020), supplemented with common contaminants. For all searches, cysteine carbamidomethylation was set as the fixed modification, and methionine oxidation and N-terminal protein acetylation are set as variable modifications. Trypsin/P was specified as the proteolytic enzyme with up to two missed cleavage sites allowed. For IMAC- and superbinder (pTyr)-enriched datasets, Phospho (STY) was included as an additional variable modification. For phosphoproteomic data, the minimal peptide length for the search was set as 6, whereas the value was set as 7 for full proteome data. The multi-batch normalization option was used to normalize the three 11-plex datasets by selecting Channel 1 (common pervanadate-treated PBMC sample) as a reference channel, and the data were normalized by the weighted ratio to the reference channel. The reporter ion interference correction factors for the TMT reagent (Lot VB298423) were applied. The match-between-run option was turned on for peptide identification. Other MaxQuant parameters are left as default values.

Proteome and phosphoproteome data analysis

For data analysis, only the proteins (for proteome) or phosphosites (for phosphoproteome) observed in at least three samples in each of the five groups (COV-D1, D7, D10, ICU, HC) were retained. The median log2 value was subtracted from each sample to normalize the data. Phosphosites with the localization probability > 0.75 were retained. Perseus version 1.6.14.0 was used to analyze the data and to perform GO enrichment for pathways analysis ¹¹. For clustering and heatmap preparation of proteome and phosphoproteome data, the three groups (COV-D1, ICU and HC) were analyzed by the ANOVA test with 10% FDR cut-off, and the Z-score was calculated for each protein (for proteome) or phosphosite (for phosphoproteome) for hierarchical clustering. The data from PhosphositePlus version 110220 ¹² were used to construct the kinase-pTyr substrate network figure in Figure 4. The list of the human kinases was based on ¹³. The ITRM motifs were based on a list previously identified ¹⁴. The KSEA App was used to predict active kinases ¹⁵.

Functional scores of phosphoprotein interactions were calculated by PHOTON (Rudolph et al., 2016). The Metascape server was used for gene annotation analysis ¹⁶. The heatmaps were prepared with the Morpheus server. Cytoscape ¹⁷ was used to draw protein-protein interaction networks shown.

RNA isolation and qPCR

Isolation and purification of total RNA from the PBMCs was carried out according to RNeasy® Mini Kit followed by cDNA preparation using reverse transcriptase and random primers. The qPCR amplification was performed with cytokine/chemokine primers listed in the key resources table. After 40 cycles of PCR, Δ Ct values were determined using different cytokine and chemokine primers and β -actin as reference genes. Differences in mRNA levels were then calculated using the 2–($\Delta\Delta$ Ct) method. The expression of human β -actin was used to normalize mRNA content and to calculate Log2 fold change in gene expression. Samples were tested five biological repeats and four technical repeats.

Statistical analysis

Statistical analyses were done using the GraphPad Prism9 software. Unpaired One-way ANOVA was conducted to test significance of difference of unpaired samples from different patient groups and repeated measure ANOVA was done for paired patients' samples as described in figure legends.

Protein Microarray Printing

SARS-CoV-2 proteins were diluted to 0.5-10µM in PBS with 5% glycerol (IgG control at 200nM) and aliquots transferred to a 384-well microplate (ArrayIt). 24 copies of the microarray were printed on each nitrocellulose coated glass slide (ArrayIt) using a VersArray Chipwriter Pro (Bio-Rad) equipped with a Stealth 15XB microarray quill pin (ArrayIt). Spot to spot distance was 850µm with two reprints of the same spot and all spots printed in duplicate in the y dimension. A dwell time of 0.1sec was used for each spot with an approach speed of 12.5mm/sec. Samples were printed at room temperature and subsequently stored at 4°C until time of probing.

For probing, microarray slides were briefly rinsed twice with TBST (Tris buffered saline containing Tween 20: 0.1M Tris-HCl, pH 7.4, 150mM NaCl, and 0.1% Tween 20) to wet the surface then incubated for 2h with ChonBlock ELISA blocking and antibody dilution buffer (Chondrex Inc). Slides were briefly rinsed with TBST then inserted into an ArraySlide 24-chamber hybridization cassette (The Gel Company) and incubated with plasma from SARS CoV-2 qPCR confirmed positive and negative patients (1:250 dilution in ChonBlock). Slides were then rinsed quickly three times followed by three 5min washes with TBST before probing with goat anti-human IgG HRP antibody at 1:10,000 (Millipore Sigma) in ChonBlock for 1h. The wash step was repeated as above, then the HRP signal was visualized on a ChemiDoc XRS+ Imager (Bio-Rad) using Clarity ECL Substrate (Bio-Rad). All incubation steps were performed at room temperature using a rocker for agitation of sample.

Table of Key Regents

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-Spike-RBD antibody	Novus	NBP2-90980
	Biologicals	
Anti-nucleocapsid antibody	ThermoFisher	PA5-81794
	Scientific	
Goat anti-human IgG HRP antibody	Millipore	AP113P
	Sigma	
Goat anti-rabbit IgG HRP	Bio-Rad	170-6515
qPCR primers		
Human TGFβ	Millipore	
For: CAGCAACAATTCCTGGCGATA	Sigma	
Rev: AAGGCGAAAGCCCTCAATT		
Human TNFa	Millipore	
For:	Sigma	
TCTTCTCGAACCCCGAGTGA Rev:		
CCTCTGATGGCACCACCAG		
Human IFNγ	Millipore	

For: TCAGCTCTGCATCGTTTTGG	Sigma
Rev:	
GTTCCATTATCCGCTACATCTGAA	
Human IL-8	Millipore
For: GAACTGAGAGTGATTGAGAGT	Sigma
Rev: CTTCTCCACAACCCTCTG	
Human IL-6	Millipore
For:	Sigma
GTAGCCGCCCCACACAGACAGCC	
Rev: GCCATCTTTGGAAGGTTC	
Human IL-17	Millipore
For: TGAAGGCAGGAATCACAAT	Sigma
Rev: GGTGGATCGGTTGTAGTAAT	
Human IL-13	Millipore
For: ATTGCTCTCACTTGCCTT	Sigma
Rev: GTCAGGTTGATGCTCCAT	
Human IL-12	Millipore
For: TGGAGTGCCAGGAGGACAGT	Sigma
Rev: TCTTGGGTGGGTCAGGTTTG	
Human IL-10	Millipore
For: GTGATGCCCCAAGCTGAGA	Sigma
Rev: CACGGCCTTGCTCTTGTTTT	
Human IL-2	Millipore
For:	Sigma
AGAACTCAAACCTCTGGAGGAAG	
Rev:	
GCTGTCTCATCAGCATATTCACAC	
Human IL-33	Millipore
For: GCCTGTCAACAGCAGTCTACTG	Sigma
Rev:	
TGTGCTTAGAGAAGCAAGATACTC	
Human IL-1a	Millipore
	Sigma

For:	
TGTATGTGACTGCCCAAGATGAAG	
Rev: AGAGGAGGTTGGTCTCACTACC	
Human IL-1b	Millipore
For: CCACAGACCTTCCAGGAGAATG	Sigma
Rev:	
GTGCAGTTCAGTGATCGTACAGG	
Human IL-15	Millipore
For:	Sigma
AACAGAAGCCAACTGGGTGAATG	
Rev:	
CTCCAAGAGAAAGCACTTCATTGC	
Human IL18	Millipore
For: GATAGCCAGCCTAGAGGTATGG	Sigma
Rev:	
CCTTGATGTTATCAGGAGGATTCA	
Human MIP-1b	Millipore
For: GCTTCCTCGCAACTTTGTGGTAG	Sigma
Rev: GGTCATACACGTACTCCTGGAC	
Human M-CSF	Millipore
For: TGAGACACCTCTCCAGTTGCTG	Sigma
Rev: GCAATCAGGCTTGGTCACCACA	
Human MCP-1	Millipore
For:	Sigma
AGAATCACCAGCAGCAAGTGTCC	
Rev:	
TCCTGAACCCACTTCTGCTTGG	
Human iNOS	Millipore
For: GCTCTACACCTCCAATGTGACC	Sigma
Rev: CTGCCGAGATTTGAGCCTCATG	
Human GB	Millipore
For: CGACAGTACCATTGAGTTGTGCG	Sigma
Rev:	
TTCGTCCATAGGAGACAATGCCC	
Human β-actin	Millipore
For: CACCATTGGCAATGAGCGGTTC	Sigma

Rev: AGGTCTTTGCGGATGTCCACGT		
Human IL-4	Millipore	
For: TGCATTGTTAGCATCTCTTGA	Sigma	
Rev: CCCTTCTCCTGTGACCTCGTT		
Human IFNa	Millipore	
For: GACTCCATCTTGGCTGTGA	Sigma	
Rev: TGATTTCTGCTCTGACAACCT		
Human IFNb	Millipore	
For: CAACTTGCTTGGATTCCTACAAA	Sigma	
Rev: TATTCAAGCCTCCCATTCAATTG		
ChonBlock ELISA blocking and antibody	Chondrex Inc	9068
dilution buffer		
Human IgG (200nM)	Equitech Bio	SLH66-0001
	inc	
Spike Receptor Binding Domain (RBD)	ThermoFisher	RP-87678
(14µM)	Scientific	
Spike Ectodomain (0.5µM)	(Hsieh et al.	ID: SARS-CoV-2 S HexaPro
	2020)	
NSP3-unique (10µM)	This Study	The Structural Genomics Consortium
NSP3-ADRP (10µM)	This Study	The Structural Genomics Consortium
NSP3-PLPro (10µM)	This Study	The Structural Genomics Consortium
NSP3-nucleic acid binding domain	This Study	The Structural Genomics Consortium
(10µM)		
NSP4CTD (10µM)	This Study	The Structural Genomics Consortium
NSP5 (10µM)	This Study	The Structural Genomics Consortium
NSP7 (10µM)	This Study	The Structural Genomics Consortium
NSP8 (10µM)	This Study	The Structural Genomics Consortium
NSP9 (10µM)	This Study	The Structural Genomics Consortium
NSP10 (10µM)	(Perveen et al.	The Structural Genomics Consortium
	2020)	
NSP16 (10µM)	(Perveen et al.	The Structural Genomics Consortium
	2020)	
Nucleocapsid (full length) (5µM)	RayBiotech	230-01104
Nucleocapsid dimerization domain (5µM)	This Study	The Structural Genomics Consortium

Nucleocapsid RNA binding domain (5µM)	18	The Structural Genomics Consortium
Critical Commercial Assays		
HemogloBind TM	Biotech	H0145-50
	Support Group	
RNeasy® Micro	Qiagen	Cat# 74004
SensiFAST™ SYBR ® No-ROX Kit		
Clarity ECL Substrate	Bio-Rad	170-5060
Software		
MaxQuant	(Tyanova et	1.6.17.0
	al., 2016a)	
Perseus	(Tyanova et	v1.6.14.0
	al., 2016b)	
Cytoscape	(Su et al.,	v.3.8.2
	2014)	
KSEA App	Wiredja et al.	v1.0
	2019	
Metascape	Zhou et al.	
	2019	
Morpheus		https://software.broadinstitute.org/morpheus/
Morpheus		https://software.broadinstitute.org/morpheus/
Morpheus Other		https://software.broadinstitute.org/morpheus/
Morpheus Other SuperNitro microarray substrate slides	ArrayIt	https://software.broadinstitute.org/morpheus/
Morpheus Other SuperNitro microarray substrate slides Stealth 15XB microarray quill pin	ArrayIt ArrayIt	https://software.broadinstitute.org/morpheus/ SMN SMP15XB
Morpheus Other SuperNitro microarray substrate slides Stealth 15XB microarray quill pin Microarray Microplate 384	ArrayIt ArrayIt ArrayIt ArrayIt	https://software.broadinstitute.org/morpheus/ SMN SMP15XB MMP384
Morpheus Other SuperNitro microarray substrate slides Stealth 15XB microarray quill pin Microarray Microplate 384 ArraySlide 24-4 hybridization chamber	ArrayIt ArrayIt ArrayIt ArrayIt The Gel	https://software.broadinstitute.org/morpheus/ SMN SMP15XB MMP384 AHS24-4
Morpheus Other SuperNitro microarray substrate slides Stealth 15XB microarray quill pin Microarray Microplate 384 ArraySlide 24-4 hybridization chamber cassette	ArrayIt ArrayIt ArrayIt The Gel Company	https://software.broadinstitute.org/morpheus/ SMN SMP15XB MMP384 AHS24-4
Morpheus Other SuperNitro microarray substrate slides Stealth 15XB microarray quill pin Microarray Microplate 384 ArraySlide 24-4 hybridization chamber cassette Lysyl Endopeptidase	ArrayIt ArrayIt ArrayIt ArrayIt The Gel Company Wako	https://software.broadinstitute.org/morpheus/ SMN SMP15XB MMP384 AHS24-4 129-02541
Morpheus Other SuperNitro microarray substrate slides Stealth 15XB microarray quill pin Microarray Microplate 384 ArraySlide 24-4 hybridization chamber cassette Lysyl Endopeptidase (LysC)	ArrayIt ArrayIt ArrayIt ArrayIt The Gel Company Wako	https://software.broadinstitute.org/morpheus/ SMN SMP15XB MMP384 AHS24-4 129-02541
Morpheus Other SuperNitro microarray substrate slides Stealth 15XB microarray quill pin Microarray Microplate 384 ArraySlide 24-4 hybridization chamber cassette Lysyl Endopeptidase (LysC) Trypsin	ArrayIt ArrayIt ArrayIt ArrayIt The Gel Company Wako Promega	https://software.broadinstitute.org/morpheus/ SMN SMP15XB MMP384 AHS24-4 129-02541 V5113
Morpheus Other SuperNitro microarray substrate slides Stealth 15XB microarray quill pin Microarray Microplate 384 ArraySlide 24-4 hybridization chamber cassette Lysyl Endopeptidase (LysC) Trypsin TMT 11-plex isobaric label reagent	ArrayIt ArrayIt ArrayIt ArrayIt The Gel Company Wako Promega Thermo	https://software.broadinstitute.org/morpheus/ SMN SMP15XB MMP384 AHS24-4 129-02541 V5113 A37725
Morpheus Other SuperNitro microarray substrate slides Stealth 15XB microarray quill pin Microarray Microplate 384 ArraySlide 24-4 hybridization chamber cassette Lysyl Endopeptidase (LysC) Trypsin TMT 11-plex isobaric label reagent BCA protein assay kit	ArrayIt ArrayIt ArrayIt ArrayIt The Gel Company Wako Promega Thermo Pierce	https://software.broadinstitute.org/morpheus/ SMN SMP15XB MMP384 AHS24-4 129-02541 V5113 A37725 23225
Morpheus Other SuperNitro microarray substrate slides Stealth 15XB microarray quill pin Microarray Microplate 384 ArraySlide 24-4 hybridization chamber cassette Lysyl Endopeptidase (LysC) Trypsin TMT 11-plex isobaric label reagent BCA protein assay kit SulfoLink Coupling Resin	ArrayIt ArrayIt ArrayIt ArrayIt The Gel Company Wako Promega Thermo Pierce Thermo	https://software.broadinstitute.org/morpheus/ SMN SMP15XB MMP384 AHS24-4 129-02541 V5113 A37725 23225 20402
Morpheus Other SuperNitro microarray substrate slides Stealth 15XB microarray quill pin Microarray Microplate 384 ArraySlide 24-4 hybridization chamber cassette Lysyl Endopeptidase (LysC) Trypsin TMT 11-plex isobaric label reagent BCA protein assay kit SulfoLink Coupling Resin High pH Reversed-Phase Peptide	ArrayIt ArrayIt ArrayIt ArrayIt The Gel Company Wako Promega Thermo Pierce Thermo Pierce	https://software.broadinstitute.org/morpheus/ SMN SMP15XB MMP384 AHS24-4 129-02541 V5113 A37725 23225 20402 84868
Morpheus Other SuperNitro microarray substrate slides Stealth 15XB microarray quill pin Microarray Microplate 384 ArraySlide 24-4 hybridization chamber cassette Lysyl Endopeptidase (LysC) Trypsin TMT 11-plex isobaric label reagent BCA protein assay kit SulfoLink Coupling Resin High pH Reversed-Phase Peptide Fractionation Kit	ArrayIt ArrayIt ArrayIt ArrayIt The Gel Company Wako Promega Thermo Pierce Thermo Pierce	https://software.broadinstitute.org/morpheus/ SMN SMP15XB MMP384 AHS24-4 129-02541 V5113 A37725 23225 20402 84868
Morpheus Other SuperNitro microarray substrate slides Stealth 15XB microarray quill pin Microarray Microplate 384 ArraySlide 24-4 hybridization chamber cassette Lysyl Endopeptidase (LysC) Trypsin TMT 11-plex isobaric label reagent BCA protein assay kit SulfoLink Coupling Resin High pH Reversed-Phase Peptide Fractionation Kit Ti ⁴⁺ -IMAC resin	ArrayIt ArrayIt ArrayIt ArrayIt ArrayIt The Gel Company Wako Promega Thermo Pierce Thermo Pierce Dr. Mingliang	https://software.broadinstitute.org/morpheus/ SMN SMP15XB MMP384 AHS24-4 129-02541 V5113 A37725 23225 20402 84868

Supplementary References

- Control, C. f. D. & Prevention. Evaluating and testing persons for coronavirus disease
 2019 (COVID-19). National Center for Immunization and Respiratory Diseases
 (NCIRD), Division of Viral Diseases (2020).
- 2 Priestap, F., Kao, R. & Martin, C. M. External validation of a prognostic model for intensive care unit mortality: a retrospective study using the Ontario Critical Care Information System. *Canadian Journal of Anaesthesia*, 1 (2020).
- 3 Brisson, A. R., Matsui, D., Rieder, M. J. & Fraser, D. D. Translational research in pediatrics: tissue sampling and biobanking. *Pediatrics* **129**, 153-162 (2012).
- Gillio-Meina, C., Cepinskas, G., Cecchini, E. L. & Fraser, D. D. Translational research in pediatrics II: blood collection, processing, shipping, and storage. *Pediatrics* 131, 754-766 (2013).
- 5 O'Shea, J. J., McVicar, D. W., Bailey, T. L., Burns, C. & Smyth, M. J. Activation of human peripheral blood T lymphocytes by pharmacological induction of protein-tyrosine phosphorylation. *Proceedings of the National Academy of Sciences* **89**, 10306-10310 (1992).
- 6 Chua, X. Y. *et al.* Tandem Mass Tag approach utilizing pervanadate BOOST channels delivers deeper quantitative characterization of the tyrosine phosphoproteome. *Molecular & Cellular Proteomics* 19, 730-743 (2020).
- Zecha, J. *et al.* TMT labeling for the masses: a robust and cost-efficient, in-solution labeling approach. *Molecular & Cellular Proteomics* 18, 1468-1478 (2019).
- 8 Bian, Y. *et al.* Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder. *Nature Chemical Biology* **12**, 959-966 (2016).
- 9 Zhou, H. *et al.* Robust phosphoproteome enrichment using monodisperse microspherebased immobilized titanium (IV) ion affinity chromatography. *Nature protocols* 8, 461-480 (2013).

- 10 Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. *Nature protocols* **11**, 2301 (2016).
- 11 Tyanova, S. *et al.* The Perseus computational platform for comprehensive analysis of (prote) omics data. *Nature methods* **13**, 731-740 (2016).
- 12 Hornbeck, P. V. *et al.* 15 years of PhosphoSitePlus®: integrating post-translationally modified sites, disease variants and isoforms. *Nucleic acids research* 47, D433-D441 (2019).
- 13 Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. *Science* 298, 1912-1934 (2002).
- Liu, H. *et al.* A comprehensive immunoreceptor phosphotyrosine-based signaling network revealed by reciprocal protein–peptide array screening. *Molecular & Cellular Proteomics* 14, 1846-1858 (2015).
- 15 Wiredja, D. D., Koyutürk, M. & Chance, M. R. The KSEA App: a web-based tool for kinase activity inference from quantitative phosphoproteomics. *Bioinformatics* 33, 3489-3491 (2017).
- 16 Zhou, Y. *et al.* Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. *Nature communications* **10**, 1-10 (2019).
- 17 Su, G., Morris, J. H., Demchak, B. & Bader, G. D. Biological network exploration with Cytoscape 3. *Current protocols in bioinformatics* **47**, 8.13. 11-18.13. 24 (2014).
- 18 Esmail, S. *et al.* Rapid and accurate point-of-care testing for SARS-CoV2 antibodies. *medRxiv* (2020).
- 19 Chen, L.-L. *et al.* Phosphoproteome-based kinase activity profiling reveals the critical role of MAP2K2 and PLK1 in neuronal autophagy. *Autophagy* **13**, 1969-1980 (2017).